TD: Transformation et équilibre chimique

I Transformations

Identifier la nature des transformations suivantes :

$$1 \text{ CH}_4 + 2 \text{ O}_2 = \text{CO}_2 + 2 \text{ H}_2 \text{ O}_2$$

$$|5|$$
 Fe(s) = Fe(l)

$$|2| C(s) + O_2(g) = CO_2(g)$$

$$|6|$$
 CH₃COOH + CH₃CH₂OH = CH₃COOCH₂CH₃ + H₂O

$$\boxed{3} \ ^{14}\text{N} + ^{1}_{0}\text{n} \rightarrow ^{14}_{6}\text{C} + ^{1}_{1}\text{p}$$

$$7 ext{ Zn} + Cu^{2+} = Zn^{2+} + Cu$$

$$\boxed{4}$$
 ¹⁴C + O₂ \rightarrow ¹⁴CO₂

8
$$CH_3COOH + HO^- = H_2O + CH_3COO^-$$

II | Calculs de quantités de matière

Données

$$M(\text{Fe}) = 55.8 \,\text{g} \cdot \text{mol}^{-1}$$
 et $M(\text{Cu}) = 63.5 \,\text{g} \cdot \text{mol}^{-1}$

- On verse dans un bécher une masse $m=350\,\mathrm{mg}$ de poudre de fer métallique. Quelle est la quantité de matière n_{Fe} correspondante?
- On dispose d'un flacon contenant $V_0 = 800 \,\mathrm{mL}$ de solution de sulfate de cuivre contenant les ions Cu^{2+} à la concentration $C = 0.50 \,\mathrm{mol \cdot L^{-1}}$. Quelle est la quantité de matière correspondante?
- On prélève $V=50\,\mathrm{mL}$ de cette solution. Quelle est la concentration du prélèvement? Quelle est la quantité de matière $n_{\mathrm{Cu}^{2+}}$ prélevée?

Le prélèvement est versé dans un bécher; une transformation chimique a lieu.

- $\boxed{4}$ À l'issue de cette transformation, on obtient du cuivre métallique en quantité de matière $n_f=4.8\,\mathrm{mmol}$. Quelle est la masse correspondante?
- $\boxed{5}$ On obtient également la même quantité de matière n_f d'ions Fe^{2+} . Quelle est la concentration correspondante?

III Dilution et mélange

On dispose d'une solution de sulfate de cuivre contenant les ions Cu^{2+} et les ions sulfate $\mathrm{SO_4}^{2-}$ à la même concentration $C_0 = 1 \times 10^{-2}\,\mathrm{mol \cdot L^{-1}}$. On en prélève à la pipette jaugée un volume $V_0 = 10\,\mathrm{mL}$ que l'on verse dans une fiole jaugée de volume $V_1 = 50\,\mathrm{mL}$. On remplit la fiole d'eau distillée jusqu'au trait de jauge.

 $\boxed{1}$ Quelle est la concentration C_1 en ions Cu^{2+} et en ions $\operatorname{SO_4}^{2-}$ dans la fiole?

On verse le contenu de cette fiole dans un bécher. On y ajoute un volume $V_2=20\,\mathrm{mL}$ d'une solution de sulfate de magnésium, contenant les ions Mg^{2+} et les ions $\mathrm{SO_4}^{2-}$ à la même concentration $C_2=2\times 10^{-2}\,\mathrm{mol\cdot L^{-1}}$.

2 Calculer les concentrations des trois ions après le mélange.

Concentration en soluté apporté

$$M(Mg) = 24.3 \text{ g} \cdot \text{mol}^{-1}$$
 et $M(Cl) = 35.5 \text{ g} \cdot \text{mol}^{-1}$

 $\boxed{1}$ Identifier les ions présents dans l'acide sulfurique $\mathrm{H}_2\mathrm{SO}_4$. Écrire l'équation de dissolution.

- On ajoute une quantité de matière $n_{\rm app}=2\times 10^{-2}\,{\rm mol}$ en acide sulfurique dans de l'eau distillée. Déterminer les quantités de matière de chaque ion dans la solution formée.
- $\fbox{3}$ La solution des questions précédentes a un volume $V=200\,\mathrm{mL}$. Calculer la concentration en soluté apporté, puis les concentrations des ions dans la solution après dissolution.
- On considère une solution de chlorure de chrome $CrCl_3$ de concentration en soluté apporté $c = 5 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$. Déterminer les concentrations des ions dans la solution.
- $\boxed{5}$ On dissout $m=6.0\,\mathrm{g}$ de chlorure de magnésium MgCl₂ dans $200\,\mathrm{mL}$ d'eau distillée. Calculer la concentration en soluté apporté, puis les concentrations des ions dans la solution