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DM 13 - Nombres algébriques, nombres transcendants

1 Lalgebre Q[a]
1. Soient PbQ € Q[X], soient A,ue Q. On a:
Pa(AP+ Q) = (AP + uQ)(a) = AP(a) + uQ(a) = Ay (P) + o (Q).

Donc ¢, est linéaire. De plus, ¢4 (1) =1 et ¢4 (PQ) = (PQ)(a) = P(a)Q(a) = ¢pg(P)pa(Q).
Donc, ¢4 est un morphisme d’anneaux. (Pas besoin de montrer que ¢, préserve les lois +, ¢a
a déja été fait dans la linéarité.)

2. Comme ¢, est un morphisme d’anneaux, son image Q[a] est un sous-anneau de C.

La famille (X") ,en est une famille génératrice de Q[ X]. Donc la famille (g (X™)) nen = (@) nen
est une famille génératrice de I'image de ¢, c’est-a-dire de Q[a]. Autrement dit, Q[a] est le
Q-espace vectoriel engendré par {a”, n € N}.

3. ¢ On suppose i). Par hypothese, on peut trouver Sy, ..., 8, € Q[a] qui forment une famille
de générateurs de Q[a]. Chaque B; est de la forme P;(a), ou P; € Q[X]. En particulier,
si on note d — 1 le degré maximal des P;, chaque ; est combinaison linéaire des a,

pour k € [0,d —1]. Ainsi, la famille (ak) kejo,d—1] est génératrice de Q[a]. En particulier,
a® e Vect (ak, ke[0,d- 1]]). Ce qui montre ii).

d-1
¢ On suppose ii). On peut donc trouver Ag,...,A4-; € Q tels que a = Z Ara®. Notons
k=0

d-1
p=Xx%_ Z /lka. Alors, P(a) =0, ce qui revient a dire que P € Ker¢,. Donc ¢, n'est
k=0
pas injectifeton a iii).
* On suppose iii). Soit P un polynome de degré d € N dans Ker¢,. Soit n € N. Ecrivons
la division euclidienne de X" par P :

X"=PQ+R,

avec R € Q4_;[X]. En évaluant en a, on a a” = P(a)Q(a) + R(a) = R(a). Or, R(a) €
Vect(ao,...,ad_l). Dongc, tout a” est dans Vect(ao,...,ad_l). Commes les a” (avec n €
N) engendrent Q[a], on en déduit que Q[a] = Vect(a®,...,a®™). D’ou i).

4. Le noyau d'un morphisme d’anneaux quelconque est toujours un idéal. Montrons-le dans
ce cas particulier.

¢ Ker¢, est un sous-groupe additif de Q[X] car ¢, est un morphisme d’anneaux, donc
de groupes.

* Soit P e Ker¢, et Q € Q[X]. Alors ¢4(PQ) = ¢pa(P)dp,(Q) =0 car ¢4(P) =0. Donc PQ €
Ker ¢4, ce qui montre que Ker ¢, est un idéal de Q[X].



5. Soient R, Q € Q[X] tels que Py = RQ. En évaluant en «, on a R(a)Q(a) = 0. Par intégrité de
C, I'un des deux facteurs est nul, disons R(a). Alors R € Ker ¢, donc P, divise R. Comme R
divise P, par hypothese, ces deux polynémes sont associés.

Donc P, est irréductible dans Q[X].

6. Un nombre a est algébrique de degré 1 ssi il est racine d'un polynéme unitaire P € Q[X] de
degré 1. Un tel polyndme s’écrit X — g, ol g € Q. On en déduit que les nombres algébriques
de degré 1 sont les nombres rationnels.

7. Siaestalgébrique de degré 2, alors a estracine de Py, qui est unitaire, a coefficients rationnels,
de degré 2 et irréductible dans Q[X]. Réciproquement, si un nombre a est racine d'un
polynéme P € Q[X], unitaire, de degré 2 et irréductible, alors il est algébrique de degré 2.
En effet, comme il est annulé par un polynéme de degré 2, il est algébrique de degré 1 ou 2.
Mais s'il était de degré 1, il serait rationnel, ce qui contredirait I'irréductibilité de P.

Il reste 2 comprendre quand un polyndéme P € Q[X] de degré 2, unitaire est irréductible dans
Q[X]. Un tel polynéme s’écrit P = X?+ mx+ p. Il est irréductible ssi il n’a pas de racines dans
Q (car de degré 2). Or, si 6 € C est tel que 5% =m? - 4p, les racines sont données par —m + 0.
Ces racines sont rationnelles ssi 6 I'est ssi le discriminant est le carré d'un nombre rationnel.
Ceci conclut.

