Correction du TD

I | Transformations

— Réponse -

Identifier la nature des transformations suivantes :

- $\boxed{1} \text{ CH}_4 + 2 \text{ O}_2 = \text{CO}_2 + 2 \text{ H}_2 \text{O}$
- 5 Fe(s) = Fe(l)

Chimique

 $\boxed{6} \quad \text{CH}_3\text{COOH} + \text{CH}_3\text{CH}_2\text{OH} = \text{CH}_3\text{COOCH}_2\text{CH}_3 + \text{H}_2\text{O}$

- 🔷 –

_____ Réponse -

Réponse —

Chimique

Chimique

 $\frac{1}{3}$ $^{14}N + ^{1}_{0}n \rightarrow ^{14}_{6}C + ^{1}_{1}p$

7 $\operatorname{Zn} + \operatorname{Cu}^{2+} = \operatorname{Zn}^{2+} + \operatorname{Cu}$

Nucléaire

Chimique Réponse –

 $\overline{4}$ $^{14}\text{C} + \text{O}_2 \rightarrow ^{14}\text{CO}_2$

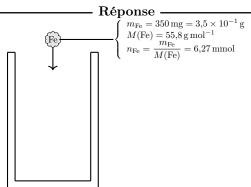
 $\boxed{8}$ CH₃COOH + HO⁻ = H₂O + CH₃COO⁻

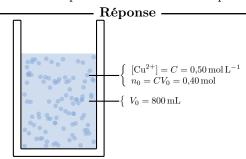
———— Réponse –

———— Réponse ———

Chimique

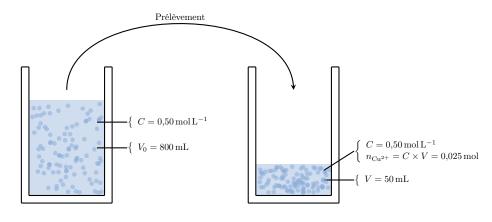
Chimique

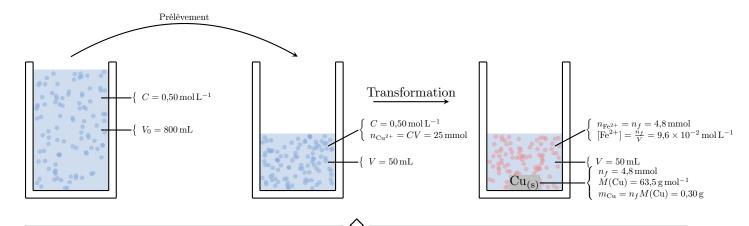

II Calculs de quantités de matière


Données

$$M(\text{Fe}) = 55.8 \,\text{g} \cdot \text{mol}^{-1}$$
 et $M(\text{Cu}) = 63.5 \,\text{g} \cdot \text{mol}^{-1}$

On verse dans un bécher une masse $m=350\,\mathrm{mg}$ de poudre de fer métallique. Quelle est la quantité de matière n_{Fe} correspondante?


On dispose d'un flacon contenant $V_0 = 800 \,\mathrm{mL}$ de solution de sulfate de cuivre contenant les ions Cu^{2+} à la concentration $C = 0.50 \,\mathrm{mol \cdot L^{-1}}$. Quelle est la quantité de matière correspondante?


On prélève $V=50\,\mathrm{mL}$ de cette solution. Quelle est la concentration du prélèvement ? Quelle est la quantité de matière $n_{\mathrm{Cu}^{2+}}$ prélevée ?

- Réponse -

4 Le prélèvement est versé dans un bécher; une transformation chimique a lieu. À l'issue de cette transformation, on obtient du cuivre métallique en quantité de matière $n_f = 4.8 \,\mathrm{mmol}$. Quelle est la masse correspondante?

- Réponse -

 $\boxed{5}$ On obtient également la même quantité de matière n_f d'ions Fe^{2+} . Quelle est la concentration correspondante?

- Réponse -

$$[\text{Fe}^{2+}]_f = \frac{n_f}{V} = 9.6 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1}$$

${ m III}\,|\,{ m Dilution}$ et mélange

On dispose d'une solution de sulfate de cuivre contenant les ions Cu^{2+} et les ions sulfate $\mathrm{SO_4}^{2-}$ à la même concentration $C_0 = 1 \times 10^{-2} \,\mathrm{mol \cdot L^{-1}}$. On en prélève à la pipette jaugée un volume $V_0 = 10 \,\mathrm{mL}$ que l'on verse dans une fiole jaugée de volume $V_1 = 50 \,\mathrm{mL}$. On remplit la fiole d'eau distillée jusqu'au trait de jauge.

1 Quelle est la concentration C_1 en ions Cu^{2+} et en ions SO_4^{2-} dans la fiole?

- Réponse -

On note n_0 la quantité de matière prélevée. Attention, V_1 est le volume **total** de la fiole, différent du volume d'eau ajouté. Ainsi,

$$C_1 = \frac{n_0}{V_1} = \frac{C_0 V_0}{V_1} = 2 \times 10^{-3} \,\text{mol} \cdot \text{L}^{-1}$$

On verse le contenu de cette fiole dans un bécher. On y ajoute un volume $V_2=20\,\mathrm{mL}$ d'une solution de sulfate de magnésium, contenant les ions Mg^{2+} et les ions $\mathrm{SO_4}^{2-}$ à la même concentration $C_2=2\times 10^{-2}\,\mathrm{mol\cdot L^{-1}}$.

