
# Réactions de précipitation

| I Équilibre d'un solide en solution                                                                                                                                                       |            |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| I/A Précipité et solubilité $\dots \dots \dots$                                           | 3          |  |  |  |  |  |
| I/B Obtention par dissolution                                                                                                                                                             | 3          |  |  |  |  |  |
| I/C Obtention par précipitation                                                                                                                                                           | 4          |  |  |  |  |  |
| I/D Diagramme d'existence                                                                                                                                                                 | 5          |  |  |  |  |  |
| II Facteurs influençant la solubilité                                                                                                                                                     | 6          |  |  |  |  |  |
| II/A Température                                                                                                                                                                          | 6          |  |  |  |  |  |
| II/B Effet d'ions communs                                                                                                                                                                 | 6          |  |  |  |  |  |
| II/C Précipitation compétitive                                                                                                                                                            | 7          |  |  |  |  |  |
| II/D Influence du pH                                                                                                                                                                      | 7          |  |  |  |  |  |
| II/E Influence d'autres réactions                                                                                                                                                         | 8          |  |  |  |  |  |
| Capacités exigibles                                                                                                                                                                       |            |  |  |  |  |  |
| Capacites exigibles                                                                                                                                                                       |            |  |  |  |  |  |
| Constante de l'équation de dissolution, produit de solubilité $K_s$ Déterminer la valeur de la constante d'équilibre pour une équation de réaction, combinaison linéaire d'équations dont | <b>3</b> - |  |  |  |  |  |
| Solubilité et condition de précipitation, do-<br>maine d'existence, facteurs influençant la connues.                                                                                      |            |  |  |  |  |  |
| solubilité.   O Utiliser les diagrammes de prédominance                                                                                                                                   |            |  |  |  |  |  |
| Prévoir l'état de saturation ou de non satu-<br>ou d'existence pour prévoir les espèces in-                                                                                               |            |  |  |  |  |  |
| ration d'une solution. compatibles ou la nature des espèces majoritaires.                                                                                                                 | )-         |  |  |  |  |  |
| Déterminer la composition chimique du sys-                                                                                                                                                | _          |  |  |  |  |  |
| tème dans l'état final, en distinguant les cas d'équilibre chimique et de transformation bilité d'un solide en fonction d'une variable                                                    |            |  |  |  |  |  |
| totale pour une transformation modélisée                                                                                                                                                  |            |  |  |  |  |  |
| par une réaction chimique unique.  □ Illustrer un procédé de retraitement, de recyclage, de séparation en solution aqueuse                                                                |            |  |  |  |  |  |



## I | Équilibre d'un solide en solution

## I/A

### Précipité et solubilité



#### Expérience TM5.1 : Précipitation d'hydroxyde de cuivre

https://www.youtube.com/watch?v=G-o2zF1Kbxo

Lorsque l'on ajoute de la soude  $(Na^+,HO^-)$  à une solution de sulfate de cuivre  $(Cu^{2+},SO_4^{2-})$ , un précipité solide d'hydroxyde de cuivre  $Cu(OH)_2$  apparaît. On peut le filtrer et l'isoler.



#### Définition TM5.1 : Précipité et solubilité

Un précipité est un **dépôt solide** en **équilibre** avec la phase aqueuse, qui apparaît lorsqu'une solution est **saturée** en composés ionique ou moléculaire.

On appelle alors solubilité la concentration maximale d'espèce dissoute :





#### Exemple TM5.1 : Solubilités usuelles

Souvent, les données tabulées utilisent le g $\cdot$ L<sup>-1</sup>. Pour passer de l'une à l'autre, il faut simplement convertir grâce à :

Tableau TM5.1 – Quelques solubilités

| Solide     | Solubilité $(g \cdot L^{-1})$ |
|------------|-------------------------------|
| NaCl (sel) | 357                           |
| Saccharose | 2000                          |
| $O_{2(g)}$ | 1120                          |



#### Important TM5.1: Obtention d'un précipité

Il y a deux façons d'obtenir un précipité :

- 1) En introduisant un excès de solide dans l'eau : si on dissout du sel dans l'eau, passé une certain quantité le sel ne se dissout plus : il reste du solide au fond de la solution ;
- 2) En mélangeant deux solutions contenant les espèces constituantes du précipité : c'est le cas de l'expérience présentée.



