Travaux pratiques – TP 6

Oscilloscope et tracé de caractéristiques

% Capacités exigibles

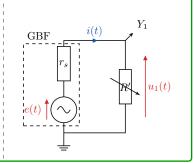
- Préciser la perturbation induite par l'appareil de mesure sur le montage et ses limites (bande passante, résistance d'entrée);
- Définir la nature de la mesure effectuée (valeur efficace, valeur moyenne, amplitude, valeur crête à crête, etc.);
- Mesurer une tension au voltmètre ou à l'oscilloscope;
- Gérer, dans un circuit électronique, les contraintes liées à la liaison entre les masses.
- Obtenir un signal de valeur moyenne, de forme, d'amplitude et de fréquence données.
- Mettre en œuvre une méthode de mesure de fréquence ou de période.

$oxed{f Objectifs}$

- ♦ Se familiariser avec le GBF et l'oscilloscope numérique.
- ♦ Réaliser des montages simples d'électricité.
- ♦ Tracer une caractéristique de dipôle en utilisant un transformateur d'isolement.

II S'approprier

II/A Résistances d'entrée et de sortie


II/A) 1 Résistance de sortie du générateur basse fréquence (GBF)

Définition TP6.1 : Résistance de sortie

Le GBF est un générateur réel pouvant être modélisé comme une association série d'un générateur idéal de tension de force électromotrice e associé à une résistance de sortie r_s (modèle de Thévenin). Comme vu en TD (TDE1-E2_app|I), on branche le GBF sur une résistance variable R' puis on mesure la tension U_1 aux bornes de R'.

On appelle E et U_1 les amplitudes respectives de e(t) et $u_1(t)$.

Vous prendrez soin de refaire tous les schémas des circuits mis en place ou étudiés.

5 Montrer que lorsque $U_1 = E/2$, alors $R' = r_s$. Élaborer alors un protocole de mesure expérimentale de r_s .

— Réponse -

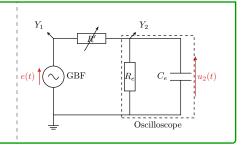
Par un pont diviseur de tension,

$$U_1 = \frac{R'}{R' + r_s} E$$

donc

$$U_1 = \frac{E}{2} \Leftrightarrow \frac{R'}{R' + r_s} = \frac{1}{2} \Leftrightarrow \boxed{R' = r_s}$$

On mesure la tension à vide du GBF en branchant un voltmètre directement dessus ①. On branche ensuite une résistance variable à ses bornes et le voltmètre par-dessus. On fait varier la résistance entre $[1;100]\Omega$ ①. Lorsque la tension lue est la moitié de la tension à vide, on relève la valeur de R': c'est la valeur de r_s . ①


II/A) 2 Résistance d'entrée de l'oscilloscope

Définition TP6.2 : Résistance d'entrée

L'entrée d'un oscilloscope est assimilable à une résistance d'entrée R_e en dérivation avec une capacité C_e . À basse fréquence, le condensateur est assimilable à un interrupteur ouvert.

On appelle ici aussi E et U_2 les amplitudes respectives de e(t) et $u_2(t)$.

La résistance de sortie du GBF n'apparaît pas ici. Elle est en réalité très faible devant les autres résistances R_e et R' et sera donc négligée pour cette partie.

/4 ② Montrer alors, en vous aidant d'un schéma équivalent en basses fréquences, que la tension u_2 mesurée par l'oscilloscope (modélisée par une résistance et une capacité en parallèle) est égale à e/2 lorsque $R' = R_e$.

- Réponse -

Avec C_e un interrupteur ouvert, aucune intensité ne passe dans la branche de la capacité. On se retrouve donc avec un autre pont diviseur de tension (1), avec

$$U_2 \stackrel{\textcircled{1}}{=} \frac{R_e}{R_e + R'} E$$

$$U_2 = \frac{e}{2} \Leftrightarrow \frac{R_e}{R_e + R'} = \frac{1}{2} \Leftrightarrow \boxed{R' \stackrel{\textcircled{1}}{=} R_e}$$

FIGURE TP6.1 -(1)

donc

/3 (3) En déduire une méthode simple de mesure expérimentale de R_e .

