Travaux pratiques – TP 17

Étude du pendule simple

% Capacités exigibles

- Capacité numérique : à l'aide d'un langage de programmation, résoudre numériquement une équation différentielle du deuxième ordre non-linéaire et faire apparaître l'effet des termes non-linéaires.
- Mettre en œuvre un protocole expérimental permettant d'étudier une loi de force par exemple à l'aide d'un microcontrôleur.

I | Objectifs

- ♦ Étudier le mouvement du pendule simple, par acquisition informatisée grâce à l'interface Sysam.
- ♦ Interroger la conservation de l'énergie mécanique.
- ♦ Mise en évidence de l'approximation de l'énergie potentielle par un puits de potentiel harmonique.
- ♦ Vérifier l'isochronisme des petites oscillations.

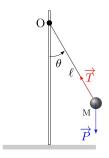
S'approprier

Pour Galilée, la période des oscillations d'un pendule simple devait être indépendante de l'amplitude desdites oscillations. Dans ses *Dialogues* (1632), il écrit : « Chacune de ces oscillations se fait dans des temps égaux, tant celle de 90°, que celle de 50°, ou de 20°, de 10°, de 4°. »

26 ans plus tard, HUYGENS affine ce propos dans *Horlogium Oscillatorium* en notant que « seules les oscillations de **faible amplitude** doivent être considérées comme isochrones, c'est-à-dire avoir une période indépendante de l'amplitude. »

III Analyser

Soit une masse $m=190\,\mathrm{g}$ attachée à l'extrémité d'une tige en fibre de carbone (de faible masse, pouvant être considérée négligeable devant celle de m) de longueur $\ell=45\,\mathrm{cm}$ constante. Initialement, la masse m est lâchée d'un angle θ_0 sans vitesse initiale. On prend $g=9.8\,\mathrm{m\cdot s^{-2}}$.



1 Montrer que l'énergie cinétique peut s'écrire sous la forme :

$$\mathscr{E}_c = \frac{m\ell^2}{2}\dot{\theta}^2$$

2 En prenant l'origine des énergies potentielles en $\theta = 0$, montrer que l'énergie potentielle totale du système peut s'écrire sous la forme :

$$\mathscr{E}_{p,p} = mg\ell(1 - \cos\theta)$$

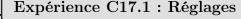
Pour des petits angles, réaliser alors le développement limité de $\cos(\theta)$ à l'ordre 2, et montrer qu'on a

$$\mathscr{E}_{p,p}(\theta) = \frac{1}{2} mg\ell\theta^2$$

IV Réaliser

Attention C17.1: Important

Attention, la tige du pendule est en fibre de carbone et est TRÈS FRAGILE; ne pas serrer la vis de la masse trop fort sur la tige.



- 1) Ouvrir le logiciel Latispro.
- 2) Régler les paramètres d'acquisition : 200 points de mesure.
- 3 Indiquer le temps total d'acquisition $T_{\rm acq,tot}$ permettant d'avoir quelques oscillations visibles. Que valent alors la durée d'échantillonnage $\Delta t_{\rm ech}$ et la fréquence d'échantillonnage $\Delta f_{\rm ech}$ de l'acquisition? Vous expliquerez avec un schéma détaillé votre raisonnement.
- 3) Faire le zéro de l'oscillateur en appuyant sur le petit bouton à l'extrémité du fil noir près de la poulie, lorsque celui-ci est en position verticale.

Expérience C17.2: Acquisition et enregistrement

- 1) Écarter le pendule d'un angle de 20° à 30° environ.
- 2) Lancer l'acquisition :

Valider

Exploitation de l'enregistrement

Expérience C17.3 : Visualisation en fonction du temps

- 1) En utilisant la feuille de calcul, créer une nouvelle variable, notée angle, correspondant à l'angle exprimé en radians.
- 2) Visualiser angle en fonction du temps; ajuster l'échelle grâce au calibrage (en cliquant droit).
- 3) Créer les variables deriv_angle (dérivée première) et dderiv_angle (dérivée seconde), en utilisant les fonctions traitements → calculs spécifiques → dérivée et dérivée seconde.
- 4) Afficher simultanément les trois courbes obtenues, en mettant la fonction angle sur l'axe de droite et les lisser en utilisant les fonctions traitements \rightarrow calculs spécifiques \rightarrow lissage.
- 1 Imprimer vos courbes.
- 2 Déterminer et commenter les déphasages entre les différentes courbes. Justifier mathématiquement ces déphasages.

