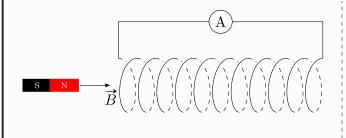
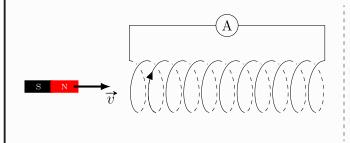

Lois de l'induction et induction de Neumann

Son	nmaire
I Le phénomène d'induction	
${ m I/A}$ Observations expérimentales \dots	
I/B Flux magnétique	
I/C Loi de Faraday	
I/D Loi de modération de Lenz	
II Phénomène d'autoinduction	
II/A Auto-inductance	
II/B Circuits électriques équivalents	
III Induction mutuelle	
III/A Principe de l'inductance mutuelle	
III/B Bobines imbriquées	
III/C Circuits électriques couplés par inductance mutuelle $\dots \dots \dots$	
IV Applications	
IV/A Quelques exemples	
IV/B Transformateur	
Capacités exigibles	
 Évaluer le flux d'un champ magnétique uniforme à travers une surface s'appuyant sur un contour fermé orienté plan. ☐ Utiliser la loi de Lenz pour prédire ou inter- 	Réaliser un bilan de puissance et d'énergie dans un système siège d'un phénomène d'auto-induction en s'appuyant sur un schéma électrique équivalent. Déterminer l'inductance mutuelle entre deux
préter les phénomènes physiques observés. Utiliser la loi de FARADAY en précisant les conventions d'algébrisation.	bobines de même axe de grande longueur en « influence totale ». Citer des applications dans le domaine de l'in-
 Différencier le flux propre des flux extérieurs. Utiliser la loi de modération de Lenz. Évaluer et citer l'ordre de grandeur de l'inductance propre d'une bobine de grande longueur. 	dustrie ou de la vie courante. \(\subseteq \text{Établir} \) le système d'équations en régime sinusoïdal forcé en s'appuyant sur des schémas électriques équivalents. \(\subseteq \text{Réaliser} \) un bilan de puissance et d'énergie.

I | Le phénomène d'induction


I/A Observations expérimentales

Soit un solénoïde (bobine longue) non alimenté, relié à un ampèremètre mesurant le courant qui le traverse. On étudie sa réaction à un champ magnétique dans deux situations 1 :


Expérience I3.1 : Bobine dans des champs magnétiques

Champ magnétique constant

Les lignes de champ d'un aimant vont de son Nord vers son Sud. Un champ magnétique règne donc dans le solénoïde. On n'observe cependant aucune tension dans le solénoïde.

Champ magnétique variable

On déplace l'aimant à proximité de la bobine. On constate qu'une tension apparaît dans la bobine, malgré l'absence de générateur.

Observation I3.1 : Bobine et champs magnétiques

En étudiant la tension induite, on observe qu'elle dépend du déplacement de l'aimant :

- ♦ Sans mouvement relatif, pas de courant
- \diamond Si on approche l'aimant ou le circuit, i > 0
- \diamond Si on éloigne l'aimant ou le circuit, i < 0
- ♦ Aimant retourné ⇒ courant opposé
- ♦ Mouvement rapide ⇒ courant généré élevé
- \diamond Plus de spires \Rightarrow plus de tension

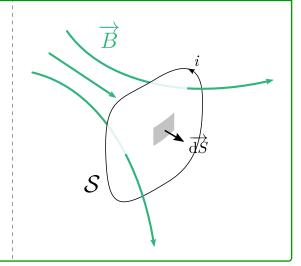
Définition I3.1 : Induction électromagnétique

Le phénomène d'induction électromagnétique est l'apparition d'une **tension** électrique (et donc à un **courant** si le circuit est fermé) dans un circuit soumis à un champ magnétique dans deux cas de figure :

- 1) Lorsque le circuit est plongé dans un champ magnétique variable : induction de NEUMANN;
- 2) Lorsque le circuit est **déformé** dans un champ magnétique constant : induction de LORENTZ (voir chapitre suivant).