- Réponse -

Avec un e connu, par exemple, e=5 V constant, on branche l'oscilloscope en série et on observe la tension mesurée ①. On fait varier R' jusqu'à ce que l'oscilloscope affiche une tension moitié celle du GBF ①. Alors, $R'=R_e$. ①

 $- \diamond$

Mesures avec un oscilloscope

À partir du menu mesure, l'oscilloscope est capable de réaliser des mesures automatiques des principales caractéristiques des signaux électriques. Vous pourrez en particulier afficher :

- \Diamond la période et la fréquence du signal;
- \Diamond la tension maximale U_{max} du signal;
- \Diamond la tension crête-crête $U_{\rm pp}$ du signal, telle que $U_{\rm pp} = U_{\rm max} U_{\rm min}$;
- \diamondsuit la tension efficace $U_{\rm eff}$ définie par $U_{\rm eff} = \sqrt{\langle s^2(t) \rangle} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0+T} s^2(t) dt}$

Définition TP6.3: Amplitude et tensions

L'amplitude $U_{\rm max}$ d'un signal sinusoïdal est telle que $s(t)=U_{\rm max}\cos(\omega t+\varphi)$. Elle est liée à $U_{\rm pp}$ selon

$$U_{\text{max}} = \frac{U_{\text{pp}}}{2}$$

Par ailleurs, pour un signal sinusoïdal, et uniquement pour un signal sinusoïdal la tension efficace s'écrit :

$$U_{\text{eff}} = \frac{U_{\text{max}}}{\sqrt{2}} = \frac{U_{\text{pp}}}{2\sqrt{2}}$$

Attention TP6.1 : Source de mesure

Pour toute mesure, vérifier que la source du menu mesure correspond bien à la courbe sur laquelle vous faites des mesures.

Rappel TP6.1: Incertitudes composées et écarts

Somme ou différence
$$y = x_1 \pm x_2 \Rightarrow u(y) = \sqrt{(u(x_1))^2 + (u(x_2))^2}$$

Fonction quelconque
$$y_{\text{calc}} = f(x_{\text{exp}}) \Rightarrow u(y_{\text{calc}}) = |f'(x_{\text{exp}})| \cdot u(x_{\text{exp}})$$

III. Réaliser

III | Réaliser

Branchements et masse

Afin de mesurer U_1 , l'oscilloscope se branche entre la masse (reliée à la borne noire de l'oscilloscope) et le nœud Y_1 (relié à la borne rouge de l'oscilloscope). Notez que dans un circuit, la masse est un nœud commun à tous les appareils branchés.

Par conséquent, la borne noire du GBF ainsi que les deux bornes noires de l'oscilloscope doivent être impérativement reliées entre elles. Si ce n'est pas le cas, votre montage ne fonctionnera pas.

Visualisation et mesures de tensions et période du signal

Expérience TP6.1 : Mesures de tension et période

- 1) Brancher le GBF sur la voie 1 de l'oscilloscope;
- 2) Choisir un signal sinusoïdal et une fréquence d'environ 1000 Hz sur le GBF.
- 3) Visualiser le signal en réglant les vis d'échelles X et Y;
- 4) Régler l'amplitude par le bouton | level |, jusqu'à observer une tension sinusoïdale crête-crête d'environ 2 V en regardant le nombre de carreaux et l'échelle verticale;
- 5) Affichez la mesure de la tension via l'oscilloscope en sélectionnant V_{pp} ou C-C (selon l'oscillo) de la voie 1 (CH_1) dans le menu $\boxed{\text{mesure}}$;
- 6) Régler alors précisément le level du GBF, tel que $V_{pp}=2\,\mathrm{V}$ pour CH_1 ;

/9 | 1 | Mesurer l'amplitude U_{max} et la période T de la tension en utilisant les curseurs et en réglant les sensibilités de l'oscilloscope (menu curseur). Écrire les résultats en mV et µs. Vous évaluerez les incertitudes en estimant l'intervalle des valeurs possibles puis en prenant Δ le demi-écart. Attention à l'incertitude d'une différence ensuite.

