Oscillateurs amortis

■ Sommaire							
I Oscillateur amorti électrique : circuit RLC série libre							
I/A Introduction							
I/B Présentation et bilan énergétique 3 I/C Équation différentielle du circuit 4							
I/D Résolutions pour chaque cas							
II Exemple amorti mécanique : ressort + frottements fluides 9							
II/A Présentation							
$\widetilde{\mathrm{II/B}}$ Équation différentielle						9	
II/C Bilan de puissance							
II/D Solution	ns					10	
	<u> </u>	Capacité	es exigibl	les			
Analyser, sur des relevés expérimentaux, l'évolution de la forme des régimes transitoires en fonction des paramètres caractéristiques.				Caractériser l'évolution en utilisant les notions d'amplitude, de phase, de période, de fréquence, de pulsation.			
Prévoir l'évolution du système à partir de considéra-			Réaliser un bilan énergétique.				
tions énergétiques. Écrire sous forme canonique l'équation différentielle			Déterminer la réponse détaillée dans le cas d'un régime libre ou d'un système soumis à un échelon en				
afin d'identifier la pulsation propre et le facteur de qualité.			recherchant les racines du polynôme caractéristique. Déterminer un ordre de grandeur de la durée du régime				
Décrire la nature de la réponse en fonction de la valeur du facteur de qualité.			transitoire selon la valeur du facteur de qualité.				
		✓ L'es	sentiel				
_							
	■ Définitions						
○ E5.1 : Circuit F	RLC libre	3	○ E5.1	: Évolu	ution énergétique RLC série	4	
	nt logarithmique		E5.2 : Solution amortie par intuition 5				
\bigcirc E5.3 : Situation	initiale et bilan des forces	9	\bigcirc E5.3	: Espac	ce des phases pseudo-pér. (HP) .	6	
	🙎 Propriétés			[≡ Démonstrations		
	de solution			_	nes de solutions	3	
	puissance RLC libre		\bigcirc E5.2 : Bilan de puissance RLC libre 4 \bigcirc E5.3 : Équation différentielle RLC libre 4				
 ○ E5.3 : Équation différentielle RLC libre 4 ○ E5.4 : Solution pseudo-périodique 5 			DE5.3 : Equation differenties et LC libre				
	lo-périodique	1	E5.5 : Régime transitoire pseudo-pér 6				
☐ E5.6 : Décrément et facteur de qualité			\bigcirc E5.6 : Décrément et facteur de qualité 7				
© E5.7 : Solution critique			© E5.7 : Solution critique				
\bigcirc E5.8 : Régime transitoire critique 8 \bigcirc E5.9 : Solution apériodique 8			\bigcirc E5.8 : Régime transitoire critique				
© E5.10 : Régime transitoire apériodique			☐ E5.10 : Régime transitoire apériodique 8				
© E5.11 : Équatio	☐ E5.11 : Équation ressort amorti 9						
○ E5.12 : Bilan de puissance ressort 10				$2:\mathscr{P}$ re	essort	10	
>> Implications					Points importants	_	
\bigcirc E5.1 : Résultat $R \to 0 \Leftrightarrow Q \to \infty$ 6					tion différentielle amorti	2	
	$R \to \infty \Leftrightarrow Q \to 0 \dots$				ions oscillateur amorti	3	
\bigcirc E5.3 : Solutions ressort 10				: Analo	ogie RLC-ressort amorti	10	

Oscillateur amorti électrique : circuit RLC série libre

Introduction

Expérience E5.1: Visualisation expérimentale

En reprenant les résultats du LC libre, nous devrions en réalité observer que les oscillations dans le circuit s'atténuent. Soit le circuit RLC ci-contre, avec $L = 43 \,\text{mH} \,\text{et} \, C = 20 \,\text{nF}.$

Une simulation est disponible en ligne (https://tinyurl.com/ypbwcwfs).

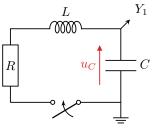
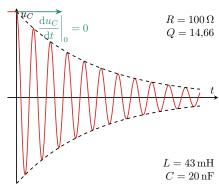


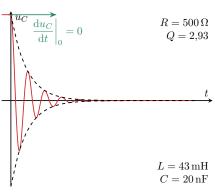
FIGURE E5.1

 \Diamond Lorsque la **résistance est petite** : on observe **plusieurs oscillations**, de période $T \approx 184 \,\mu s$.

Environ 15 oscillations lorsque $R_{\rm tot} \approx 100 \,\Omega$;

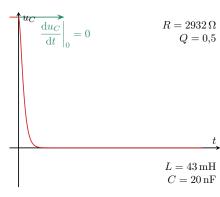


Environ 3 oscillations lorsque $R_{\rm tot} \approx 500 \,\Omega$.

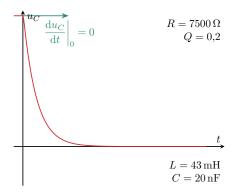


♦ Lorsque la résistance est plus grande : les oscillations disparaissent.