^{1.} Voir l'animation: https://phet.colorado.edu/sims/html/faradays-law/latest/faradays-law_fr.html

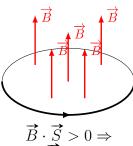
Flux magnétique

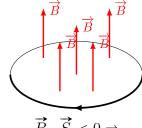

Définition I3.2 : Flux magnétique

On définit le flux du champ magnétique \vec{B} à travers un circuit comme l'intégrale de \vec{B} sur la surface orientée entourée par le circuit :

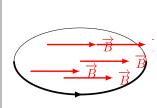
$$\phi_S(\vec{B}) = \iint_{M \in S} d\phi(M) = \iint_{M \in S} \vec{B}(M) \cdot d\vec{S}(M)$$

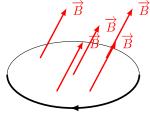
et si le champ \vec{B} est **uniforme** et que le circuit est une spire, alors on a


$$\phi_S(\vec{B}) = \vec{B} \cdot \vec{S} \quad \Rightarrow \quad \phi_{N \text{spires}}(\vec{B}) = N \phi_S(\vec{B}) = N \vec{B} \cdot \vec{S}$$



Application I3.1 : Calculs simples de flux


Déterminer le flux au travers de la spire circulaire de rayon R plongée dans \vec{B} uniforme dans les 4 situations suivantes:


$$\overrightarrow{B} \cdot \overrightarrow{S} > 0 \Rightarrow$$

 $\phi_S(\overrightarrow{B}) = BS$

$$\overrightarrow{B} \cdot \overrightarrow{S} < 0 \Rightarrow$$

 $\phi_S(\overrightarrow{B}) = -BS$

$$\vec{B} \cdot \vec{S} = 0 \Rightarrow \phi_S(\vec{B}) = 0$$

$$\vec{B} \cdot \vec{S} = -BS \cos \theta = \phi_S(\vec{B})$$

Définition I3.3 : Flux propre et flux extérieur

Puisqu'un circuit électrique est capable de créer un champ **propre** \vec{B}_p mais peut également être plongé dans un champ **extérieur** $\overrightarrow{B}_{\rm ext}$, on distingue les deux flux :

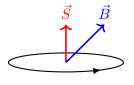
Flux propre

$$\phi_p = \iint_S \vec{B}_p \cdot d\vec{S}$$

Flux extérieur

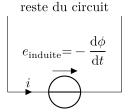
$$\phi_{\text{ext}} = \iint_{S} \vec{B}_{\text{ext}} \cdot d\vec{S}$$

Loi de FARADAY



Propriété I3.1 : Loi de FARADAY

Soit un circuit électrique **fermé** et **orienté par une intensité** soumis à l'action d'un champ magnétique \hat{B} . Toute variation du flux $\phi_S(\hat{B})$ dans ce circuit y fait apparaître une force électromotrice (tension à vide) induite e, orientée dans le même sens que i, telle que


$$e_{\text{ind}}(t) = -\frac{\mathrm{d}\phi}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{S} \vec{B} \cdot \mathrm{d}S$$

Le système se comporte comme si on y avait mis un **générateur électrique** idéal de f.é.m. e.

Circuit physique.

 \vec{S} orientée avec i.

Modèle électrique.

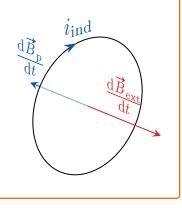
 i_{ind} et e_{ind} dans le même sens.

Remarque I3.1 : Loi de FARADAY

- 1) Il y a deux manières de faire varier le flux ϕ :
 - \diamond **Neumann**: on fait varier le champ \vec{B} ♦ LORENTZ : on déforme le circuit
- 2) La f.é.m. e est orientée dans le même sens que le courant i, donc en convention **générateur**;
- 3) Le signe $\langle \rangle$ donne la loi de Lenz, et découle en fait de la conservation de l'énergie.

