TD application : Cinétique des transformations

I Pour s'échauffer

I/A Énergie d'activation et constante de vitesse

On considère la conversion du cyclopropane en propène. On a relevé les constantes de vitesse suivantes en fonction de la température :

T(K)	750	800	850	900	
$k(s^{-1})$	$1,\!8\times10^{-4}$	$2{,}7\times10^{-3}$	3.0×10^{-2}	0,26	

- 1 En observant l'unité de k, quel est l'ordre de la loi de vitesse de cette réaction par rapport au cyclopropane?
- Quelle est la régression linéaire à effectuer pour déterminer l'énergie d'activation? L'effectuer sur votre calculatrice (cf. fiche 05 sur Cahier de Prépa) ou sur Python (cf. les différents Capytale). Vous donnerez les valeurs de l'ordonnée à l'origine et du coefficient directeur avec leurs unités.
- 3 En utilisant la régression calculée précédemment, quelle doit être la valeur de la constante de vitesse à 500 °C?

I/B Utilisation du temps de demi-réaction

Soit la réaction

$$A \longrightarrow B + C$$

4 Déterminer son ordre sachant que lorsqu'on multiplie par 10 la concentration initiale de A, on divise le temps de demi-réaction par 10.

Étude d'un mélange stœchiométrique

On étudie à 25 °C l'action d'une solution de soude diluée sur le bromoéthane; la réaction totale a pour équation :

$$CH_3CH_2Br_{(aq)} + HO_{(aq)}^- \longrightarrow CH_3CH_2OH_{(aq)} + Br_{(aq)}^-$$

On utilise des mélanges stœchiométriques en bromoéthane et en ion hydroxyde. Soit c_0 la concentration initiale commune des deux réactifs. Le tableau ci-dessous donne les temps de demi-réaction pour différentes valeurs de c_0 .

$c_0(\mathrm{mmol}\cdot\mathrm{L}^{-1})$	10	25	50	75	100
$\tau_{1/2}(\min)$	1100	445	220	150	110

- Démontrer que ces données sont **compatibles** avec une réaction d'ordre partiel 1 par rapport à **chacun des réactifs**, en écrivant c(t) leur concentration à l'instant t. On trouvera pour cela une régression linéaire à tracer sur $\tau_{1/2}$ dont la variable doit être reliée aux concentrations c_0 .
- $\boxed{2}$ Déterminer la constante de vitesse de la réaction. L'exprimer en $\mathrm{mol}^{-1}\cdot\mathrm{L}\cdot\mathrm{s}^{-1}$.

III | Méthode intégrale en manométrie

À température élevée et en phase gazeuse, le buta-1,3-diène se dimérise en 4-vinylcyclohexène suivant la réaction totale d'équation

$$2 C_4 H_{6(g)} = C_8 H_{12(g)}$$

Afin d'étudier cette réaction, une certaine quantité de buta-1,3-diène est introduite dans un récipient de volume V constant, maintenu à température constante $T=326\,\mathrm{K}$. On mesure alors la pression partielle en butadiène p_B dans le récipient en fonction du temps :

$t(\min)$	0	3,25	8,02	12,18	17,3	24,55	33,0	43,0	55,08	68,05	90,1	119
$p_B(\text{bar})$	0,843	0,807	0,756	0,715	0,670	0,615	0,565	0,520	0,465	0,423	0,366	0,311

- Montrer, en utilisant la loi des gaz parfaits, que la connaissance de la pression initiale $p_{B,0}$ et de la température T suffit pour calculer la concentration initiale $c_{B,0}$ en buta-1,3-diène. Faire l'application numérique.
- 2 Pour simplifier les écritures, on notera $X = C_4H_6$. Montrer que les résultats sont compatibles avec une cinétique d'ordre 2. Déterminer alors la constante de vitesse à cette température.
- 3 Déterminer le temps de demi-réaction du système précédent.
- 4 On admet souvent qu'une réaction est pratiquement terminée lorsque au moins 99% du réactif limitant a été consommé. Déterminer la durée d'évolution du système précédent; exprimer cette durée en fonction du temps de demi-réaction.

Transformation de la matière – chapitre 3

TD entraı̂nement : Cinétique des transformations

${f I}_{-}$ ${f M}$ éthodes intégrales en situations particulières

On considère la réaction suivante :

$$2 \operatorname{Hg}_{(aq)}^{2+} + 2 \operatorname{Fe}_{(aq)}^{2+} \longrightarrow \operatorname{Hg}_{2}^{2+}_{(aq)} + 2 \operatorname{Fe}_{(aq)}^{3+}$$

On considère que la réaction est d'ordre partiel p par rapport à Fe²⁺ et q par rapport à Hg²⁺, et m = p + q l'ordre global de la réaction. Écrire l'expression de la vitesse de réaction.