Lorsque $R \approx 2.9 \,\mathrm{k}\Omega$, on observe un régime transitoire dont la durée est d'environ 250 µs (à 95%).



Lorsque $R \approx 7.5 \,\mathrm{k}\Omega$, on observe un régime transitoire plus long, d'environ 420 µs.



Observation E5.1 : Réponse en tension d'un RLC

Lorsque l'on excite le système RLC, le système a deux principales réponses :

- 1) Système oscillant pour $R < R_c$, de pseudo-période (pseudo car le signal diminue.) supérieure à T_0 propre;
- 2) Système non-oscillant pour $R > R_c$: le transitoire augmente avec R.

Important E5.1: Équation différentielle amorti

Un oscillateur amorti sur y(t) répond à :

$$\left[\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \right|_t + \frac{\omega_0}{Q} \left. \frac{\mathrm{d}y}{\mathrm{d}t} \right|_t + \omega_0^2 y(t) = \omega_0^2 y_{\mathrm{eq}}$$

$$\begin{cases} y(t_0) = y_0 \\ \frac{\mathrm{d}y}{\mathrm{d}t} \Big| = v_0 \end{cases}$$

- \Diamond $y_{\rm eq}$ position d'équilibre
- $\diamondsuit \ \omega_0$ pulsation **propre**
- \Diamond Q facteur de qualité

Remarque E5.1 : Analyse de l'équation

Par lecture de cette équation, Q est sans dimension pour qu'on retrouve que ω_0 s'exprime en s⁻¹ car $\frac{dx}{dt}$ est de dimension $[x] \cdot s^{-1}$.

De plus, on remarque que **plus** Q **est élevé**, plus le terme d'ordre 1 est négligeable devant les autres, donc **plus** on se rapproche de l'harmonique. Le facteur de qualité traduit donc à quel point le système est idéal.

(E5.2)

Propriété E5.1 : Régimes de solution

Le polynôme caractéristique est un trinôme :

$$r^2 + \frac{\omega_0}{Q}r + {\omega_0}^2 = 0$$
 (E5.1)

de discriminant
$$\Delta = \frac{\omega_0^2}{Q^2} (1 - 4Q^2)$$

On a alors 3 régimes de solutions :

- \Diamond **Q** > 1/2 : **pseudo-périodique**, $r \in \mathbb{C}$, oscillations décroissantes ;
- \diamondsuit **Q** = 1/2 : **critique**, racine double réelle, pas d'oscillations ;
- \diamondsuit **Q** < 1/2 : apériodique, racines réelles sans oscillation.

♥ Démonstration E5.1 : Régimes de solutions

On trouve le polynôme caractéristique par l'équation ${f homogène}$:

$$\frac{\mathrm{d}^{2}y_{h}}{\mathrm{d}t^{2}}\Big|_{t} + \frac{\omega_{0}}{Q} \frac{\mathrm{d}y_{h}}{\mathrm{d}t}\Big|_{t} + \omega_{0}^{2}y_{h}(t) = 0$$

$$\Leftrightarrow r^{2} \mathcal{K}e^{rt} + \frac{\omega_{0}}{Q} r \mathcal{K}e^{rt} + \omega_{0}^{2} \mathcal{K}e^{rt} = 0$$

$$\Leftrightarrow r^{2} + \frac{\omega_{0}}{Q} r + \omega_{0}^{2} = 0$$

$$\Leftrightarrow r^{2} + \frac{\omega_{0}}{Q} r + \omega_{0}^{2} = 0$$

Ainsi,
$$\Delta = \left(\frac{\omega_0}{Q}\right)^2 - 4\omega_0^2 = \frac{{\omega_0}^2}{Q^2} (1 - 4Q^2)$$

On relie $\Delta \lessgtr 0$ à $Q \gtrless 1/2$:

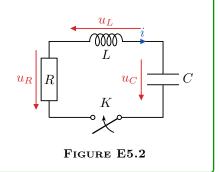
$$\Delta > 0 \Leftrightarrow \frac{\omega_0^2}{Q^2} \left(1 - 4Q^2 \right) > 0$$
$$\Leftrightarrow 4Q^2 < 1 \Leftrightarrow Q < \frac{1}{2}$$

	Important E5.2 : Solutions oscillateur amorti	
	Racines	Solution
Pseudo-T.	$r_{\pm} = -\frac{1}{\tau} \pm j\Omega$ avec $\begin{cases} \tau = \frac{2Q}{\omega_0} \\ \Omega = \frac{1}{\tau} \sqrt{4Q^2 - 1} \end{cases}$	$y_h(t) = \exp\left(-\frac{t}{\tau}\right) \cdot \left[A\cos(\Omega t) + B\sin(\Omega t)\right]$ partie décroissante partie oscillante
Crit.	$r = -\frac{\omega_0}{2Q} = -\omega_0$ car $Q = \frac{1}{2} \Leftrightarrow 2Q = 1$	$y_h(t) = (At + B) \exp(-\omega_0 t)$
Apér.	$r_{\pm} = \frac{1}{\tau} \left(-1 \pm \sqrt{1 - 4Q^2} \right)$ avec $\tau = \frac{2Q}{\omega_0}$	$y_h(t) = Ae^{r+t} + Be^{r-t}$

I/B Présentation et bilan énergétique

💙 Définition E5.1 : Circuit RLC libre

- ♦ Il est constitué de l'association en série d'une résistance, d'une bobine et d'un condensateur idéaux.
- ♦ On suppose le condensateur initialement chargé.
- \diamondsuit À t=0, on ferme l'interrupteur : le circuit est en régime libre.