- Réponse -

On peut régler l'échelle de temps de sorte à ne voir qu'une période pour plus de précision sur une mesure unique, ou plusieurs périodes (par exemple 3) pour ensuite avoir $u(T) = \frac{u(3T)}{3}$. On trouve :

$$U_{\text{max}} = 940 \,\text{mV} \quad \text{et} \quad \Delta(U) = 40 \,\text{mV} \quad \text{or} \quad u(U_{\text{max}}) = \frac{\Delta(U)}{\sqrt{3}} \quad \Rightarrow \quad \underline{U_{\text{max}} = (940 \pm 23) \,\text{mV}}$$

$$\text{e plus,} \quad 3T = T_3 - T_0 \Leftrightarrow \boxed{T = \frac{t_3 - t_0}{3}} \quad \text{et} \quad \boxed{u(T) = \frac{u(3T)}{3} = \frac{\sqrt{u(t_3)^2 + u(t_0)^2}}{3}}$$

$$\text{er,} \quad u(t_n) = \frac{\Delta(t_n)}{\sqrt{3}} \quad \text{avec} \quad \boxed{1} \begin{cases} t_3 = 1200 \,\text{µs} & \text{et} \quad \Delta(t_3) = 60 \,\text{µs} \\ t_0 = -1740 \,\text{µs} & \text{et} \quad \Delta(t_0) = 60 \,\text{µs} \end{cases} \boxed{1} \quad \Rightarrow \quad \underline{T = (980 \pm 16) \,\text{µs}}$$

|4|2| En déduire, par le calcul, la tension efficace en mV et la fréquence f du signal en Hz, avec leurs incertitudes. Attention à l'incertitude d'un inverse (cf. Apl.N2.4).

$$U_{\text{eff}} = \frac{U_{\text{max}}}{\sqrt{2}} \quad \Rightarrow \quad u(U_{\text{eff}}) \stackrel{\textcircled{1}}{=} \frac{u(U_{\text{max}})}{\sqrt{2}} \quad \Rightarrow \quad \underline{U_{\text{eff}} = (665 \pm 16) \,\text{mV}}$$

$$\text{et} \quad f = \frac{1}{T} \quad \Rightarrow \quad u(f) \stackrel{\textcircled{1}}{=} \frac{u(T)}{T^2} \quad \Rightarrow \quad \underline{f} \stackrel{\textcircled{1}}{=} (1020 \pm 17) \,\text{Hz} \quad \text{avec} \quad T \quad \text{et} \quad u(T) \quad \text{en secondes!}$$

/3 $\boxed{3}$ Dans le menu $\boxed{\mathtt{mesure}}$, lire directement les valeurs des tensions $U_{\mathrm{max}}^{\mathrm{auto}},\ U_{\mathrm{eff}}^{\mathrm{auto}}$ (notée V_{rms} ou Efficace selon l'oscilloscope) et de la période T^{auto} sur CH₁. Comparer avec les valeurs précédentes.

– Réponse -

On lit simplement les valeurs puis on calcul l'écart normalisé; pour rappel, entre une valeur expérimentale avec incertitude m_{exp} et une valeur de référence sans incertitude, on a $E_N = \frac{|m_{\text{exp}} - m_{\text{ref}}|}{u(m_{\text{exp}})}$. Ici :

Les valeurs sont bien compatibles ①. On pourra faire confiance aux mesures de l'oscilloscope pour aller plus vite par la suite.

/2 $\boxed{4}$ Dans le menu $\boxed{\mathtt{Trigger}}$ ou $\boxed{\mathtt{Déclenchement}}$, changer la source pour CH_2 : que constatez-vous? Faire un schéma de ce que vous observez.

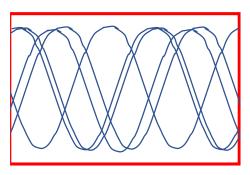


FIGURE TP6.2 – On observe un signal brouillé, qui bouge sans cesse. 1+1

/4 5 Revenez à la source 1. Qu'observez-vous? Modifier le niveau de déclenchement jusqu'à dépasser le signal. Qu'observez-vous? Expliquer alors le principe de fonctionnement du déclenchement. On pourra s'appuyer sur ce site. Faire un schéma pour la situation qui donne un signal stable.