Loi de modération de Lenz

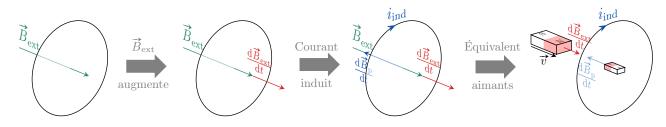
Le sens du courant obtenu est donné par la loi de Lenz :



Important I3.1: Loi de modération de Lenz

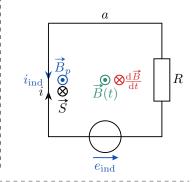
Lorsque le flux à travers un circuit **fermé** varie, ceci a pour conséquence de faire apparaître une intensité dans le circuit, qui à son tour est à l'origine d'un champ magnétique propre, dont le flux ϕ_p s'oppose à la variation initiale. On dit souvent :

L'induction modère, par ses conséquences, les causes qui lui ont donné naissance.


- \diamond **Neumann**: $i_{\text{ind}} \Rightarrow \overrightarrow{B}_{\text{ind}}$ s'oppose aux **variations** de $\overrightarrow{B}_{\text{ext}}$;
- \diamond LORENTZ : $i_{\text{ind}} \Rightarrow \overrightarrow{B}_{\text{ind}}$ s'oppose à la **déformation**.

Exemple I3.1 : Loi de modération de Lenz

Prenons un exemple très simple d'une spire plongée initialement sans courant dans un champ magnétique $\dot{B}_{\rm ext}$. Supposons que ce champ augmente en intensité :


Dès que B_{ext} arrête d'augmenter, le champ propre précédemment créé disparaît.

Application I3.2: LENZ et FARADAY circuit carré

On considère un circuit carré de côté a et de résistance totale R, situé dans un plan orthogonal à un champ magnétique uniforme mais **variable** $\overrightarrow{B}(t) = B_0 \mathrm{e}^{-t/\tau} \overrightarrow{u_z}$ avec B_0 et τ strictement positifs.

Quelle est l'origine de l'induction? Exprimer l'intensité i du courant représenté sur le schéma, et vérifier que son signe soit en accord avec la loi de Lenz.

Le flux à travers le circuit de surface $S=a^2$ est variable puisque le champ magnétique l'est. Il y a donc un phénomène d'induction. On a alors :

$$\phi_S(\vec{B}) = \vec{B}(t) \cdot \vec{S} = -B_0 a^2 e^{-t/\tau}$$
 soit $e_{\text{ind}} = -\frac{d\phi}{dt} \Leftrightarrow e_{\text{ind}} = -\frac{B_0 a^2}{\tau} e^{-t/\tau} < 0$

Or, comme le circuit est fermé,

$$e_{\rm ind} = Ri_{\rm ind}$$

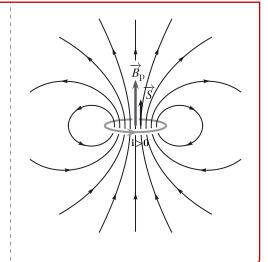
$$\Leftrightarrow i_{\text{ind}} = -\frac{B_0 a^2}{R\tau} e^{-t/\tau} < 0$$

donc l'intensité est **négative**. En effet, le champ magnétique induit réel doit s'opposer à la diminution du champ extérieur \overrightarrow{B} , en créant un champ magnétique positif selon $\overrightarrow{u_z}$: le sens réel du courant donné par la main droite est l'opposé de celui représenté.

Phénomène d'autoinduction

II/A

Auto-inductance

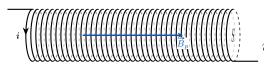

Propriété I3.2 : Auto-inductance d'un circuit

On admet que le flux propre dans un circuit est proportionnel à l'intensité du courant dans le circuit, tel que

$$\boxed{\phi_p(t) = Li(t)} \neq \overrightarrow{B_p} \cdot \overrightarrow{S}$$
 car \overrightarrow{B}_p pas uniforme

avec L l'**inductance propre** (auto-inductance) du circuit.

- \diamondsuit L > 0 car i et $\overrightarrow{B_p}$ sont orientés par la main droite.
- $\diamondsuit\ L$ ne dépend que de la **taille** et **forme** du circuit.
- $\diamond L$ s'exprime en henry (H).