Propriété E5.2 : Bilan de $\mathcal P$ RLC libre

L'énergie emmagasinée dans le circuit est progressivement dissipée par effet Joule dû à la résistance :

$$\frac{\mathrm{d}\mathcal{E}_{\mathrm{elec}}}{\mathrm{d}t} = -\mathcal{P}_J$$

avec $\mathcal{E}_{elec} = \mathcal{E}_C + \mathcal{E}_L = \frac{1}{2}Cu_C^2 + \frac{1}{2}Li^2$.

\heartsuit Démonstration E5.2 : Bilan $\mathscr P$ RLC libre

$$\begin{array}{c} u_L i + u_R i = u_C i \\ \Leftrightarrow u_C \cdot C \frac{\mathrm{d} u_C}{\mathrm{d} t} + L \frac{\mathrm{d} i}{\mathrm{d} t} \cdot i + R i^2 = 0 \\ \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{1}{2} C u_C^2 + \frac{1}{2} L i^2 \right) = -\mathcal{P}_J \end{array} \begin{array}{c} u_R = R i \\ u_L = L \frac{\mathrm{d} i}{\mathrm{d} t} \\ i = -C \frac{\mathrm{d} u_C}{\mathrm{d} t} \\ \mathcal{P}_J = R i \frac{\mathrm{d} i}{\mathrm{d} t} \\ f \cdot \frac{\mathrm{d} f}{\mathrm{d} t} = \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{1}{2} f^2 \right) \end{array}$$

Interprétation E5.1 : Évolution énergétique RLC série

On a donc bien une perte d'énergie à cause de la dissipation dans la résistance. Il y aura donc progressivement une perte de la tension de u_C , d'où l'amortissement.

Équation différentielle du circuit

💙 Démonstration E5.3 : Équation différentielle RLC libre

Équation différentielle

$$u_{C} = u_{L} + u_{R}$$

$$\Leftrightarrow u_{C} = L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri$$

$$\Leftrightarrow u_{C} = L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri$$

$$\Leftrightarrow LC\frac{\mathrm{d}^{2}u_{C}}{\mathrm{d}t^{2}} + RC\frac{\mathrm{d}u_{C}}{\mathrm{d}t} + u_{C} = 0$$

$$\Leftrightarrow \frac{\mathrm{d}^{2}u_{C}}{\mathrm{d}t^{2}} + \frac{R}{L}\frac{\mathrm{d}u_{C}}{\mathrm{d}t} + \frac{1}{LC}u_{C} = 0$$

$$\Leftrightarrow \frac{\mathrm{d}^{2}u_{C}}{\mathrm{d}t^{2}} + \frac{\omega_{0}}{Q}\frac{\mathrm{d}u_{C}}{\mathrm{d}t} + \omega_{0}^{2}u_{C} = 0$$

$$Canonique$$

On détermine l'expression de Q par identification :

$$\frac{\omega_0}{Q} = \frac{R}{L}$$

$$\Leftrightarrow \frac{1}{Q\sqrt{LC}} = \frac{R}{L}$$

$$\Leftrightarrow Q = \frac{L}{R\sqrt{LC}}$$

$$\Leftrightarrow Q = \frac{1}{R}\sqrt{\frac{L}{C}}$$

$$\Leftrightarrow Q = \frac{1}{R}\sqrt{\frac{L}{C}}$$

$$\Leftrightarrow Q = \frac{1}{R}\sqrt{\frac{L}{C}}$$

Conditions initiales

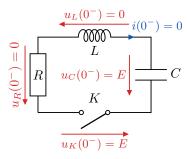


FIGURE E5.3 – En 0^-

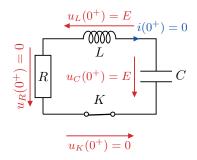


FIGURE E5.4 – En 0^+

Propriété E5.3 : Équation différentielle RLC libre

L'équation différentielle de la tension $u_C(t)$ aux bornes d'un condensateur d'un circuit RLC en régime libre est

$$\frac{d^2 u_C}{dt^2} + \frac{\omega_0}{Q} \frac{du_C}{dt} + {\omega_0}^2 u_C = 0$$
avec
$$\begin{cases}
\omega_0 = \frac{1}{\sqrt{LC}} \\
Q = \frac{1}{R} \sqrt{\frac{L}{C}}
\end{cases}$$

