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DM 13 - Nombres algébriques, nombres transcendants

1 L’algèbreQ[α]

1. Soient P,Q ∈Q[X ], soient λ,µ ∈Q. On a :

φα(λP +µQ) = (λP +µQ)(α) =λP (α)+µQ(α) =λφα(P )+µφα(Q).

Donc φα est linéaire. De plus, φα(1) = 1 et φα(PQ) = (PQ)(α) = P (α)Q(α) = φα(P )φα(Q).
Donc, φα est un morphisme d’anneaux. (Pas besoin de montrer que φα préserve les lois +, ça
a déjà été fait dans la linéarité.)

2. Comme φα est un morphisme d’anneaux, son imageQ[α] est un sous-anneau de C.

La famille (X n)n∈N est une famille génératrice deQ[X ]. Donc la famille (φα(X n))n∈N = (αn)n∈N
est une famille génératrice de l’image de φα, c’est-à-dire de Q[α]. Autrement dit, Q[α] est le
Q-espace vectoriel engendré par {αn ,n ∈N}.

3. • On suppose i ). Par hypothèse, on peut trouverβ1, . . . ,βn ∈Q[α] qui forment une famille
de générateurs de Q[α]. Chaque βi est de la forme Pi (α), où Pi ∈Q[X ]. En particulier,
si on note d − 1 le degré maximal des Pi , chaque βi est combinaison linéaire des αk ,
pour k ∈ �0,d −1�. Ainsi, la famille (αk )k∈�0,d−1� est génératrice de Q[α]. En particulier,

αd ∈ Vect
(
αk ,k ∈ �0,d −1�

)
. Ce qui montre i i ).

• On suppose i i ). On peut donc trouver λ0, . . . ,λd−1 ∈Q tels que αd =
d−1∑
k=0

λkα
k . Notons

P = X d −
d−1∑
k=0

λk X k . Alors, P (α) = 0, ce qui revient à dire que P ∈ Kerφα. Donc φα n’est

pas injectif et on a i i i ).

• On suppose i i i ). Soit P un polynôme de degré d ∈N dans Kerφα. Soit n ∈N. Écrivons
la division euclidienne de X n par P :

X n = PQ +R,

avec R ∈ Qd−1[X ]. En évaluant en α, on a αn = P (α)Q(α)+R(α) = R(α). Or, R(α) ∈
Vect(α0, . . . ,αd−1). Donc, tout αn est dans Vect(α0, . . . ,αd−1). Commes les αn (avec n ∈
N) engendrentQ[α], on en déduit queQ[α] = Vect(α0, . . . ,αd−1). D’où i ).

4. Le noyau d’un morphisme d’anneaux quelconque est toujours un idéal. Montrons-le dans
ce cas particulier.

• Kerφa est un sous-groupe additif de Q[X ] car φa est un morphisme d’anneaux, donc
de groupes.

• Soit P ∈ Kerφa et Q ∈Q[X ]. Alors φa(PQ) = φa(P )φa(Q) = 0 car φa(P ) = 0. Donc PQ ∈
Kerφa , ce qui montre que Kerφa est un idéal deQ[X ].
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5. Soient R,Q ∈ Q[X ] tels que Pα = RQ. En évaluant en α, on a R(α)Q(α) = 0. Par intégrité de
C, l’un des deux facteurs est nul, disons R(α). Alors R ∈ Kerφα, donc Pα divise R. Comme R
divise Pα par hypothèse, ces deux polynômes sont associés.

Donc Pα est irréductible dansQ[X ].

6. Un nombre α est algébrique de degré 1 ssi il est racine d’un polynôme unitaire P ∈Q[X ] de
degré 1. Un tel polynôme s’écrit X −q , où q ∈Q. On en déduit que les nombres algébriques
de degré 1 sont les nombres rationnels.

7. Siα est algébrique de degré 2, alorsα est racine de Pα, qui est unitaire, à coefficients rationnels,
de degré 2 et irréductible dans Q[X ]. Réciproquement, si un nombre α est racine d’un
polynôme P ∈ Q[X ], unitaire, de degré 2 et irréductible, alors il est algébrique de degré 2.
En effet, comme il est annulé par un polynôme de degré 2, il est algébrique de degré 1 ou 2.
Mais s’il était de degré 1, il serait rationnel, ce qui contredirait l’irréductibilité de P .

Il reste à comprendre quand un polynôme P ∈Q[X ] de degré 2, unitaire est irréductible dans
Q[X ]. Un tel polynôme s’écrit P = X 2+mx+p. Il est irréductible ssi il n’a pas de racines dans
Q (car de degré 2). Or, si δ ∈C est tel que δ2 = m2 −4p, les racines sont données par −m ±δ.
Ces racines sont rationnelles ssi δ l’est ssi le discriminant est le carré d’un nombre rationnel.
Ceci conclut.

8. (a) Si γ ∈Q[α], alors mβ(γ) =βγ ∈Q[α] carQ[α] est un sous-anneau de C. Ainsi, mβ induit
un endomorphisme deQ[α].