Application I3.3: Inductance propre d'une bobine

On donne le champ propre $\overrightarrow{B_p}$ créé dans un solénoïde :

$$\overrightarrow{B_p}(t) = \mu_0 \frac{N}{\ell} i(t) \overrightarrow{u_z}$$

1 Le sens du courant étant donné, indiquer le sens du champ magnétique.

i et $\overrightarrow{B_p}$ respectent la règle de la main droite.

2 Exprimer le flux du champ magnétique.

Pour N spires :

$$\phi_p = N \times \overrightarrow{B_p} \cdot \overrightarrow{S}$$

Or, $\overrightarrow{B_p}$ et \overrightarrow{S} sont tous deux orientés à partir de *i* selon la règle de la main droite, donc

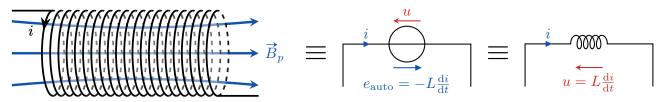
$$\overrightarrow{S} = S\overrightarrow{u_z}$$
 et $\overrightarrow{B_p} = \mu_0 \frac{N}{\ell} i(t) \overrightarrow{u_z}$ \Leftrightarrow $\phi_p = \mu_0 \frac{N^2}{\ell} Si(t)$

3 En déduire l'expression de l'inductance propre. On a démontré que le flux magnétique propre et l'intensité étaient proportionnels, et que la constante de proportionnalité était positive. On identifie simplement :

 $L = \mu_0 \frac{N^2}{\ell} S$

4 Application numérique pour une bobine de TP avec $N=1000\,\mathrm{spires}$ de rayon $a=3\,\mathrm{cm}$ et de longueur $\ell=10\,\mathrm{cm}$:

 $L \approx 35 \, \mathrm{mH}$


II/B Circuits électriques équivalents

♥ Implication I3.1 : Tension auto-induite

Si le courant i(t) dans un circuit varie avec le temps, alors le champ magnétique et donc le flux propre $\phi_p(t)$ varie aussi. D'après la loi de FARADAY, il va donc y avoir apparition d'un générateur équivalent de f.é.m.

$$e_{\text{auto.ind.}} = -\frac{\mathrm{d}\phi_p}{\mathrm{d}t} = -L\frac{\mathrm{d}i}{\mathrm{d}t}$$

car pour un circuit fixe et indéformable, L= cte. Ainsi, la loi de FARADAY permet de dessiner un circuit équivalent à la bobine :

On retrouve donc la relation courant-tension d'une bobine en convention récepteur!

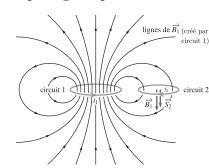
Remarque I3.2: Tension induite par deux sources

S'il y a un champ extérieur, on applique la superposition des champs magnétiques :

$$\phi_{\text{tot}} = \phi_p + \phi_{\text{ext}}$$
 \Rightarrow $e_{\text{tot}} = -L \frac{di}{dt} - \frac{d\phi_{\text{ext}}}{dt} = e_{\text{auto}} + e_{\text{ext}}$

III Induction mutuelle

III/A Principe de l'inductance mutuelle


Exemple I3.2: Induction mutuelle

Soit deux circuits fixes indépendants électriquement, sans champ magnétique extérieur :

- \diamond circuit (1) parcouru par i_1 , génère $\overrightarrow{B_1}$;
- \diamond circuit (2) parcouru par i_2 , génère $\overrightarrow{B_2}$;

Le champ magnétique total est

$$\overrightarrow{B}_{\text{tot}} = \overrightarrow{B_1} + \overrightarrow{B_2} + \overrightarrow{B_{\text{ext}}}$$