8. (a) SiyeQla],alors mg(y) = By € Qla] car Q[a] est un sous-anneau de C. Ainsi, meg induit
un endomorphisme de Q[a].

Si y est dans le noyau de cet endomorphisme, alors By = 0 et donc y = 0 par intégrité
de C (et parce que § # 0). Donc cet endomorphisme est injectif.

Pour la surjectivité, deux possibilités :

¢ Comme on est en dimension finie, il y a équivalence pour un endomorphisme a
étre injectif ou surjectif.

¢ On peut aussi donner un argument direct. Comme g est dans Q[«], il s’écrit Q(a)
pour un Q € Q[X]. Comme S est non nul, P, ne divise pas Q, et comme P, est
irréductible, il est premier avec Q. On peut donc trouver une relation de Bézout du
type: UPy+VQ=1,avec U,V € Q[X]. En évaluant en ¢, on obtient: V(a)Q(a) =1
et donc, B = Q(a) admet un inverse dans Q[a]. En notant 87! cet inverse, on a
y=mg (B71y), pour tout y € Q[a], et donc mg est surjective.

(b) Ainsi, dans I'anneau Q[a], tout élément non nul a un inverse. Donc, Q[a] est un corps.
9. Onraisonne par contraposée. Si a est transcendant, le morphisme ¢, : Q[ X] — C est injectif.
C’est donc un isomorphisme de Q[X] vers Q[a] (qui est I'image de ¢4). Or, Q[X] n’est pas

un corps (seuls les polyndmes constants non nuls sont inversibles) ; donc Q[a] qui lui est
isomorphe (en tant qu’anneau) n’est pas non plus un corps.

2 Le corps Q des nombres algébriques

10. (a) En reprenant la démonstration de iii) — i) dans la question 3., on montre que
Qla] = Vect(@®,...,a%™ 1) et QIp] = Vect(ﬁo,...,ﬁd ~1). Dong, si (k,¢) € N?, on peut



d-1 d-1

trouver A, ...,Ag-1 et Uo,..., tg—1 tels que ak = Z /ll-ai et ,Bg = pjﬁj. Alors,
i=0 j=0
k pt i pj
a“pf= > Ajpja’pl.
O<i=d-1
0<j=d'-1

Ceci montre que chaque a* /3[ est dans Vect (ak ,6[ ,(k,0) € Nz). Donc,

Qla, f] = Vect (akﬁ", (k,0) € I\IZ).

(b) OnaQla+ ] cQla, Bl. En effet, par la formule du bin6me de Newton,

i=o\k

VneN,(@+p)" =Y (")a’“ﬁ”‘k,

ce qui montre que les puissances de @+ 3 sont des combinaisons linéaires a coefficients
dans @ de produits al ﬁj .

D’apres la question précédente, Q[a, B] est de dimension finie, donc Q[a + ], qui en
est un sous-espace vectoriel, aussi. Donc, a + f§ est algébrique.

Largument pour af est analogue (et méme plus simple).

11. La question précédente montre que Q est un sous-anneau de C (puisque 1 est bien sir
algébrique). De plus, on a montré en premiere partie que si a # 0 est algébrique, alors Q[a]
est un corps. Ceci implique que a™! € Q[a]. Donc, que Q[a '] c Q[a] (Il y a en fait égalité)
Donc, Q[a '] est de dimension finie ce qui implique que a~* est aussi dans Q.

Donc, @ est un Corps.
12. Soit a € C, soit n € N* tels que a” € Q. On considere P, le polyndme minimal de a”. On a

donc:
Pan(a™ =0.

Cette égalité montre que « est racine du polynéme P(X") € Q[X]. Donc, a € Q.

3 Mesure d’irrationalité et constante de Liouville

13. Soit x un réel, soit u < 1. Fixons A > 0. On cherche a montrer qu'il existe un couple (p, q) €

7 x N* telquex?ﬁget x—B

A
< % Pour g € N* donné, on considere la fraction p la plus

1
proche (mais distincte) de x. On adonc |x— BI < —. Or, si g est suffisamment grand, — < %,

car 1 < 1. On peut donc bien trouver un tel couple (p, g). Ceci montre qu'aucun y < 1 n’est
dans I’ensemble <y, donc u(x) = 1.

a
Soit x = 3 un rationnel. Si P est un rationnel distinct de x, on a (on suppose b, g > 0)

1

2_2‘:M>
b q bg  bq



14.