Si γ est dans le noyau de cet endomorphisme, alors βγ = 0 et donc γ = 0 par intégrité
de C (et parce que β ̸= 0). Donc cet endomorphisme est injectif.

Pour la surjectivité, deux possibilités :

• Comme on est en dimension finie, il y a équivalence pour un endomorphisme à
être injectif ou surjectif.

• On peut aussi donner un argument direct. Comme β est dans Q[α], il s’écrit Q(α)
pour un Q ∈ Q[X ]. Comme β est non nul, Pα ne divise pas Q, et comme Pα est
irréductible, il est premier avec Q. On peut donc trouver une relation de Bézout du
type : U Pα+V Q = 1, avec U ,V ∈Q[X ]. En évaluant enα, on obtient : V (α)Q(α) = 1
et donc, β = Q(α) admet un inverse dans Q[α]. En notant β−1 cet inverse, on a
y = mβ(β−1 y), pour tout y ∈Q[α], et donc mβ est surjective.

(b) Ainsi, dans l’anneauQ[α], tout élément non nul a un inverse. Donc,Q[α] est un corps.

9. On raisonne par contraposée. Siα est transcendant, le morphismeφα :Q[X ] →C est injectif.
C’est donc un isomorphisme de Q[X ] vers Q[α] (qui est l’image de φα). Or, Q[X ] n’est pas
un corps (seuls les polynômes constants non nuls sont inversibles) ; donc Q[α] qui lui est
isomorphe (en tant qu’anneau) n’est pas non plus un corps.

2 Le corpsQ des nombres algébriques

10. (a) En reprenant la démonstration de i i i ) =⇒ i ) dans la question 3., on montre que
Q[α] = Vect(α0, . . . ,αd−1) et Q[β] = Vect(β0, . . . ,βd ′−1). Donc, si (k,ℓ) ∈ N2, on peut
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trouver λ0, . . . ,λd−1 et µ0, . . . ,µd ′−1 tels que αk =
d−1∑
i=0

λiα
i et βℓ =

d ′−1∑
j=0

µ jβ
j . Alors,

αkβℓ = ∑
0≤i≤d−1
0≤ j≤d ′−1

λiµ jα
iβ j .

Ceci montre que chaque αkβℓ est dans Vect
(
αkβℓ, (k,ℓ) ∈N2

)
. Donc,

Q[α,β] = Vect
(
αkβℓ, (k,ℓ) ∈N2

)
.

(b) On aQ[α+β] ⊂Q[α,β]. En effet, par la formule du binôme de Newton,

∀n ∈N, (α+β)n =
n∑

k=0

(
n

k

)
αkβn−k ,

ce qui montre que les puissances deα+β sont des combinaisons linéaires à coefficients
dansQ de produits αiβ j .

D’après la question précédente, Q[α,β] est de dimension finie, donc Q[α+β], qui en
est un sous-espace vectoriel, aussi. Donc, α+β est algébrique.

L’argument pour αβ est analogue (et même plus simple).

11. La question précédente montre que Q est un sous-anneau de C (puisque 1 est bien sûr
algébrique). De plus, on a montré en première partie que si α ̸= 0 est algébrique, alors Q[α]
est un corps. Ceci implique que α−1 ∈Q[α]. Donc, que Q[α−1] ⊂Q[α] (Il y a en fait égalité)
Donc,Q[α−1] est de dimension finie ce qui implique que α−1 est aussi dansQ.

Donc,Q est un corps.

12. Soit α ∈ C, soit n ∈N∗ tels que αn ∈Q. On considère Pαn le polynôme minimal de αn . On a
donc :

Pαn (αn) = 0.

Cette égalité montre que α est racine du polynôme P (X n) ∈Q[X ]. Donc, α ∈Q.

3 Mesure d’irrationalité et constante de Liouville

13. Soit x un réel, soit µ < 1. Fixons A > 0. On cherche à montrer qu’il existe un couple (p, q) ∈
Z×N∗ tel que x ̸= p

q
et

∣∣∣∣x − p

q

∣∣∣∣ < A

qµ
. Pour q ∈N∗ donné, on considère la fraction

p

q
la plus

proche (mais distincte) de x. On a donc |x− p

q
| ≤ 1

q
. Or, si q est suffisamment grand,

1

q
< A

qµ
,

car µ< 1. On peut donc bien trouver un tel couple (p, q). Ceci montre qu’aucun µ< 1 n’est
dans l’ensemble Ax , donc µ(x) ≥ 1.

Soit x = a

b
un rationnel. Si

p

q
est un rationnel distinct de x, on a (on suppose b, q > 0)

∣∣∣∣ a

b
− p

q

∣∣∣∣= |aq −bp|
bq

≥ 1

bq
,
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car aq −bp ̸= 0.

Ceci montre que, 1 ∈Ax (en prenant A = 1

b
. Donc µ(x) = 1 si x ∈Q.

14. (a) Le polynôme minimal Px de x est de degré d et à coefficients rationnels, ayant x comme
racine. En le multipliant par le ppcm des dénominateurs de ses coefficients, on définit
un polynôme P à coefficients entiers, de degré d tel que P (x) = 0. Enfin, P n’a pas de
racine rationnelle. En effet, si P avait une racine rationnelle, alors Px aussi. Donc Px ne
serait pas irréductible, en contradiction avec la question 5.