 $\diamond \omega_0$ la pulsation propre $\diamond Q$ le facteur de qualité

Par continuité de la tension aux bornes d'un condensateur et continuité de l'intensité traversant une bobine, on trouve les conditions initiales :

$$u_C(0^-) = u_C(0^+) = E$$

 $i(0^-) = i(0^+) = 0$

Résolutions pour chaque cas

I/D) 1 Cas $\Delta < 0 \Leftrightarrow Q > 1/2$: régime pseudo-périodique

I/D) 1.1 Solution de l'équation

(E5.3)

💙 Démonstration E5.4 : Solution pseudo-périodique

1

Déjà homogène

2

$$u_C(t) = K \mathrm{e}^{rt} \Rightarrow r^2 \, \text{Ke}^{rt} + \frac{\omega_0}{Q} r \, \text{Ke}^{rt} + \omega_0^2 \, \text{Ke}^{rt} = 0$$

3

$$\boxed{r^2 + \frac{\omega_0}{Q}r + {\omega_0}^2 = 0} \quad \text{avec} \quad \Delta = \frac{{\omega_0}^2}{Q^2} \left(1 - 4Q^2\right) < 0$$

Ainsi,

$$\begin{split} r_{\pm} &= \frac{-\frac{\omega_0}{Q} \pm \mathrm{j}\sqrt{-\Delta}}{2} \\ \Leftrightarrow r_{\pm} &= -\frac{\omega_0}{2Q} \pm \frac{\mathrm{j}}{2}\sqrt{\frac{{\omega_0}^2}{Q^2}\left(4Q^2 - 1\right)}} \quad \text{On injecte } \Delta \\ \Leftrightarrow r_{\pm} &= -\frac{1}{\tau} \pm \mathrm{j}\frac{\omega_0}{2Q}\sqrt{4Q^2 - 1} \\ \Leftrightarrow r_{\pm} &= -\frac{1}{\tau} \pm \mathrm{j}\Omega \end{split} \quad \text{On extrait } \frac{\omega_0}{Q} \\ \text{On definit } \Omega \end{split}$$

d'où les définitions de τ et Ω :

$$\tau = \frac{2Q}{\omega_0}$$
 et $\Omega = \frac{1}{\tau} \sqrt{4Q^2 - 1}$

4

$$u_C(t) = K_1 e^{r_+ t} + K_2 e^{r_- t} = K_1 e^{-\frac{1}{\tau}} e^{j\Omega t} + K_2 e^{-\frac{1}{\tau}} e^{-j\Omega t}$$

$$\Leftrightarrow u_C(t) = e^{-\frac{t}{\tau}} \left(K_1 e^{j\Omega t} + K_2 e^{-j\Omega t} \right) \stackrel{\text{F07}}{=} e^{-\frac{t}{\tau}} \left(A \cos(\Omega t) + B \sin(\Omega t) \right)$$

 $|7| \diamondsuit$

$$u_C(0) \stackrel{\text{CI}}{=} 0 \stackrel{\text{(E5.3)}}{=} 1 \left(A \cdot 1 + B \cdot 0 \right) = A \Leftrightarrow \boxed{A = E}$$
 (E5.4)

 \Diamond

$$\frac{\mathrm{d}u_C}{\mathrm{d}t}\Big|_{t} = -\frac{1}{\tau}u_C(t) + \mathrm{e}^{-\frac{t}{\tau}}\left(-A\Omega\sin(\Omega t) + B\Omega\cos(\Omega t)\right)$$
 (E5.5)

$$\Rightarrow \frac{\mathrm{d}u_C}{\mathrm{d}t}\Big|_0 = \frac{i(0)}{C} \stackrel{\mathrm{CI}}{=} 0 \stackrel{\mathrm{(E5.5)}}{\Leftrightarrow} - \frac{1}{\tau}A + \Omega B = 0 \Leftrightarrow \boxed{B = \frac{E}{\Omega\tau} = \frac{E}{\sqrt{4Q^2 - 1}}}$$
 (E5.6)

8

$$u_C(t) = Ee^{-\frac{t}{\tau}} \left(\cos(\Omega t) + \frac{1}{\Omega \tau} \sin(\Omega t) \right)$$

Propriété E5.4 : Solution pseudo-périodique

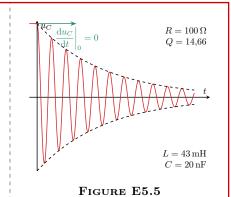
Pour un facteur de qualité Q > 1/2, u_C s'exprime par

$$u_C(t) = Ee^{-\frac{t}{\tau}} \left(\cos(\Omega t) + \frac{1}{\Omega \tau} \sin(\Omega t) \right) \quad \text{avec} \quad \begin{cases} \tau = \frac{2Q}{\omega_0} \\ \Omega = \frac{1}{\tau} \sqrt{4Q^2 - 1} \end{cases}$$