- Réponse -

Lorsque la source est la voie 1, on observe un signal stable. Lorsque le niveau de déclenchement est trop haut ou trop bas, le signal redevient instable et brouillé. (1)

Le seuil de déclenchement donne l'indication à l'oscilloscope de synchroniser 1 l'affichage du signal à chaque fois que le signal entrant dépasse ce seuil dans le sens montant ou descendant (selon le réglage). Ainsi, l'oscilloscope attend le temps nécessaire pour tracer des signaux qui se superposent. (1)

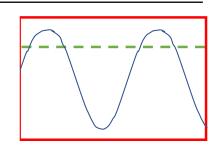
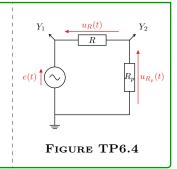



FIGURE TP6.3 -(1)

III/B Tracé d'une caractéristique de résistor à l'oscilloscope

Définition TP6.4 : Mesure de résistances en série

On s'intéresse en premier lieu au montage ci-contre, où R_P et R sont deux résistances en série dont on souhaite observer les tensions grâce à un oscilloscope. On propose pour cela les branchements Y_1 et Y_2 ci-contre.

/2 (4) Recopier la Figure TP6.4 sur votre compte-rendu. Quelles tensions mesurerait-on sur les voies 1 et 2 avec les branchements proposés? Répondre en terme de u_R et u_{R_P} .

— Réponse –

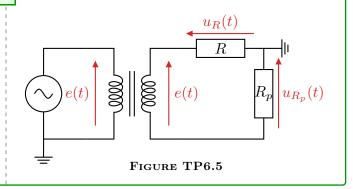
Sur la voie 1, on observe $u_{Y_1} = u_R + u_{R_P}$ ①; sur la voie 2 $u_{Y_2} = u_{R_P}$ ①.

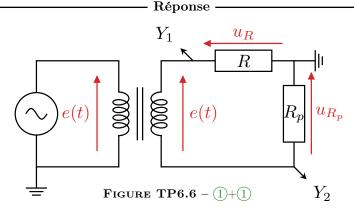
Puisqu'on ne peut pas déplacer la masse, imposée par le GBF, il faut donc « ruser » pour mesurer les tensions voulues. Or, un oscilloscope peut effectuer quelques opérations sur les signaux : tracer l'**opposé** d'un signal, calculer et afficher des **sommes et différences** des deux voies.

/1 (5) Proposer alors une manipulation pour observer u_R et u_{R_p} .

Sur la voie 1, on doit afficher $u_{Y_1} - u_{Y_2}$. ①

Lycée Pothier 4/7 MPSI3 – 2025/2026


III. Réaliser


Définition TP6.5: Transformateur d'isolement

Dans le montage ci-contre, ce qui relie les deux circuits est un transformateur d'isolement. Il permet de reproduire à l'identique une tension sans utiliser de câble, comme présenté sur le schéma ci-contre.

On se sert de ce dispositif pour imposer une nouvelle masse au circuit, ce qui simplifiera souvent les branchements, ici pour nous éviter la situation précédente.

/3 (6) Recopier la Figure TP6.5 sur votre compte-rendu. Proposer alors des branchements et manipulations afin d'observer u_R et u_{R_p} en utilisant uniquement la maille de droite.

On doit calculer $-u_{Y_2}$ pour observer u_{R_p} . (1)

Expérience TP6.2: Tracé d'une caractéristique

- 1) Réaliser le montage précédent, avec le transformateur et en utilisant le GBF, avec $f = 1 \, \text{kHz}$, level $\approx [2 \; ; \; 3] \, \text{V}$, sans offset, $R_P = 100 \Omega$ et R inconnue.
- 2) Observer les 2 tensions à l'oscilloscope en centrant les deux voies.

/1 $\boxed{6}$ Visualise-t-on u_{R_p} sans problème? Que faut-il faire?

Réponse —

Comme fait précédemment, sans manipulation on observer ait $u_{Y_2} = -u_{R_p}$; on doit donc afficher $-u_{Y_2}$ sur la voie 2.