On suit deux expériences à 80 °C par spectrophotométrie. On définit $\alpha(t) = \frac{[\mathrm{Hg}^{2+}](t)}{[\mathrm{Hg}^{2+}]_0}$, avec $[\mathrm{Hg}^{2+}]_0 = [\mathrm{Hg}^{2+}]_{01}$ dans la première expérience et $[\mathrm{Hg}^{2+}]_0 = [\mathrm{Hg}^{2+}]_{02}$ dans la seconde.

I/A

Expérience 1

Expérience 1

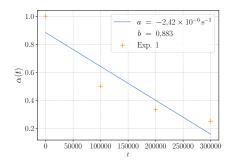
 $[{\rm Fe^{2+}}]_0 = 0{,}100\,{\rm mol\cdot L^{-1}}$ et $[{\rm Hg^{2+}}]_{01} = 0{,}100\,{\rm mol\cdot L^{-1}}$

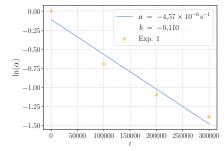
$t (10^5 \mathrm{s})$	0,0	1,0	2,0	3,0	∞
$\alpha(t)$	1,000	0,500	0,333	0,250	0,000

Dans quelle situation particulière se trouve-t-on dans l'expérience 1? Ré-exprimer alors la loi de vitesse $v_1(t)$ sous la forme

$$v_1(t) = k_{\text{app},1} \cdot \alpha^m(t)$$

avec $k_{\text{app},1}$ une constante à exprimer en fonction de k, $[\text{Hg}^{2+}]_{01}$ et l'ordre global m.


3 En rappelant le lien entre la vitesse de réaction et la variation de la concentration [Hg²⁺], écrire l'équation différentielle vérifiée par $\alpha(t)$ sous la forme


$$\left. \frac{\mathrm{d}\alpha}{\mathrm{d}t} \right|_t + K_1 \alpha^m(t) = 0$$

avec K_1 une constante à exprimer en fonction de $k_{\rm app,1}$ et $[{\rm Hg}^{2+}]_{01}$.

4 Par analogie avec le cours et la méthode intégrale selon l'ordre sur un réaction, donner sans démonstration la solution de l'équation différentielle ainsi la régression linéaire à tracer pour chaque possible valeur de m parmi 0, 1 et 2.

 $\boxed{5}$ On a tracé les trois régressions linéaires possibles pour l'expérience 1, voir Figure TM3.1. Laquelle est correcte? Justifier. En déduire l'ordre global m de la réaction.

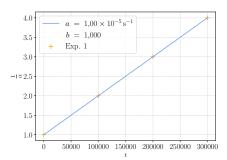


FIGURE TM3.1

 $\boxed{6}$ Déterminer la constante de vitesse apparente $k_{\mathrm{app},1}$ puis la constante de vitesse k de la réaction.

I/B Expérience 2

Expérience 2

$$[Fe^{2+}]_0 = 0.100 \,\mathrm{mol} \cdot L^{-1} \,\mathrm{et} \,[Hg^{2+}]_0 = 0.001 \,\mathrm{mol} \cdot L^{-1}$$

$t (10^5 \mathrm{s})$	0,0	0,5	1,0	1,5	2,0	∞
$\alpha(t)$	1,000	0,585	0,348	0,205	0,122	0,000

7 Dans quelle situation particulière se trouve-t-on dans l'expérience 2? Ré-exprimer alors la loi de vitesse $v_2(t)$ sous la forme

$$v_2(t) = k_{\text{app},2} \cdot \alpha^q(t)$$

avec $k_{\text{app},2}$ une constante à exprimer en fonction de k, $[\text{Fe}^{2+}]_0$, $[\text{Hg}^{2+}]_{02}$ et les ordres partiels p et q.

- 8 Rappeler l'expression de $k_{\text{app},1}$ de l'expérience 1. En observant la relation entre $[\text{Hg}^{2+}]_{01}$ et $[\text{Hg}^{2+}]_{01}$ avec $[\text{Fe}^{2+}]_{0}$, réécrire $k_{\text{app},1}$ et $k_{\text{app},2}$ en fonction de k, $[\text{Fe}^{2+}]_{0}$, p et q.
- [9] En rappelant le lien entre la vitesse de réaction et la variation de la concentration [Hg²⁺], écrire l'équation différentielle vérifiée par $\alpha(t)$ sous la forme

$$\left. \frac{\mathrm{d}\alpha}{\mathrm{d}t} \right|_{t} + K_{2}\alpha^{q}(t) = 0$$

avec K_2 une constante à exprimer en fonction de $k_{\text{app},2}$ et $[\text{Hg}^{2+}]_{02}$.

- Résoudre cette équation différentielle dans le cas particulier q = 1 et en déduire la régression linéaire à tracer pour vérifier cette hypothèse.
- [11] Réaliser la régression pour valider l'hypothèse q = 1. En déduire p, puis la valeur de $k_{\text{app},2}$ et enfin la valeur de k. Vérifier que la valeur trouvée est cohérente avec celle de l'expérience 1.