### Obtention par dissolution



#### Définition TM5.2 : Produit de solubilité

Le produit de solubilité est la constante d'équilibre de la **réaction de dissolution**, noté  $K_s$ .



#### Attention TM5.1 : Produit de solubilité

Le produit de solubilité est associé à la réaction de dissolution!



### Important TM5.2 : Méthode de calcul de solubilité

- 1 Écrire la réaction de dissolution, dresser le tableau en supposant la saturation;
- 2 Exprimer s en fonction de  $\xi_{eq}$  puis les **concentrations en fonction de** s;
- $\boxed{3}$  Exprimer  $K_s$  en fonction de s et résoudre.



### Application TM5.1 : Calcul de solubilité

Calculer la solubilité en  $\operatorname{mol} \cdot L^{-1}$  puis en  $\operatorname{g} \cdot L^{-1}$  pour les espèces suivantes :

- 1) NaCl<sub>(s)</sub> de  $K_s = 36$  avec  $M_{\text{NaCl}} = 58,44 \,\text{g} \cdot \text{mol}^{-1}$ ;
- 2)  $PbI_{2(s)}$  de  $pK_s = 7.5$  avec  $M_{PbI_2} = 461.01 \text{ g} \cdot \text{mol}^{-1}$ .

| 1) 1 | Équation |           | = | = - | + |
|------|----------|-----------|---|-----|---|
|      | Initial  | $\xi = 0$ |   |     |   |
|      | Final    | $\xi_f =$ |   |     |   |

2

3

| 2) 1 | Équation |                        | = - | + |
|------|----------|------------------------|-----|---|
|      | Initial  | $\xi = 0$              |     |   |
|      | Final    | $\xi_f = \xi_{\rm eq}$ |     |   |

2

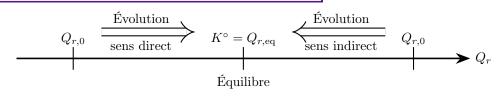
3



### Remarque TM5.1 : Rupture d'équilibre de dissolution

S'il n'y a pas de solide en solution à l'état final, ça veut dire qu'il a été entièrement consommé :

## I/C Obtention par précipitation




#### Définition TM5.3: Précipitation

On appelle **précipitation** la réaction de formation du solide à partir de ses composés ioniques :



#### Rappel TM5.1 : Sens d'évolution d'un système





#### Application TM5.2 : Précipitation ou non?

On ajoute  $n=10^{-5}$  mol d'ions Cl<sup>-</sup> dans  $V_0=10$  mL de nitrate d'argent (Ag<sup>+</sup>,NO<sub>3</sub><sup>-</sup>) à  $c_0=10^{-3}$  mol·L<sup>-1</sup>. On donne p $K_s(\text{AgCl})=9.8$ .

Obtient-on un précipité de chlorure d'argent AgCl?



### Propriété TM5.1 : Condition d'existence

Pour la réaction :

$$pA_{(aq)}^{x+} + qB_{(aq)}^{y-} = A_pB_{q(s)}$$

 $K^{\circ} =$ 

Condition Solution saturée Solution insaturée

### $ig| \, ext{I/D} \, ig| \, ext{I}$

### Diagramme d'existence



#### Important TM5.3: Diagramme d'existence solide

Pour un solide, soit il existe soit il n'existe pas : on ne parle pas de prédominance mais d'existence. La construction d'un tel diagramme reflète ce qui a été déterminé plus tôt :

### Un précipité existe si la solution est suffisamment chargée en ions

On trace donc les domaines d'un solide  $A_pB_q$  en fonction de la concentration d'un de ses ions.

FIGURE TM5.1 – Diagramme d'existence générique



#### Application TM5.3: Diagramme d'existence AgCl

Tracer le diagramme d'existence de AgCl<sub>(s)</sub> en fonction de pCl, pour une solution de Ag<sup>+</sup> à  $c_0 = 0.10 \,\mathrm{mol \cdot L^{-1}}.$ 

On reprend le résultat de l'application 5.2 avec  $[Ag^+]_0 = c_0$ :

Figure TM5.2 – Diagramme d'existence de AgCl

## II | Facteurs influençant la solubilité

#### II/ATempérature



#### Propriété TM5.2 : Influence de la température

La solubilité dépend de la température car le produit de solubilité dépend de la température  $(K_s(T))$ . La plupart du temps, la solubilité augmente avec T. Contre-exemple : le calcaire.