2 Calculer les concentrations des trois ions après le mélange.

– Réponse -

Les ions cuivre ne viennent que de la solution 1, les ions magnésium que de la solution 2, mais les ions sulfate sont apportés par les deux solutions.

$$\begin{split} [\mathrm{Cu}^{2+}] &= \frac{n_{\mathrm{Ce}^{2+},1}}{V_{\mathrm{tot}}} = \frac{C_1 V_1}{V_1 + V_2} = 1,4 \times 10^{-3} \, \mathrm{mol \cdot L^{-1}} \\ [\mathrm{Mg}^{2+}] &= \frac{n_{\mathrm{Mg}^{2+},2}}{V_{\mathrm{tot}}} = \frac{C_2 V_2}{V_1 + V_2} = 5,7 \times 10^{-3} \, \mathrm{mol \cdot L^{-1}} \\ [\mathrm{SO_4}^{2-}] &= \frac{n_{\mathrm{SO_4}^{2-},1} + n_{\mathrm{SO_4}^{2-},2}}{V_{\mathrm{tot}}} = \frac{C_1 V_1 + C_2 V_2}{V_1 + V_2} = 7,1 \times 10^{-3} \, \mathrm{mol \cdot L^{-1}} \end{split}$$

Concentration en soluté apporté

$$M(Mg) = 24.3 \text{ g} \cdot \text{mol}^{-1}$$
 et $M(Cl) = 35.5 \text{ g} \cdot \text{mol}^{-1}$

1 Identifier les ions présents dans l'acide sulfurique H₂SO₄. Écrire l'équation de dissolution.

— Réponse

Ce sont les ions H^+ et $SO_4{}^{2-}$. L'équation de la dissolution s'écrit

$$H_2SO_4(s) \longrightarrow 2H^+(aq) + SO_4^{2-}(aq)$$

- 🔷 –

On ajoute une quantité de matière $n_{\rm app} = 2 \times 10^{-2} \,\mathrm{mol}$ en acide sulfurique dans de l'eau distillée. Déterminer les quantités de matière de chaque ion dans la solution formée.

– Réponse –

D'après l'équation de dissolution, une molécule de solide libère deux ions H⁺ et un ion ${\rm SO_4}^{2-}$. On en déduit $n_{\rm H^+} = 2n_{\rm app} = 4 \times 10^{-2}\,{\rm mol}$ et $n_{\rm SO_4}^{2-} = n_{\rm app} = 2 \times 10^{-2}\,{\rm mol}$.

La solution des questions précédentes a un volume $V = 200 \,\mathrm{mL}$. Calculer la concentration en soluté apporté, puis les concentrations des ions dans la solution après dissolution.

- Réponse -

 $C_{\text{app}} = \frac{n_{\text{app}}}{V} = 0.1 \,\text{mol}\cdot\text{L}^{-1}$; $[\text{H}^+] = 0.2 \,\text{mol}\cdot\text{L}^{-1}$ et $[\text{SO}_4^{\ 2}] = 0.1 \,\text{mol}\cdot\text{L}^{-1}$.

On considère une solution de chlorure de chrome $CrCl_3$ de concentration en soluté apporté $c = 5 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$. Déterminer les concentrations des ions dans la solution.

Réponse -

L'équation de dissolution s'écrit

$$\operatorname{CrCl}_3(s) \longrightarrow \operatorname{Cr}^{3+}(aq) + 3\operatorname{Cl}^-(aq)$$

On en déduit

$$[\mathrm{Cr}^{3+}] = c = 5 \times 10^{-3} \, \mathrm{mol} \cdot \mathrm{L}^{-1} \quad \text{ et } \quad [\mathrm{Cl}^{-}] = 3c = 1, \\ 5 \times 10^{-2} \, \mathrm{mol} \cdot \mathrm{L}^{-1}$$

On dissout m = 6.0 g de chlorure de magnésium MgCl₂ dans 200 mL d'eau distillée. Calculer la concentration en soluté apporté, puis les concentrations des ions dans la solution

— <> -

Réponse

Raisonnons sur la quantité de matière apportée :

$$n_{\rm app} = \frac{m}{M_{\rm Mg} + 2M_{\rm Cl}} \quad \text{donc} \quad C_{\rm app} = \frac{m}{(M_{\rm Mg} + 2M_{\rm Cl})V} = 0.315\,\mathrm{mol\cdot L^{-1}}$$

L'équation de dissolution s'écrit

$$MgCl_2(s) \longrightarrow Mg^{2+}(aq) + 2Cl^{-}(aq)$$

Ainsi,

$$[{\rm Mg}^{2+}] = c_{\rm app} = 0.32\,{\rm mol\cdot L^{-1}}$$
 et $[{\rm Cl}^-] = 3c_{\rm app} = 0.96\,{\rm mol\cdot L^{-1}}$