Pour prendre l'opposé d'un signal, dans le menu de la voie presser ▶, puis activer Inversée.

7 | Imprimer les deux courbes en prenant le même gain vertical, et en déduire R_{inconnue}.

Pont diviseur:

$$u_{R_p} = \frac{R_p}{R + R_p} U_e \quad \text{et} \quad u_R = \frac{R}{R + R_p} U_e \Leftrightarrow \frac{u_R}{u_{R_p}} = \frac{R}{R_p}$$
$$\Leftrightarrow \boxed{R = R_p \frac{u_R}{u_{R_p}}} \quad \text{avec} \quad \begin{cases} R_p = 100 \,\Omega \\ u_R = 1 \,\mathrm{V} \\ u_{R_p} = 0.5 \,\mathrm{V} \end{cases}$$

Réponse -

A.N. :
$$R = 200 \Omega$$

Expérience TP6.3 : Mode XY

♦ Dans le menu horizontal, passer en mode XY. On visualise alors CH2 en fonction de CH1.

/2 8 Figer l'écran obtenu avec le bouton STOP et l'imprimer. Que représente cette courbe ? Comment s'exprime sa pente en fonction des valeurs des résistances ?

– Réponse –

Elle représente u_{R_p} en fonction de u_R , soit $u_{R_p} = \frac{R_p}{R} u_R$ (1): sa pente est donc $\frac{R_p}{R}$ (1).

/2 9 En déduire la valeur de R_{inconnue} avec une autre méthode que précédemment.

– Réponse -

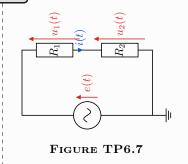
On trouve une pente de $\frac{1}{2}$ (1), donc $R=2R_p\Rightarrow \underline{R=200\,\Omega}$. (1)

 \Diamond

10 Conclure sur leur compatibilité grâce à un écart normalisé.

— Réponse —

En cours...



IV/A Effet de la résistance de sortie du GBF

Expérience TP6.4 : Résistance de sortie du GBF

Brancher l'oscilloscope aux bornes du GBF (toujours réglé à une fréquence de $1\,\mathrm{kHz}$) et régler le <code>level</code> de celui-ci pour obtenir une tension crête-crête de $2\,\mathrm{V}$. Comme précédemment, nous mesurons ici la tension à vide e du GBF.

Brancher ensuite deux résistances identiques de $R_1 = R_2 = 47 \Omega$ en série à la suite du GBF.

/9 11 Faire le schéma du branchement en considérant l'oscilloscope comme un voltmètre parfait, puis relever à l'aide de l'oscilloscope l'amplitude U_2 de la tension $u_2(t)$ aux bornes de R_2 . En appliquant le principe du pont diviseur de tension, que devrait valoir U_2 ? Est-ce la valeur que vous relevez? Expliquez cet écart en considérant la résistance de sortie du GBF.

_____ Réponse —

On relève $U_{2, \exp} = (350 \pm 23) \,\text{mV}$. Avec un pont diviseur, on devrait avoir :

$$U_{2, \text{ theo}} = \frac{R_2}{R_1 + R_2} E \Leftrightarrow U_{2, \text{ theo}} = \frac{1}{2} \Rightarrow U_{2, \text{ theo}} = 500 \,\text{mV}$$

On n'obtient clairement pas la valeur attendue : $E_N=6.5$ ①, les valeurs sont incompatibles. En effet, la résistance de sortie du GBF n'est pas nulle ①; elle faut en général $r_s\approx 50\,\Omega$, indiqué sur l'output; on a donc en réalité

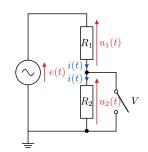


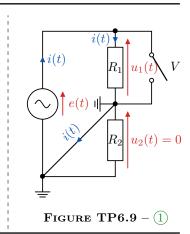
FIGURE TP6.8
$$-(1)$$

/2 12 Comment choisir R_1 et R_2 pour que l'on puisse négliger l'effet de la résistance de sortie du GBF? Reproduire le montage précédent en utilisant désormais $R_1 = R_2 = 10 \,\mathrm{k}\Omega$. Montrer qu'alors U_2 prend la valeur attendue.