#### Exemple TM5.2: Recristallisation

On peut se servir de cette propriété à des fins de purification. Supposons que l'on dispose d'un mélange d'un composé A avec une impureté B dont on veut se débarrasser. Si on trouve un solvant dans lequel les impuretés sont **plus solubles** que le composé principal, on peut réaliser une recristallisation:

- 1) On dissout le mélange dans la plus petite quantité de solvant chaud pour bien dissoudre le mélange, apportant ainsi une solution saturée;
- 2) La solution est ensuite laissée à refroidir, ce qui diminue les solubilités;
- 3) Et le composé désiré **cristallise en premier** tandis que les **impuretés restent en solution**.

#### II/BEffet d'ions communs



#### Propriété TM5.3 : Effet d'ions communs

Lors d'une dissolution, si la solution contient déjà l'un des ions du solide alors la saturation appraît plus tôt : la solubilité diminue.



#### Application TM5.4 : Effet d'ions communs sur AgCl<sub>(s)</sub>

Calculer la solubilité de  $AgCl_{(s)}$  s'il y a déjà  $c = 0,1 \text{ mol}\cdot L^{-1}$  de  $Cl^-$  en solution et comparer la solubilité obtenue au résultat attendu sans. On donne  $pK_s(AgCl) = 9.75$ .

| 1 | 1 Équation |           | = | = - | + |
|---|------------|-----------|---|-----|---|
|   | Initial    | $\xi = 0$ |   |     |   |
|   | Final      | $\xi_f =$ |   |     |   |

2

3

## II/C Précipitation compétitive



#### Propriété TM5.4 : Précipitation compétitive

Si une solution contient 2 ions successibles de précipiter avec un 3ème, on détermine celui qui se forme en premier par une étude des diagrammes d'existences de chaque solide.



### Application TM5.5 : Précipitation compétitive

Soit une solution d'ions  $Ag^+$  de  $c_0 = 0.10 \,\mathrm{mol \cdot L^{-1}}$ . On ajoute progressivement et en même quantité des ions I<sup>-</sup> et Cl<sup>-</sup>. On donne  $pK_s(AgI) = 16.2$  et  $pK_s(AgCl) = 9.8$ .

- 1) Quel précipité se forme en premier?
- 2) On part d'une solution saturée en AgCl<sub>(s)</sub>. Que se passe-t-il si on ajoute des ions I<sup>-</sup>?

1)

pCl

FIGURE TM5.3

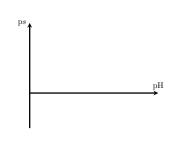
2)

## II/D Influence du pH



### Propriété TM5.5 : Influence du pH

Lorsque les espèces appartiennent en plus à un couple acide-base, le pH a rôle sur la solubilité.




#### Application TM5.6: Oxyde d'aluminium et pH

Soit le couple  $Al(OH)_{3(s)}/Al(OH)_4^{-}_{(aq)}$ 

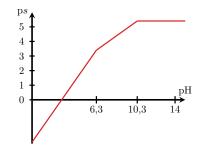
| Équation        | + | - = | = - | _ |
|-----------------|---|-----|-----|---|
| $\xi_{ m eq} =$ |   |     |     |   |

Influence d'autres réactions





## Propriété TM5.6 : Conservation de la matière


Si une espèce peut exister sous plusieurs formes en solution, la solubilité totale prend en compte la **somme des concentrations** de chaque forme, quitte à faire des approximations sur leur prédominance.



#### Application TM5.7: Précipitation et acide-base

 $ZnCO_{3(s)}$  est un sel peu soluble, de p $K_s = 10.8$ , et  $H_2CO_{3(aq)}$  est un diacide de p $K_1 = 6.3$  et p $K_2 = 10.3$ .

- 1) Exprimer la solubilité de ZnCO<sub>3</sub> en fonction de  $[H_3O^+]$ ,  $K_s$  et des constantes d'acidités.
- 2) Interpréter la courbe de solubilité en fonction du pH et attribuer à chaque segment de droite son équation.



| 1) | Équa°           | = + |  |  |  |
|----|-----------------|-----|--|--|--|
|    | $\xi = 0$       |     |  |  |  |
|    | $\xi_{ m eq} =$ |     |  |  |  |



 $\Diamond$ 

 $\Diamond$