15.

car aq—bp #0.

1
Ceci montre que, 1 € &, (en prenant A = 7 Donc p(x) =1si x€Q.

(a) Le polyndme minimal P, de x est de degré d et a coefficients rationnels, ayant x comme
racine. En le multipliant par le ppcm des dénominateurs de ses coefficients, on définit
un polynéme P a coefficients entiers, de degré d tel que P(x) = 0. Enfin, P n'a pas de
racine rationnelle. En effet, si P avait une racine rationnelle, alors P, aussi. Donc Py ne
serait pas irréductible, en contradiction avec la question 5.

(b) NotonsM = sup |P'(r)], bien défini parle théoréme des bornes atteintes, appliquée
te[x—1x+1]

ala fonction (continue) associée a P’. Par I'inégalité des accroissements finis, on a

) )i

d d
(c) Notons P = Z aka, avec pour tout k, ay € Z. Alors qu(g) = Z adpkqd_k € Z. De
k=0 k=0

plus, cette quantité est non nulle, car sinon — serait racine de P. Ceci montre le premier

ol

=M

point.

On en déduit que = 1. Avec I'inégalité obtenue a la question précédente, on

obtient :

- —.
71T Mg

p‘l

(d) Linégalité précédente a été obtenue sous 'hypothese Z € [x—1,x+1]. Mais si cette

1 1
hypothese n’est pas vérifiée, alors |x — s >1= —. Ainsi, en notant A = min(l, ]\_/I)' on
q
adans tous les cas :
p A
x-—|z—.
qal q

Ceci montre que d € oy, donc que u(x) < d.

On suppose que x est un nombre de Liouville. En particulier, il est irrationnel. Soit d € R.
Comme la mesure d’irrationalité de x est +oo,on a:

* p_A
VA>0,3(p,qg) € ZxN :0<|x——|<—d.
q9 4

Donc, pour tout nn € N*, on peut trouver (py, qn) € Z x N* tels que

1 1
o<ix-Prc L o L
An ngq q
Le nombre de tels couples (p,, q,) est nécessairement infini (car les |x — &I sont non nuls
dn
1
mais que — est arbitrairement petit quand 7 tend vers +oo). Ceci montre le sens direct.

nq



16.

17.

On suppose maintenant que x n’est pas un nombre de Liouville. On note u € [1,+oo[ un
élément de <. On fixe un A > 0 tel que

A
Y(p,q) €Z xN* x;é :|x——|>__
q gt

1
Fixons maintenant un réel d > . Si (p,q) € Z x N* est tel que 0 < |x — gl < —,onaen

q*’
- p A _1 . -
particulier x # — et ? < —. Comme d > p, seul un nombre fini de g peut vérifier cette
q
1
inégalité. De plus, pour chacune des valeurs possibles de g, I'inégalité |x — gl < — ne peut
q

étre satisfaite que par un nombre fini de p.

1
Ainsi, seul un nombre fini de couples (p, q) € Z x N* peuvent vérifier 0 < |x— §| <—.Cequi
q

conclut la réciproque.

Le sens direct est immédiat. Si n € N, on pose d = n et on utilise la question précédente pour

construire un couple (py, g») (on dispose d'une infinité de tels couples).

Pour la réciproque, on fixe d € R. Pour tout n = d, on peut construire un couple (p,, q,) €

Z x [2,+0o0] tel que |x - ﬁl < in < id. Il y a nécessairement une infinité de tels couples
n an An

(pn,gn). En effet, sinon 'ensemble des valeurs de |x — &I serait minoré par une constante

qn

1
strictement positive ; alors que la suite — tend vers 0 (car g, = 2). Ceci conclut.
n

& 1 1
La suite Z — | est croissante. De plus, pour tout k € N, k! = k, donc — s - Ceci
o 10% 10 10
montre que pour tout 7 :
o] LA |
ISTERP ST
n
Dong, la suite Z ToF est majorée. Par le théoréme de lalimite monotone, elle est convergente.

k=0
Dongc, £ est bien définie.

1
Soit n € N. On écrit Z - sous la forme Pr avec gn=10". Alors,
k=0 10K qn
> 1 too 1 1 10 1

Z-t= ) >

< — = —<
Gn P 10k! r=tmi 10[ 10(n+1)! 9 10(n+1)!—1

On constate aisément que (n+ 1)! — 1 = n! x n. On en déduit que

f-lop_ o =

’ Pn Pn 1 i
an (10" g

qn

Ceci montre que £ est un nombre de Liouville, donc £ est transcendant.