En supposant les champs uniformes, le flux magnétique total traversant le circuit (1) est :

$$\phi_1 = \overrightarrow{B}_{\text{tot}} \cdot \overrightarrow{S}_1 = \left(\overrightarrow{B}_1 + \overrightarrow{B}_2\right) \cdot \overrightarrow{S}_1 = \underbrace{\overrightarrow{B}_1 \cdot \overrightarrow{S}_1}_{=\phi_{p,1}} + \underbrace{\overrightarrow{B}_2 \cdot \overrightarrow{S}_1}_{=\phi_{2 \to 1}} \Leftrightarrow \phi_1 = \phi_{p,1} + \phi_{2 \to 1}$$

♥ Propriété I3.3 : Inductance mutuelle

Les flux croisés sont proportionnels au courant les générant, même dans un cas non-uniforme, et le coefficient de proportionnalité est le même pour les deux flux, et s'appelle coefficient d'inductance mutuelle M, mesuré en henry :

$$\phi_{2\to 1} = Mi_2 \qquad \text{et} \qquad \phi_{1\to 2} = Mi_1$$

Au contraire de L toujours positive, M peut être positif ou négatif selon l'orientation relative des deux circuits.

Application I3.4: Forces électromotrices induites

Soit deux circuits non connectés mais en inductance mutuelle. Exprimer les tensions induites en fonction des intensités et des inductances.

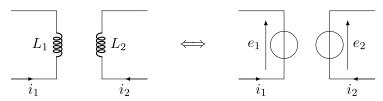


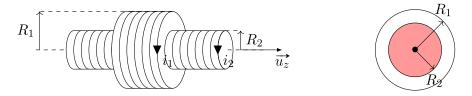
FIGURE I3.1 – Circuits en inductance mutuelle.

Circuit 1
$$e_1 = -\frac{d\phi_1}{dt} = -\frac{d\phi_{p,1}}{dt} - \frac{d\phi_{2\to 1}}{dt}$$

$$\Rightarrow \begin{cases} \phi_{p,1} = L_1 i_1 \\ \phi_{2\to 1} = M i_2 \end{cases}$$

$$\Rightarrow e_1 = -L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}$$

Circuit 2
$$e_{2} = -\frac{d\phi_{2}}{dt} = -\frac{d\phi_{p,2}}{dt} - \frac{d\phi_{1\to 2}}{dt}$$


$$\Rightarrow \begin{cases} \phi_{p,2} = L_{2}i_{2} \\ \phi_{1\to 2} = Mi_{1} \end{cases}$$

$$\Rightarrow e_{2} = -L_{2}\frac{di_{2}}{dt} - M\frac{di_{1}}{dt}$$

III. Induction mutuelle 9

Bobines imbriquées

On souhaite déterminer l'inductance mutuelle de 2 bobines de même axe, de longueurs ℓ_i et de rayons R_i , parcourues par des intensités i_i dirigées dans le même sens. On s'intéresse d'abord à $\phi_{2\rightarrow 1}$, le flux créé par la seconde bobine dans la première.

Expression du champ magnétique $\overline{B_2}$

Le champ magnétique d'une bobine est uniforme en son sein, et négligeable en dehors, soit

$$\overrightarrow{B_2} = \begin{cases} \mu_0 \frac{N_2}{\ell_2} i_2 \overrightarrow{u_z} & \text{à l'intérieur} \\ \overrightarrow{0} & \text{à l'extérieur} \end{cases}$$

Flux de $\overrightarrow{B_2}$ à travers de $\overrightarrow{S_1}$, $\phi_{2\rightarrow 1}$

On oriente $\overrightarrow{S_1}$ à partir de i_1 par la règle de la main droite :

$$\overrightarrow{S_1} = S_1 \overrightarrow{u_z}$$

Or, le champ $\overrightarrow{B_2}$ est nul entre S_2 et S_1 , d'où :

$$\begin{split} \phi_{2\rightarrow1} &= \mu_0 \frac{N_2}{\ell_2} i_2 \times S_2 \times N_1 + 0 \times (S_2 - S_1) \times N_1 \\ \Leftrightarrow \phi_{2\rightarrow1} &= \mu_0 \frac{N_1 N_2 S_2}{\ell_2} i_2 \\ \Rightarrow \boxed{M = \mu_0 \frac{N_1 N_2 S_2}{\ell_2}} \end{split}$$

