
TD application : Acide-base et précipitation

Exploitation de courbes de distribution

L'acide citrique C₆H₈O₇ est présent dans le jus de citron. C'est un tétra-acide noté H₄Cit, dont la 4^e acidité n'est pas observée dans l'eau. Les courbes représentées représentent le pourcentage de chacune des espèces lorsque le pH varie.

- 1) Associer à chaque courbe l'espèce correspondante.
- 2) Déterminer par lecture graphique les pK_A des trois premières acidités.
- 3) Le pH mesuré d'un jus de citron est de 2,5. Donner sa composition en terme de pourcentage de chaque espèce.

${ m II} \mid { m Diacide} \; { m fort}$

On considère une solution d'acide sulfurique H_2SO_4 de concentration $c_0 = 0.010 \,\mathrm{mol \cdot L^{-1}}$.

- 1) En considérant que l'acide sulfurique est un diacide fort, calculer le pH de la solution.
- 2) En réalité, la première acidité de l'acide sulfurique est forte, et la seconde a un p $K_A(\mathrm{HSO_4}^-/\mathrm{SO_4}^{2-})=1,9$. Déterminer le pH en tenant compte de cette modification.

III | États d'équilibres et stabilité

L'ion phosphate ${\rm PO_4}^{3-}$ est une base faible, qui intervient dans les couples ${\rm HPO_4}^{2-}/{\rm PO_4}^{3-}$ de p $K_A=12,3.$ On l'introduit en solution aqueuse à la concentration initiale $c_0 = 1 \times 10^{-1} \,\mathrm{mol \cdot L^{-1}}$.

1) Déterminer la composition du système à l'équilibre, ainsi que le pH.

On considère ensuite les couples acido-basiques suivants :

$$pK_{A,1} (HCOOH/HCOO^{-}) = 3.7 pK_{A,2} (HClO/ClO^{-}) = 7.5$$

- 2) Tracer un diagramme de prédominance contenant les domaines des 4 espèces à considérer.
- 3) Déterminer si deux mélanges suivants sont stables (aucune réaction quantitative n'a lieu) :

a – $n_{\text{HCOOH},0} = 1 \text{ mol et } n_{\text{HClO},0} = 1 \text{ mol dans } V = 1 \text{ L}$

b – $n_{\text{ClO}-,0} = 1 \text{ mol et } n_{\text{HCOOH},0} = 1 \text{ mol dans } V = 1 \text{ L}$

IV | Acide carbonique

On considère l'acide carbonique, un diacide (p $K_1=6.4$ et p $K_2=10.3$) dans l'eau.

- 1) Écrire les équilibres liant les espèces des couples H₂CO₃/HCO₃⁻ et HCO₃⁻/CO₃²⁻
- 2) Exprimer les constantes d'acidité associées aux deux couples en fonction de concentrations à l'équilibre.
- 3) Préciser sur un axe gradué en pH les domaines de prédominance des différentes espèces.
- 4) Écrire la réaction entre H₂CO₃ et CO₃²⁻. Quelle est la valeur de la constante d'équilibre?
- 5) Déterminer l'espèce majoritaire dans les trois solutions S_1, S_2 et S_3 caractérisées par :

a)
$$pH_{S_1} = 3$$

b)
$$[H_3O^+]_{S_2} = 1 \times 10^{-8} \text{ mol} \cdot L^{-1}$$
 c) $[HO^-]_{S_3} = 1 \times 10^{-2} \text{ mol} \cdot L^{-1}$

c)
$$[HO^{-}]_{S_2} = 1 \times 10^{-2} \,\text{mol} \cdot L^{-1}$$

\mathbf{V}

Solubilités dans l'eau pure de différents précipités

Déterminer la solubilité dans l'eau pure s de chacun des composés ci-dessous, en supposant que les ions formés lors de la dissociation des solides ne réagissent pas avec l'eau et que l'ion Zn^{2+} apparaît dans chaque dissolution.

- 1) $\text{ZnCO}_{3(s)}$ de p $K_{s,1} = 10.8$.
- 2) $\text{ZnCN}_{2(s)}$ de p $K_{s,2} = 12,6$.
- 3) $\operatorname{Zn_3(PO_4)_{2(s)}} \operatorname{de} pK_{s,3} = 32,0.$

\mathbf{VI}

Domaine d'existence de l'hydroxyde de fer II

On considère l'hydroxyde de fer II $Fe(OH)_2$ de $pK_s = 15$.

- 1) Quelle est la valeur de pOH = $-\log \frac{[\text{HO}^-]}{c^\circ}$ de début de précipitation de Fe(OH)₂ à partir d'une solution en ions Fe²⁺ à la concentration $c_0 = 1 \times 10^{-2} \, \text{mol} \cdot \text{L}^{-1}$?
- 2) En déduire le pH de début de précipitation.
- 3) Indiquer sur un diagramme, avec le pH en abscisse, les domaines de prédominance des ions Fe^{2+} et d'existence du solide.

VII lodure de plomb

- 1) Une solution contient initialement des ions Pb^{2+} à la concentration $c = 1 \times 10^{-1} \text{ mol} \cdot L^{-1}$, et des ions iodure I^- de même concentration. On donne $pK_s(PbI_2) = 8$.
 - a Déterminer les concentrations en ions Pb²⁺ et I⁻ dans l'état final.
 - b Même question si $c = 2 \times 10^{-5} \,\text{mol} \cdot \text{L}^{-1}$
- 2) a Déterminer la solubilité de l'iodure de plomb dans de l'eau pure.
 - b Même question dans une solution d'iodure de sodium (Na⁺,I⁻) de concentration $c = 1 \times 10^{-2}$ mol·L⁻¹.