Le signal est alors sinusoïdal amorti, de période

$$T \triangleq \frac{2\pi}{\Omega} = \frac{2\pi\tau}{\sqrt{4Q^2 - 1}} = \frac{2\pi}{\omega_0} \frac{2Q}{\sqrt{4Q^2 - 1}} \Leftrightarrow \boxed{T = T_0 \frac{2Q}{\sqrt{4Q^2 - 1}} > T_0}$$

d'enveloppes



La solution du polynôme caractéristique s'écrit alors comme la somme de la solution d'ordre 1 et de la solution harmonique, mais de pulsation différente :

$$r_{\pm} = -\frac{\omega_0}{2Q} \pm \mathrm{j}\Omega \equiv \ll \frac{-1}{\tau} \pm \mathrm{j}\omega_0 \gg \text{ soit } \boxed{r_{\pm} = r_{\mathrm{ordre }1} + r_{\mathrm{ordre }2 \; \mathrm{harmonique}}}$$

Ceci n'est pas très étonnant puisque l'EDLHC d'ordre 2 amortie est la somme d'une EDLHC d'ordre 2 harmonique et d'une EDLHC d'ordre 1. Avec les propriétés de l'exponentielle $(e^{a+b} = e^a e^b)$, il est donc naturel que la solution amortie soit le **produit** des solutions d'ordre 1 et d'ordre 2.

Remarque E5.2 : Forme du résultat

On peut tout à fait écrire le résultat sous la forme $u_C(t) = e^{-\frac{t}{\tau}} A' \cos(\Omega t + \varphi_0)$, avec A' et φ_0 à déterminer.

I/D) 1.2 Régime transitoire

♥ Propriété E5.5 : t₉₅ pseudo-périodique

Le temps de réponse à 95% est atteint à :

$$t_{95} \approx QT_0$$
 avec $T_0 = \frac{2\pi}{\omega_0}$

Ainsi, Q correspond au nombre d'oscillations observées.

Un calcul précis montre que le régime le plus court est atteint pour $Q \approx 0.72$, mais il y a alors un **dépassement de la consigne**.

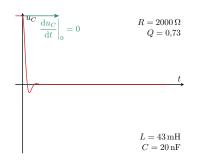


FIGURE E5.6 – Plus court transitoire avec dépassement.

Démonstration E5.5 : t₉₅ pseudo-périodique

Il suffit de chercher t_{95} tel que l'**enveloppe** soit réduite de 95%, soit :

$$\mathbb{Z}e^{-\frac{t_{95}}{\tau}} = 0.05\mathbb{Z}$$

$$\Leftrightarrow -\frac{t_{95}}{\tau} = \ln(0.05)$$

$$\Leftrightarrow t_{95} = \tau \ln(20)$$

$$\downarrow 0.05 = 1/20$$

$$\ln(a^b) = b \ln a$$

Or,
$$\tau = \frac{2Q}{\omega_0}$$
 donc

$$t_{95} = \frac{2Q}{\omega_0} \ln(20)$$

$$\Leftrightarrow t_{95} \approx \frac{2\pi}{\omega_0} Q$$

$$\ln(20) \approx \tau$$

Implication E5.1 : Résultat $R \to 0 \Leftrightarrow Q \to \infty$

On remarque que quand $R \to 0$, alors $Q \to \infty$: on a donc des oscillations « infinies », puisqu'alors :

$$\Omega \approx \omega_0$$
 donc $T \approx T_0$ mais aussi $\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + {\omega_0}^2 u_C = 0$ donc $u_C(t) = E \cos(\omega_0 t)$

On retrouve toutes les caractéristiques de la situation harmonique, sans perte d'énergie par effet Joule.

Interprétation E5.3 : Espace des phases pseudo-pér. (HP)

Contrairement à la situation harmonique, le tracé de la solution dans l'espace (u_C,i) n'est **pas symétrique par inversion du temps**: la dissipation par effet Joule diminue l'énergie du système, et la **tension diminue progressivement**. On observera donc une **spirale décroissante** avec beaucoup d'oscillations quand les amortissements ne sont pas trop élevés, et de moins en moins quand Q diminue.

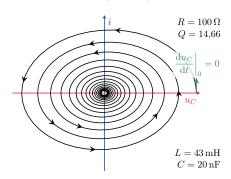


FIGURE E5.7 - Faible amortissement

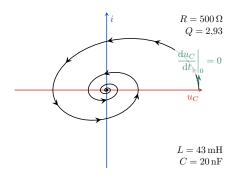


FIGURE E5.8 – Moyen amortissement

I/D) 1.3 Décrément logarithmique

Définition E5.2 : Décrément logarithmique

Soit $u_{C,eq} \neq 0$ la valeur d'équilibre de $u_C(t)$, telle que $u_C(t) = u_{C,eq} + e^{-\frac{t}{\tau}} (A' \cos(\Omega t + \varphi_0))$. Le **décrément logarithmique** entre 2 instants séparés de n périodes s'exprime :

$$\delta = \frac{1}{n} \ln \left(\frac{u_C(t) - u_{C,eq}}{u_C(t + nT) - u_{C,eq}} \right)$$

avec n le nombre de périodes utilisées pour le calcul. Il permet de quantifier l'amortissement : plus δ est grand, plus l'amortissement est important.