${ m II} \mid { m M\'ethode~des~vitesses~initiales}$

Le chlorure d'hydrogène (B) réagit sur le cyclohexène (A) avec formation de chlorocyclohexane (C), selon la réaction :

$$C_6H_{10} + HCl \longrightarrow C_6H_{11}Cl$$
 schématisée par $A + B \longrightarrow C$

On réalise une série d'expériences à 25 °C, où l'on mesure la vitesse initiale v_0 de la réaction en fonction des concentrations molaires initiales $[A]_0$ en cyclohexène et $[B]_0$ en chlorure d'hydrogène dans le milieu réactionnel. Le volume du mélange est constant et égal à 1 L. Les résultats sont rassemblés dans le tableau ci-dessous :

Expérience	1	2	3	4
$[A]_0 \text{ (mol} \cdot L^{-1})$	0,470	0,470	0,470	0,313
$[B]_0 \pmod{L^{-1}}$	0,235	$0,\!328$	0,448	0,448
$v_0 \ (10^{-9} \mathrm{mol \cdot s^{-1}})$	15,7	30,6	57,1	38,0

- 1 On désigne par p et q les ordres partiels initiaux de la réaction par rapport au cyclohexène (A) et au chlorure d'hydrogène (B). Exprimer la loi de vitesse initiale de cette réaction en fonction de p et q.
- $2 \mid \text{Déterminer } p.$
- 3 Déterminer q; en déduire l'ordre global de la réaction.
- 4 Calculer la constante cinétique de la réaction.
- Dans le cas d'un mélange stœchiométrique en A et B, déterminer la loi de vitesse de la réaction en fonction de [A]. En déduire l'équation différentielle satisfaite par [A](t), puis la résoudre.

${ m I}\,|\,{ m Oxydation\,\,des\,\,ions\,\,iodure\,\,par\,\,ions\,\,ferriques}$

La réaction étudiée est l'oxydation des ions iodure par les ions ferriques Fe(III). Les couples d'oxydoréduction mis en jeu sont les couples I_2/I^- et Fe^{3+}/Fe^{2+} , toutes les espèces étant dissoutes dans l'eau.

- 1 Écrire l'équation-bilan de l'oxydation des ions iodure par les ions fer (III), en affectant les espèces du fer du nombre stœchiométrique 1.
- On suppose une cinétique avec ordre, de constante de vitesse k; on note p l'ordre partiel par rapport aux ions fer (III) et q l'ordre partiel par rapport aux ions iodure. Comment s'écrit la vitesse v? Quelle est alors l'unité usuelle de k en fonction de p et de q?
- 3 À la date t après le mélange d'une solution d'iodure de potassium avec une solution ferrique, on prélève à la pipette 5 mL de solution et on dilue 10 fois avant de procéder à un dosage de la quantité d'iode formée. Justifier l'intérêt cinétique de cette dilution.

Les résultats d'une série de mesures sont présentés ci-dessous. x est la concentration d'ions iodure qui ont été oxydés dans le milieu réactionnel à la date du prélèvement.

t(s)	60	120	180	240	300
$x(\mu \text{mol} \cdot \text{L}^{-1})$	13	25	36	46	55

- [4] Soit $r(t) = \frac{x(t)}{t}$. Relier cette grandeur à la vitesse de la réaction pour $t \to 0$. Pourquoi diminue-t-elle en cours de réaction? Représenter graphiquement r en fonction de t à partir du tableau ci-dessus, avec en abscisse $t \in [0; 300]$ s; en déduire une estimation de la valeur initiale $v_0 = \frac{dx}{dt}|_{0}$.
- Grâce à la méthode précédente, on détermine les valeurs initiales $v_0 = \frac{dx}{dt}|_0$ pour différentes concentrations initiales des deux réactifs. Quelques résultats sont présentés ci-dessous :

$c_0 = [\mathbf{I}^-]_0$	$(\mu \mathrm{mol} \cdot \mathrm{L}^{-1})$	2	2	2	6	6	8
$[\mathrm{Fe}^{3+}]_0$	$(\mu mol {\cdot} L^{-1})$	2	4	8	2	4	8
$\frac{\mathrm{d}x}{\mathrm{d}t}\Big _{0}$	$(\mu \mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{s}^{-1})$	5,7	11,1	22,5	52	99	354

En déduire les valeurs de p et q, supposées entières.

- $\boxed{6}$ Déterminer la constante de vitesse k définie à la question $\boxed{2}$; on précisera la méthode suivie pour utiliser au mieux les données.
- Dans l'hypothèse d'un état initial ne contenant que les deux réactifs à la même concentration c_0 , établier la relation littérale donnant x(t) sous la forme :

« expression en
$$(x,c_0)$$
 = expression en (k,t) »

En déduire la dépendance entre le temps de demi-réaction τ et la concentration c_0 .