Calcul de $\phi_{1\to 2}$

Le calcul direct et réel est plus compliqué, puisque les lignes de champs sortent en réalité de la première bobine et ne sont plus parallèles. On pourrait se contenter d'utiliser l'inductance mutuelle pour exprimer directement

$$\phi_{1\to 2} = Mi_1$$

Cependant, avec l'hypothèse de \vec{B} nul en-dehors des bobines, soit

$$\overrightarrow{B_1} = \begin{cases} \mu_0 \frac{N_1}{\ell_1} i_1 \overrightarrow{u_z} & \text{à l'intérieur} \\ \overrightarrow{0} & \text{à l'extérieur} \end{cases}$$

et toujours avec

$$\overrightarrow{S_2} = S_2 \overrightarrow{u_z}$$

on voit que la seconde bobine est traversée par $\overrightarrow{B_1}$ sur une fraction de sa longueur, en l'occurrence $N_2 \times \frac{\ell_1}{\ell_2}$. Ainsi,

$$\phi_{1\to 2} = \mu_0 \frac{N_1}{\ell_1} i_1 \times S_2 \times N_2 \frac{\ell_1}{\ell_2} \Leftrightarrow \phi_{1\to 2} = \mu_0 \frac{N_1 N_2 S_2}{\ell_2} i_1$$

Et on retrouve bien M.

♥ Remarque I3.3 : Inductance mutuelle en influence totale

Si les deux bobines sont de même longueur et même section, alors

$$M = \mu_0 \frac{N_1 N_2}{\ell} S$$
 avec $L_i = \mu_0 \frac{N_i^2}{\ell} S \Rightarrow M = \sqrt{L_1 L_2}$

On parle alors d'« influence totale ».

III/C Circuits électriques couplés par inductance mutuelle

Important I3.2: Méthode de résolution

- 1) Remplacer les inductances par leur f.é.m. en convention générateur;
- 2) Appliquer la loi des mailles pour obtenir les équations électriques;
- 3) Exprimer les flux magnétiques en fonction des courants et utiliser la loi de FARADAY;
- 4) Résoudre les équations obtenues.

III/C) 1 Étude du circuit

Circuits couplés

Le sens de i_1 est imposé par le générateur, et le sens de i_2 est conventionnel (selon sa direction, M sera positif ou négatif).

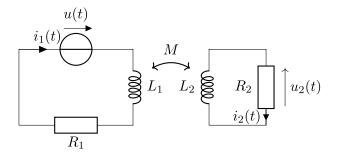


FIGURE 13.2 – Circuits couplés.

Circuits équivalents

On remplace les bobines par des générateurs, fléchés en convention générateur (à partir du sens de i_1 et i_2).

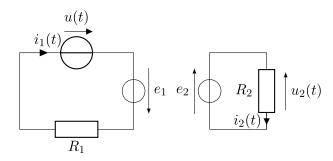


FIGURE I3.3 – Circuit équivalent.

Équations électriques

$$u + e_1 = R_1 i_1$$

Flux magnétiques et forces électromotrices

$$\phi_1 = \phi_{p,1} + \phi_{2 \to 1}$$

$$\Leftrightarrow \phi_1 = L_1 i_1 + M i_2$$

$$\Rightarrow e_1 = -\frac{\mathrm{d}\phi_1}{\mathrm{d}t} = -L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} - M \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

Circuit 2

$$e_2 = R_2 i_2$$

Circuit 2

$$\begin{split} \phi_2 &= \phi_{p,2} + \phi_{1 \to 2} \\ \Leftrightarrow \phi_2 &= L_2 i_2 + M i_1 \\ \Rightarrow e_2 &= -\frac{\mathrm{d}\phi_2}{\mathrm{d}t} = -L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} - M \frac{\mathrm{d}i_1}{\mathrm{d}t} \end{split}$$

III. Induction mutuelle 11

Équations couplées

Circuit 1
$$R_1 i_1 + L_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M \frac{\mathrm{d}i_2}{\mathrm{d}t} = u$$

$$R_2 i_2 + L_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M \frac{\mathrm{d}i_1}{\mathrm{d}t} = 0$$

Ainsi, en l'absence de couplage (M = 0), on retrouve les équations d'un circuit RL classique. Avec le couplage, on peut résoudre ces équations en passant en RSF :

$$(R_1 + jL_1\omega)I_1 + jM\omega I_2 = \underline{U}$$
 et $(R_2 + jL_2\omega)I_2 + jM\omega I_1 = 0$

On peut alors déterminer le comportement fréquentiel du circuit.