Propriété E5.6 : Décrément et facteur de qualité

Le décrément logarithmique et le facteur de qualité sont reliés par :

$$\delta = \frac{T}{\tau} \qquad \Leftrightarrow \qquad Q = \frac{1}{2} \sqrt{1 + \frac{4\pi^2}{\delta^2}}$$

Démonstration E5.6 : Décrément et facteur de qualité

On développe le calcul en commençant par le dénominateur :

$$u_{C}(t+nT) - u_{C,eq} = e^{-\frac{t+nT}{\tau}} \underbrace{\left(A'\cos(\Omega(t+nT) + \varphi_{0})\right)}_{=A'\cos(\Omega t + \varphi_{0})}$$

$$\Leftrightarrow u_{C}(t+nT) - u_{C,eq} = e^{-\frac{nT}{\tau}} \underbrace{e^{-\frac{t}{\tau}} \left(A'\cos(\Omega t + \varphi_{0})\right)}_{=u_{C}(t) - u_{C,eq}}$$

$$\Leftrightarrow \frac{u_{C}(t) - u_{C,eq}}{u_{C}(t+nT) - u_{C,eq}} = e^{n\frac{T}{\tau}}$$

$$\Leftrightarrow \ln\left(\frac{u_{C}(t) - u_{C,eq}}{u_{C}(t+nT) - u_{C,eq}}\right) = n\frac{T}{\tau}$$

Ainsi, avec la définition du décrément :

$$\Leftrightarrow \delta = \frac{T}{\tau}$$

$$\Leftrightarrow \delta = \frac{T}{\tau}$$

$$\Leftrightarrow \delta = \frac{2\pi}{\Omega \tau} = \frac{2\pi}{\sqrt{4Q^2 - 1}}$$

$$\Leftrightarrow 4Q^2 - 1 = \frac{4\pi^2}{\delta^2}$$

$$\Leftrightarrow Q = \frac{1}{2}\sqrt{1 + \frac{4\pi^2}{\delta^2}}$$
On isole Q

 $| \mathbf{I/D}) \mathbf{2} | \mathbf{Cas} \ \Delta = 0 \Leftrightarrow Q = 1/2 : \mathbf{r\'egime} \ \mathbf{critique}$

I/D) 2.1Solution de l'équation

💙 Démonstration E5.7 : Solution critique

La seule racine de l'équation caractéristique (E5.1) est double, et vaut

 $r = -\omega_0$ soit $u_C(t) = (At + B) \exp(-\omega_0 t)$ $u_C(0) = E = (A \cdot 0 + B) \cdot 1 = B \Leftrightarrow B = E$ \Diamond On trouve B:

 $\frac{\mathrm{d}u_C}{\mathrm{d}t}\Big|_{t} = (A)\exp(-\omega_0 t) + -\omega_0 u_C(t)$ \Diamond On trouve A:

 $\Rightarrow \frac{\mathrm{d}u_C}{\mathrm{d}t}\bigg|_0 = \frac{i(0)}{C} = 0 \Leftrightarrow A - \omega_0 E = 0 \boxed{A = \omega_0 E}$

Propriété E5.7 : Solution critique

Pour un facteur de qualité $Q = \frac{1}{2}, u_C$ s'exprime par

$$u_C(t) = E(\omega_0 t + 1) \exp(-\omega_0 t)$$

et on n'observe **pas une oscillation** : au facteur de qualité critique, l'amortissement est suffisamment important pour empêcher u_C de passer sous 0.

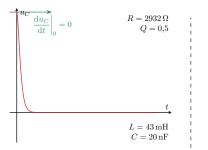
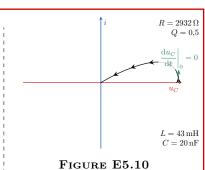


FIGURE E5.9



I/D) 2.2Régime transitoire

Démonstration E5.8 : Régime transitoire critique

En négligeant le terme linéaire en t devant la décroissance exponentielle, on a

$$\cancel{X}\exp(-\omega_0 t_{95}) = 0.05\cancel{X} \Leftrightarrow t_{95} = \frac{\ln(20)}{\omega_0} \approx \frac{\pi}{\omega_0}$$

Propriété E5.8 : Régime transitoire critique

Le temps de réponse à 95% est atteint à t_{95} tel que

$$t_{95} \approx \frac{T_0}{2}$$
 avec $T_0 = \frac{2\pi}{\omega_0}$

C'est le régime le plus court sans dépassement.