V. Valider 3

V/A)1 Propriété de l'énergie mécanique

- 4 Proposer une exploitation graphique permettant de visualiser graphiquement et simultanément la conservation de l'énergie mécanique ainsi que les échanges énergétiques entre énergie cinétique et énergie potentielle.
- 3 Imprimer les courbes et commenter : l'énergie mécanique se conserve-t-elle?

V/A) Approximation harmonique autour de la position d'équilibre

- (5) Proposer une exploitation permettant de vérifier la parabolisation (énergie potentielle est équivalente à un polynôme d'ordre 2 en θ) de l'énergie potentielle autour de la position d'équilibre.
- Réaliser l'exploitation proposée. Imprimer et commenter. À l'aide du développement limité de $\mathscr{E}_{p,p}$ précédent, comparer le coefficient du polynôme à la valeur obtenue à l'aide d'un écart normalisé.

V/B Amplitude et (non-)isochronisme des oscillations

V/B) 1 Protocole expérimental

- 5 Proposer puis réaliser un protocole expérimental qui permettrait de lever la contradiction historique présentée dans la partie S'approprier, sans dépasser un angle initial de 60° environ (on pourra utiliser l'icône : Outils

 mesures automatiques).
- Présenter vos mesures sous forme d'un tableau $T_{\text{exp}} = f(\theta_0)$ et d'une courbe expérimentale que vous imprimerez et commenterez. Conclure quant à l'isochronisme (ou non) des oscillations.
- [7] En déduire la valeur de T_{iso} en tenant compte de vos différents mesurages **dans le cas où il y a isochronisme**. Comparer avec T_0 la période propre du pendule pour les petits angles par un écart normalisé.

L'objectif de cette résolution numérique est de résoudre l'équation différentielle non linéarisée et donc non analytique :

$$\ddot{\theta} + \omega_0^2 \sin(\theta) = 0$$

(6) Dans un premier temps, vous allez compléter le script suivant sur Capytale à ce lien : https://capytale2.ac-paris.fr/web/c/c11d-2947283. Il devra permettre de résoudre, pour une condition initiale θ_0 donnée, l'équation différentielle ci-dessus à l'aide du schéma numérique python odeint. Pour ce faire, vous devrez importer scipy.integrate au début de votre script avec

from scipy.integrate import odeint

Pour vous aider, consulter la documentation de la fonction https://tinyurl.com/docodeint et l'exemple https://tinyurl.com/exemodeint.

Le script précédent est ensuite utilisé afin de résoudre l'équation différentielle pour un ensemble de solutions initiales comprises entre $\theta_0 \approx 0$ et $\theta_0 = \pi/2$.

La fréquence de chaque solution (qui peut différer de T_0) se trouve numériquement grâce à une fonction freqfinder créée pour l'occasion; elle réalise la transformée de Fourier numérique de la solution temporelle (à l'aide de numpy.fft) afin d'en déduire le spectre puis la fréquence du pic spectral.

- 9 Construire, grâce à la boucle, les graphes permettant d'obtenir la période T en fonction de l'amplitude initiale θ_0 .
- [10] Commenter l'influence des variables duree et nb_point_temporel. Faites des essais pour constater leur influence.
- III Superposer à ce premier graphe vos résultats expérimentaux obtenus précédemment $(T_{\text{exp}} = f(\theta_0))$. Enregistrer votre travail sur Capytale et imprimer la courbe obtenue.
- 12 Les résultats numériques et expérimentaux sont-ils en accord? Conclure.