Pour faire l'étude énergétique du circuit, on procède comme d'habitude en faisant un bilan de puissance en **multipliant par** i les équations obtenues par la loi des mailles, ici i_1 et i_2 . À partir des équations couplées,

Circuit 1
$$R_1 i_1^2 + L_1 i_1 \frac{\mathrm{d}i_1}{\mathrm{d}t} + M i_1 \frac{\mathrm{d}i_2}{\mathrm{d}t} = u i_1$$

$$R_2 i_2^2 + L_2 i_2 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M i_2 \frac{\mathrm{d}i_1}{\mathrm{d}t} = 0$$

Ainsi, par somme on trouve

$$R_1 i_1^2 + R_2 i_2^2 + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} L_1 i_1^2 \right) + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} L_2 i_2^2 \right) + M i_1 \frac{\mathrm{d}i_2}{\mathrm{d}t} + M i_2 \frac{\mathrm{d}i_1}{\mathrm{d}t} = u i_1$$

$$\Leftrightarrow R_1 i_1^2 + R_2 i_2^2 + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} L_1 i_1^2 + \frac{1}{2} L_2 i_2^2 + M i_1 i_2 \right) = u i_1$$

Ainsi, on met en évidence :

- $\diamondsuit \ \mathcal{P}_J = R_1 i_1{}^2(t) + R_2 i_2{}^2(t) \ \text{la puissance reçue par les résistances (dissipée par effet Joule)} \, ;$
- $\diamondsuit \ \mathscr{P}_{\text{mag}} = \tfrac{\mathrm{d}}{\mathrm{d}t} \left(\tfrac{1}{2} L_1 i_1^2 + \tfrac{1}{2} L_2 i_2^2 + M i_1(t) i_2(t) \right) \ \text{la puissance magnétique stockée dans les deux circuits} \ ;$
- $\Diamond \mathscr{P}_g = u(t)i_1(t)$ la puissance fournie par le générateur.

Important I3.3 : Bilan énergétique

L'énergie du champ magnétique créé par deux circuits couplés par induction mutuelle est

$$\varepsilon_{\text{mag}} = \frac{1}{2}L_1 i_1^2 + \frac{1}{2}L_2 i_2^2 + M i_1 i_2$$

- $\Diamond L_1 i_1^2/2$ est l'énergie magnétique emmagasinée dans le premier circuit ;
- $\diamond L_2 i_2^2/2$ est l'énergie magnétique emmagasinée dans le second circuit;
- $\Diamond Mi_1i_2$ représente l'énergie de couplage magnétique entre les deux circuits.

$\left. ext{IV} ight|$ Applications

IV/A Quelques exemples

- ❖ Radio-identification : placée dans des étiquettes adhésives comme dans les antivols par exemple, un courant sera induit dans le circuit s'il passe à côté d'un système actif fournissant un champ magnétique. Ce courant alimente alors une petite antenne envoyant l'information de la puce (dite RFID pour radio frequency identification).
- ♦ Détecteur de métaux, boucles magnétiques (péages, parking) : une bobine créé un champ magnétique et, si un morceau de métal se trouve à proximité, il se créé un courant en son sein. Ce courant créé lui-même un champ magnétique qui perturbe le circuit primaire.
- ♦ Rechargement par induction (brosses à dent, portables) : le chargeur est muni d'une bobine qui créé un champ qui va induire un champ dans un second circuit.
- ♦ Chauffage par induction : le courant généré dans le second circuit se réparti dans tout le volume ; on les appelle courants de Foucault. Ils permettent le chauffage par effet Joule.