$$oxed{I/D) 3}$$
 Cas $\Delta > 0 \Leftrightarrow Q < 1/2$: régime apériodique

I/D) 3.1 Solution de l'équation

Démonstration E5.9 : Solution apériodique

Les racines de l'équation caractéristique (E5.1) sont réelles, et on a

$$\begin{split} r_{\pm} &= \frac{-\frac{\omega_0}{Q} \pm \sqrt{\Delta}}{2} \\ \Leftrightarrow r_{\pm} &= -\frac{1}{\tau} \pm \frac{\omega_0}{2Q} \sqrt{1 - 4Q^2} \\ \Leftrightarrow r_{\pm} &= \frac{1}{\tau} \left(-1 \pm \sqrt{1 - 4Q^2} \right) \end{split}$$

Dans la forme homogène, on a donc

$$u_C(t) = A \exp(r_+ t) + B \exp(r_- t)$$

♦ Avec la première CI :

$$u_C(0) = E = A + B$$

 \Diamond Avec la seconde CI :

$$\frac{\mathrm{d}u_C}{\mathrm{d}t}\Big|_{0} = \frac{i(0)}{C} \Leftrightarrow Ar_{+} + Br_{-} = 0 \Leftrightarrow B = -\frac{Ar_{+}}{r_{-}}$$

En combinant, on trouve

$$A = -\frac{Er_{-}}{r_{+} - r_{-}} \qquad \text{et} \qquad B = \frac{Er_{+}}{r_{+} - r_{-}}$$

Propriété E5.9 : Solution apériodique

Pour un facteur de qualité $Q < 1/2, u_C$ s'exprime par

$$u_C(t) = \frac{E}{r_+ - r_-} \left(r_+ e^{r_- t} - r_- e^{r_+ t} \right)$$

et on n'observe **pas une oscillation**. Le régime transitoire est plus long que pour Q = 1/2: l'intensité est plus faible.

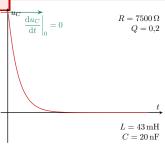
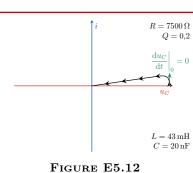


FIGURE E5.11



Remarque E5.3 : Forme de solution apériodique

Selon les besoins, on peut écrire la solution sous une autre forme. Notamment, on peut montrer qu'elle s'écrit

$$u_C(t) = Ee^{-\frac{t}{\tau}} \left(\operatorname{ch} \left(\frac{\sqrt{\Delta}}{2} t \right) + \frac{2}{\tau \sqrt{\Delta}} \operatorname{sh} \left(\frac{\sqrt{\Delta}}{2} t \right) \right)$$

I/D) 3.2Régime transitoire

Démonstration E5.10 : Régime transitoire apériodique

Le transitoire sera contraint par l'exponentielle la « moins décroissante »; on compare donc r_- et r_+ . On remarque d'abord que les deux racines sont négatives (d'où la décroissance exponentielle) :

$$r_{+} < 0 \Leftrightarrow \underbrace{\frac{1}{\tau}}_{\omega_{0} \text{ et } Q > 0} \left(1 - \sqrt{1 - 4Q^{2}}\right) \lesssim 0$$

$$\Leftrightarrow 1 - \sqrt{1 - 4Q^{2}} > 0$$

$$\Leftrightarrow \sqrt{1 - 4Q^{2}^{2}} < 1^{2}$$

$$\Leftrightarrow 4Q^{2} > 0 \text{ ce qui est vrai.}$$

$$r_{-} < r_{+}$$

$$\Leftrightarrow |r_{-}| > |r_{+}|$$

$$\Leftrightarrow \left| \frac{1}{r_{-}} \right| < \left| \frac{1}{r_{+}} \right|$$

$$\Leftrightarrow \tau_{-} < \tau_{+}$$

$$(1)$$

On a donc $t_{95} = \tau_{+} \ln(20)$ (cf. démonstration E5.5).

Pour $Q \ll 1$, on utilise $\left| \sqrt{1+x} \underset{x \ll 1}{\sim} 1 + x/2 \right|$ pour simplifier r_+ :

$$\begin{split} r_{+} &= -\frac{\omega_{0}}{2Q} \left(1 - \sqrt{1 - 4Q^{2}} \right) \\ \Rightarrow r_{+} &\underset{Q \ll 1}{\sim} -\frac{\omega_{0}}{2Q} \left(1 - \left(1 - \frac{4Q^{2}}{2} \right) \right) \\ \Leftrightarrow r_{+} &\underset{Q \ll 1}{\sim} -Q\omega_{0} \end{split}$$

Avec $ln(20) \approx \pi$:

$$t_{95} pprox rac{\pi}{Q\omega_0}$$
 soit $t_{95} pprox rac{T_0}{2Q}$

♥ Propriété E5.10 : Régime transitoire apériodique

Le temps de réponse à 95% est atteint à partir de t_{95} tel que

$$t_{95} pprox rac{T_0}{2Q}$$
 avec $T_0 = rac{2\pi}{\omega_0}$

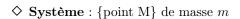
Implication E5.2 : Résultat $R \to \infty \Leftrightarrow Q \to 0$

Quand $Q \longrightarrow 0$, on peut négliger le terme d'ordre 2 dans l'équation différentielle devant le terme d'ordre 1; on se retrouve alors avec une équation différentielle du premier ordre, ce qui est cohérent avec l'amortissement exponentiel!