—— Réponse -

Il faut pouvoir négliger r_s devant $R_1 + R_2$, donc prendre des résistances grandes devant r_s ①. Avec $R_1 = R_2 = 10 \,\mathrm{k}\Omega$, on a bien

$$U_{2, \text{ theo}} = \frac{R_2}{R_1 + R_2 + r_s} E \approx \frac{R_2}{R_1 + R_2} E \Leftrightarrow U_{2, \text{ theo}} = \frac{E}{2}$$


Lycée Pothier 6/7 MPSI3 – 2025/2026

V. Conclure

/3 13 Montrer que l'on ne peut pas brancher l'oscilloscope aux bornes de R_1 sans introduire un court-circuit en expliquant pourquoi; faire un schéma.

- Réponse -

Si on branche l'oscilloscope aux bornes de R_1 , on **impose une masse** ① entre R_1 et R_2 , ce qui **court-circuite** R_2 ! ①

IV/B

Effet de la résistance d'entrée de l'oscilloscope

Expérience TP6.5 : Résistance d'entrée de l'oscilloscope

Augmenter la tension crête-crête du GBF à 4 V, et augmenter les résistances telles que $R_1 = R_2 = 1 \,\mathrm{M}\Omega$

/2 14 Relever à l'aide de l'oscilloscope la tension U_1 . La tension U_1 obtenue est-elle conforme à vos attentes? Expliquez cet écart en tenant compte de la résistance d'entrée de l'oscilloscope.

· Réponse

On n'obtient **pas** $U_1 = \frac{E}{2}$ ① car la résistance d'entrée de l'oscilloscope est de l'ordre de $R_e \approx 1 \text{ M}\Omega$, ce qui fait qu'on ne peut plus négliger l'intensité dans sa branche : R_1 et R_2 ne sont plus en série. ①

Comment choisir R_1 et R_2 pour que l'on puisse négliger l'effet de la résistance d'entrée de l'oscilloscope? Recâbler le montage précédent en utilisant désormais $R_1 = R_2 = 10 \,\mathrm{k}\Omega$. Montrer qu'alors U_1 prend la valeur attendue.

– Réponse -

Il faut pouvoir négliger R_e devant R_1 et R_2 , donc prendre des résistances petites devant R_e ①. Avec $R_1 = R_2 = 10 \,\mathrm{k}\Omega$, on retrouve bien le pont diviseur de tension précédent. ①

${ m V}\mid$ Conclure

/2 16 Résumer les recommandations pratiques que vous avez pu déduire de ce TP afin de réaliser des mesures correctes en électricité.

- Réponse -

- ♦ Il faut refaire les schémas que l'on câble pour bien comprendre les branchements;
- ♦ On branche le GBF sur la ligne du haut;
- ♦ On mesure sa tension à vide pour régler le level;
- ♦ On règle le signal sur l'oscilloscope à l'aide des boutons d'échelle des voies ;
- ♦ Un signal brouillé indique un problème de déclenchement;
- ♦ On fait attention aux échelles verticales des deux voies qui peuvent être différentes ;
- ♦ On mesure manuellement des valeurs à l'aide des curseurs, en estimant les incertitudes par demi-écart de l'intervalle des valeurs possibles ;
- ♦ On peut aussi utiliser les mesures automatiques de l'oscilloscope, avec leurs incertitudes, en faisant attention à la source des mesures pour les tensions;
- ♦ On peut séparer les masses d'un circuit à l'autre à l'aide d'un transformateur d'isolement;
- ♦ Il est possible de faire des opérations sur les signaux (somme, différence, opposé) directement sur l'oscilloscope;
- \diamond Pour minimiser les erreurs liées aux résistances de sortie du GBF et d'entrée de l'oscilloscope, il faut choisir des résistances R_1 et R_2 grandes devant $r_s \approx 50\,\Omega$ et petites devant $R_e \approx 1\,\mathrm{M}\Omega$.

Lycée Pothier 7/7 MPSI3 – 2025/2026