IV/B Transformateur

En enroulant deux bobines différentes autour d'un noyau de métal canalisant le flux, on peut diminuer ou augmenter la tension d'un circuit à l'autre.

IV/B) 1 Constitution

V Définition I3.4 : Transformateur

Un transformateur monophasé est constitué d'un matériau ferromagnétique sur lequel sont bobinés deux enroulements électriques, indépendants électriquement (masses séparées) :

- \diamond Enroulement primaire : relié à la source d'alimentation (on notera les grandeurs u_1, i_1 etc.)
- \diamond Enroulement secondaire : relié à la charge (noté u_2 , i_2 etc.)

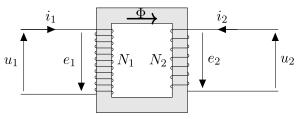


FIGURE 13.5 – Schématisation électrique

Le rôle du circuit magnétique est d'assurer une canalisation optimale des lignes de champ magnétique afin d'obtenir un couplage maximal entre les deux enroulements. Cela veut dire que le flux magnétique traversant une spire du circuit 1 est égal à celui traversant une spire du circuit 2.

Définition I3.5: Transformateur parfait

Dans le modèle du transformateur parfait :

- ♦ la résistance des enroulements est négligée;
- ♦ il n'y a pas de perte de flux magnétique entre les enroulements

IV. Applications 13

IV/B) 2 Loi des tensions

Propriété I3.4 : Loi des tensions

Dans un transformateur parfait, les tensions au primaire et au secondaire sont telles que :

$$\frac{u_2(t)}{u_1(t)} = \frac{N_2}{N_1} = m$$

où m est le rapport de transformation.

♥ Démonstration I3.1 : Loi des tensions

Le flux à travers une spire au primaire est égal à celui dans une spire du secondaire. Ainsi, le flux total à travers les enroulements sont :

$$\phi_{1,\text{tot}} = N_1 \phi$$
 et $\phi_{2,\text{tot}} = N_2 \phi$ avec $\phi = BS$

Ainsi, les forces électromotrices sont :

Circuit 1
$$e_1 = -\frac{\mathrm{d}\phi_{1,\mathrm{tot}}}{\mathrm{d}t} = -N_1 \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

$$\Leftrightarrow u_1 = N_1 \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

$$\Leftrightarrow u_2 = N_2 \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

$$\Leftrightarrow u_2 = N_2 \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

D'où le résultat en divisant.

Remarque I3.4 : Différents transformateurs

- ♦ Lorsque la tension au secondaire est plus élevée qu'au primaire, on parle d'élévateur de tension (à la sortie d'une centrale par exemple).
- ♦ Dans le cas contraire, on parle d'abaisseur de tension (transformateur de quartier par exemple).
- ♦ Il existe aussi des transformateurs où la tension est identique au primaire et au secondaire : un tel transformateur est appelé **transformateur d'isolement** et permet d'isoler la masse de la terre ; on évite ainsi des électrocutions en milieu humide (salle de bain par exemple).

Attention I3.1: Transformateur

Tout ceci n'est valable que pour un champ variable, par pour des tensions constantes!

IV/B) 3 Loi des courants

♥ Propriété I3.5 : Loi des courants

Dans un transformateur parfait, les courants au primaire et au secondaire sont tels que :

$$\boxed{\frac{i_2(t)}{i_1(t)} = -\frac{N_1}{N_2} = -\frac{1}{m}}$$

♥ Démonstration I3.2 : Loi des courants

Si le transformateur est idéal, il transfert la totalité de la puissance électrique. Or, on a

$$\mathscr{P}_f = -u_1 i_1$$
 et $\mathscr{P}_r = +u_2 i_1$
$$-u_1 i_1 = u_2 i_2 \Leftrightarrow \boxed{\frac{i_2}{i_1} = -\frac{u_1}{u_2}}$$

Remarque I3.5 : Signe du rapport

Le signe a peu d'importance car un transformateur fonctionne avec des tensions alternatives. Il dépend du sens de l'enroulement choisi sur le schéma (arbitrairement). Seule la valeur efficace nous intéresse.