${ m II} \mid { m Exemple}$ amorti mécanique : ${ m ressort} + { m frottements}$ fluides

II/A Présentation

♥ Définition E5.3 : Situation initiale et bilan des forces



 \diamondsuit Référentiel : $\mathcal{R}_{\mathrm{sol}}$ supposé galiléen

 \Diamond Repère : $(O, \overrightarrow{u_x}, \overrightarrow{u_y})$ (voir schéma)

♦ Repérage :

$$\overrightarrow{\mathrm{OM}} = x(t)\overrightarrow{u_x} \; ; \; \overrightarrow{v} = \dot{x}(t)\overrightarrow{u_x} \; ; \; \overrightarrow{a} = \ddot{x}(t)\overrightarrow{u_x}$$

 \Diamond Longueur du ressort : $\ell(t) = x_{\rm M}(t) - x_{\rm O} = x(t)$

 \diamond Position initiale : $x(0) = L_0 > 0$

 \diamondsuit Vitesse initiale: $\overrightarrow{v}(0) = \overrightarrow{0}$

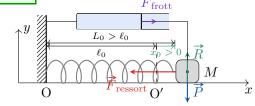


FIGURE E5.13

♦ Bilan des forces :

Poids
$$\vec{P} = m\vec{g} = -mg\vec{u_y}$$

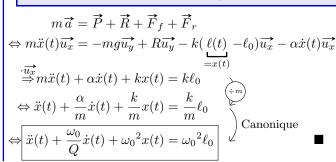
Réaction $\overrightarrow{R} = R\overrightarrow{u_y}$

HOOKE
$$\vec{F}_r = -k(\ell(t) - \ell_0)\vec{u}_x$$

Frotte^t $\vec{F}_f = -\alpha \vec{v}(t) = -\alpha \dot{x}(t) \vec{u}_x$

II/B Équation différentielle

Démonstration E5.11 : Équation ressort amorti



On identifie ω_0 et Q:

$$\omega_0^2 = \frac{k}{m} \Leftrightarrow \boxed{\omega_0 = \sqrt{\frac{k}{m}}}$$

et $\frac{\alpha}{m} = \frac{\omega_0}{Q} \Leftrightarrow Q = \frac{m\omega_0}{\alpha} \Leftrightarrow \boxed{Q = \frac{\sqrt{km}}{\alpha}}$

♥ Propriété E5.11 : Équation ressort amorti

La position x de la masse est régie par :

$$\ddot{x}(t) + \frac{\omega_0}{Q}\dot{x}(t) + {\omega_0}^2 x(t) = {\omega_0}^2 \ell_0$$

 ℓ_0 reste donc la longueur d'équilibre du système.

$$\diamondsuit$$
 $\omega_0 = \frac{k}{m}$ la pulsation propre;

$$\Diamond | Q = \frac{\sqrt{km}}{\alpha} |$$
 le facteur de qualité.

Important E5.3: Analogie RLC-ressort amorti

Ici aussi, les deux systèmes sont régis par la même équation différentielle. On observe une oscillation amortie du ressort autour d'une position d'équilibre, ici $x_{eq} = \ell_0$.

Ici, c'est le coefficient de frottements α qui dissipe l'énergie sous forme de chaleur : on l'associe à R.

$\mathrm{\acute{E}lec}\!\longleftrightarrow\!\mathrm{M\acute{e}ca}$					
	$I \longleftrightarrow$				
u	\longleftrightarrow	\overrightarrow{F}			
q	\longleftrightarrow	x			
i	\longleftrightarrow	v			
_	\longleftrightarrow	m			
C^{-1}	$^{1}\longleftrightarrow$	k			
R	\longleftrightarrow	α			

II/C Bilan de puissance

Propriété E5.12 : \mathcal{P} ressort

Dans le système masse-ressort horizontal avec frottements fluides, l'énergie mécanique diminue proportionnellement au coefficient de friction α :

$$\frac{\mathrm{d}\mathcal{E}_m}{\mathrm{d}t} = -\alpha v(t)^2 < 0$$

donc $\mathcal{E}_m(t) \searrow$

Démonstration E5.12 : \mathcal{P} ressort

À partir du PFD $\times v$:

$$\begin{split} m\ddot{x}_h\dot{x}_h + \alpha\dot{x}_h\dot{x}_h + kx_h\dot{x}_h &= 0\\ \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t}\Big(\underbrace{\frac{1}{2}mv^2 + \frac{1}{2}kx_h^2}_{=\mathcal{E}_p^{\mathrm{cl}}}\Big) &= -\alpha v^2 \end{split} \int f \cdot \frac{\mathrm{d}f}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{2}f^2\right) \end{split}$$

II/D Solutions

Implication E5.3: Solutions ressort

On a les mêmes solutions en changeant u_C par x et E par L_0