(b) Notons M = sup
t∈[x−1x+1]

|P ′(t )|, bien défini par le théorème des bornes atteintes, appliquée

à la fonction (continue) associée à P ′. Par l’inégalité des accroissements finis, on a∣∣∣∣P (
p

q

)∣∣∣∣= ∣∣∣∣P (
p

q

)
−P (x)

∣∣∣∣≤ M

∣∣∣∣x − p

q

∣∣∣∣ .

(c) Notons P =
d∑

k=0
ak X k , avec pour tout k, ak ∈ Z. Alors qd P

(
p

q

)
=

d∑
k=0

ad pk qd−k ∈ Z. De

plus, cette quantité est non nulle, car sinon
p

q
serait racine de P . Ceci montre le premier

point.

On en déduit que

∣∣∣∣qd P

(
p

q

)∣∣∣∣≥ 1. Avec l’inégalité obtenue à la question précédente, on

obtient : ∣∣∣∣x − p

q

∣∣∣∣≥ 1

M qd
.

(d) L’inégalité précédente a été obtenue sous l’hypothèse
p

q
∈ [x − 1, x + 1]. Mais si cette

hypothèse n’est pas vérifiée, alors

∣∣∣∣x − p

q

∣∣∣∣> 1 ≥ 1

qd
. Ainsi, en notant A = min(1,

1

M
), on

a dans tous les cas : ∣∣∣∣x − p

q

∣∣∣∣≥ A

qd
.

Ceci montre que d ∈Ax , donc que µ(x) ≤ d .

15. On suppose que x est un nombre de Liouville. En particulier, il est irrationnel. Soit d ∈ R.
Comme la mesure d’irrationalité de x est +∞, on a :

∀A > 0,∃(p, q) ∈Z×N∗ : 0 < |x − p

q
| < A

qd
.

Donc, pour tout n ∈N∗, on peut trouver (pn , qn) ∈Z×N∗ tels que

0 < |x − pn

qn
| < 1

nqd
≤ 1

qd
.

Le nombre de tels couples (pn , qn) est nécessairement infini (car les |x − pn

qn
| sont non nuls

mais que
1

nqd
est arbitrairement petit quand n tend vers +∞). Ceci montre le sens direct.
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On suppose maintenant que x n’est pas un nombre de Liouville. On note µ ∈ [1,+∞[ un
élément de Ax . On fixe un A > 0 tel que

∀(p, q) ∈Z×N∗, x ̸= p

q
=⇒ |x − p

q
| ≥ A

qµ
.

Fixons maintenant un réel d > µ. Si (p, q) ∈ Z×N∗ est tel que 0 < |x − p

q
| < 1

qd
, on a en

particulier x ̸= p

q
et

A

qµ
< 1

qd
. Comme d > µ, seul un nombre fini de q peut vérifier cette

inégalité. De plus, pour chacune des valeurs possibles de q , l’inégalité |x − p

q
| < 1

qd
ne peut

être satisfaite que par un nombre fini de p.

Ainsi, seul un nombre fini de couples (p, q) ∈Z×N∗ peuvent vérifier 0 < |x− p

q
| < 1

qd
. Ce qui

conclut la réciproque.

16. Le sens direct est immédiat. Si n ∈N, on pose d = n et on utilise la question précédente pour
construire un couple (pn , qn) (on dispose d’une infinité de tels couples).
Pour la réciproque, on fixe d ∈ R. Pour tout n ≥ d , on peut construire un couple (pn , qn) ∈
Z×�2,+∞[ tel que |x − pn

qn
| < 1

qn
n
≤ 1

qd
n

. Il y a nécessairement une infinité de tels couples

(pn , qn). En effet, sinon l’ensemble des valeurs de |x − pn

qn
| serait minoré par une constante

strictement positive ; alors que la suite
1

qn
n

tend vers 0 (car qn ≥ 2). Ceci conclut.

17. La suite

(
n∑

k=0

1

10k !

)
est croissante. De plus, pour tout k ∈ N,k ! ≥ k, donc

1

10k !
≤ 1

10k
. Ceci

montre que pour tout n :
n∑

k=0

1

10k !
≤

n∑
k=0

1

10k
< 10

9
.

Donc, la suite

(
n∑

k=0

1

10k !

)
est majorée. Par le théorème de la limite monotone, elle est convergente.

Donc, L est bien définie.

Soit n ∈N. On écrit
n∑

k=0

1

10k !
sous la forme

pn

qn
avec qn = 10n!. Alors,

L − pn

qn
=

+∞∑
k=n+1

1

10k !
<

+∞∑
ℓ=(n+1)!

1

10ℓ
= 1

10(n+1)!

10

9
< 1

10(n+1)!−1
.

On constate aisément que (n +1)!−1 ≥ n!×n. On en déduit que∣∣∣∣L − pn

qn

∣∣∣∣=L − pn

qn
< 1

(10n!)n
= 1

qn
n

.

Ceci montre que L est un nombre de Liouville, donc L est transcendant.
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