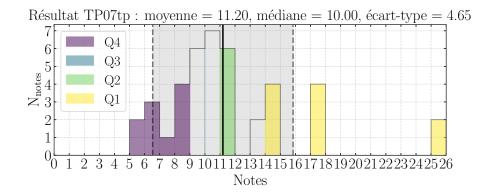
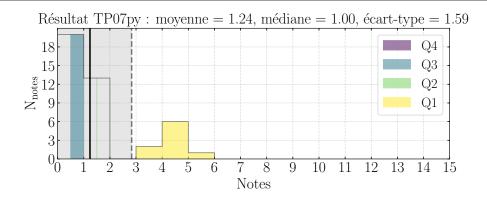

Commentaires sur le TP

I Général


- ♦ Indiquez les annexes dans vos questions. Numérotez les annexes. Mettez les noms sur vos annexes.
- ♦ Expliquez vraiment vos mesures, commentez vraiment vos résultats.

II Préparation

- 1 Bien. $f \neq F$.
- (2)RAS.
- (3) Revoir écriture incertitudes... encore et encore.
- (2)Bien.
- (3) Bon ça devient du foutage de gueule de pas savoir tracer des bornes d'oscilloscopes à ce terme. Y_1 , Y_2 et la masse c'est pas la mer à boire quand même.
 - ♦ Ne représentez pas d'oscilloscope pour montrer vos branchements. J'ai juste fait ça dans le cours pour vous faire comprendre le principe.
- (4) Ne prenez pas $u_{C,h}(t) = u_C(t) e(t)$, on ne sait pas encore prendre une solution particulière non-constante en compte (ça arrive, mais ça ne sera pas comme ça).
- (5) Ok.
- \bigcirc Vous ne pouvez pas déplacer la masse du générateur. Sa borne « » est physiquement une masse. Il faut déplacer les dipôles.
- (7) u_R c'est toujours l'image de l'intensité dans un circuit, peu importe le circuit : si vous voulez une équation différentielle en u_R , ça revient à chercher une ED sur i(t), donc **pensez à dériver directement**.


III Pendant le TP

- 1 Expliquez votre démarche, notamment sur les incertitudes.
 - ♦ Il faut faire apparaître plus de tracés sur vos courbes, qu'on suive vos mesures.
 - \diamond Vous ne pouvez pas **supposer que** $T/2 = 5\tau$ pour mesurer τ ! Il faut une mesure indépendante de τ pour conclure.
 - \Diamond Écrivez le résultat final sous la forme $\tau = (\tau_{\mathrm{exp}} \pm u(\tau_{\mathrm{exp}})) \, \mathrm{ms} \, ! \, !$
 - \diamond Pour la méthode de la tangente, on trouve τ à l'intersection avec la **consigne**, pas l'axe des abscisses!!
- 2 Ne faites pas d'application numérique mal propre, et n'utilisez pas des variables qui n'ont pas été définies (comme les m_1 , m_2 du cours ou les x_{theo} , x_{exp} de la fiche de N2)!!
 - \Diamond Hé c'est bon arrêtez de confondre ε_r et E_N là aussi, c'est fatiguant.
- 3 Bien. Commentez la croissance et la décroissance des paramètres. Soyez plus exhaustiv-fes dans vos commentaires.
- $\boxed{4}$ τ , la caractéristique des dipôles R et C, n'a **rien à voir** avec la période du signal e(t)... Question à revoir.

5-11 RAS

IV Python

C'est honteux l'absence de travail sur Python. Ça n'est pas facultatif dans votre cursus.

- ♦ Attention à différencier les fonctions et les scalaires. Notamment, une fonction qui n'est pas évaluée c'est une fonciton, pas une valeur numérique, donc e c'est pas du tout pareil que e(t).
- \diamond Attention à bien utiliser * pour multiplier des scalaires, sinon hk c'est compris comme une variable qui porte le nom hk, et pas le produit de h avec k.

Lycée Pothier 2/2 MPSI3 – 2025/2026