Transformation de la matière – chapitre 3

Correction du TD d'application

I Pour s'échauffer

I/A Énergie d'activation et constante de vitesse

On considère la conversion du cyclopropane en propène. On a relevé les constantes de vitesse suivantes en fonction de la température :

T(K)	750	800	850	900
$k(s^{-1})$	1.8×10^{-4}	2.7×10^{-3}	3.0×10^{-2}	0,26

 $\boxed{1}$ En observant l'unité de k, quel est l'ordre de la loi de vitesse de cette réaction par rapport au cyclopropane?

— Réponse -

On a $[k] = s^{-1}$ donc la réaction est d'ordre 1 par rapport au cyclopropane.

Quelle est la régression linéaire à effectuer pour déterminer l'énergie d'activation? L'effectuer sur votre calculatrice (cf. fiche 05 sur Cahier de Prépa) ou sur Python (cf. les différents Capytale). Vous donnerez les valeurs de l'ordonnée à l'origine et du coefficient directeur avec leurs unités.

Réponse

On sait que $k(T) = Ae^{-\delta_a/RT}$. Avec une succession de températures, on peut tracer $\ln(k(T)) = f(1/T)$ afin de vérifier la loi :

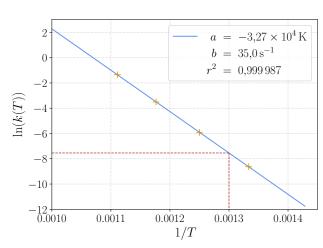
$$y = ax + b$$

$$\swarrow \qquad \swarrow \qquad \searrow$$

$$\ln(k(T)) \qquad -\frac{\varepsilon_a}{R} \quad \frac{1}{T} \qquad \ln(A)$$

On trouve une régression de $r^2=0{,}999{\,}99,$ avec $\ln A=35{,}0{\,}{\rm s}^{-1}$ et

$$b = -\frac{\mathcal{E}_a}{R} = -32.7 \times 10^3 \,\mathrm{K}$$
$$\Rightarrow \boxed{\mathcal{E}_a = 2.7 \times 10^5 \,\mathrm{J \cdot mol}^{-1}}$$



3 En utilisant la régression calculée précédemment, quelle doit être la valeur de la constante de vitesse à 500 °C?

— Réponse -

Avec la régression linéaire précédente, on doit trouver la valeur de $\ln(k)$ avec $T=773\,\mathrm{K}$, c'est-à-dire $1/T=1,30\times10^{-3}\,\mathrm{K}^{-1}$: par lecture graphique, on trouve $\ln(k)=-7,51$, d'où

$$k(500 \,^{\circ}\text{C}) = 5.5 \times 10^{-4} \,\text{s}^{-1}$$

I/B

Utilisation du temps de demi-réaction

Soit la réaction

$$A \longrightarrow B + C$$

4 Déterminer son ordre sachant que lorsqu'on multiplie par 10 la concentration initiale de A, on divise le temps de demi-réaction par 10.

– Réponse –

Pour une réaction d'ordre 2 en A uniquement, on a $t_{1/2} = \frac{1}{k\overline{\nu_A}[A]_0}$ avec $\overline{\nu_A}$ le coefficient stœchiométrique arithmétique du composé A.

C'est la seule situation où augmenter la concentration baisse le temps de demi-réaction : l'ordre 0 a un $t_{1/2} \propto [A]_0$, et l'ordre 1 ne dépend pas de $[A]_0$: on a donc une **réaction d'ordre 2 en A**.

Étude d'un mélange stœchiométrique

On étudie à 25 °C l'action d'une solution de soude diluée sur le bromoéthane; la réaction totale a pour équation :

$$CH_3CH_2Br_{(aq)} + HO_{(aq)}^- \longrightarrow CH_3CH_2OH_{(aq)} + Br_{(aq)}^-$$

On utilise des mélanges stœchiométriques en bromoéthane et en ion hydroxyde. Soit c_0 la concentration initiale commune des deux réactifs. Le tableau ci-dessous donne les temps de demi-réaction pour différentes valeurs de c_0 .

$c_0(\text{mmol}\cdot\text{L}^{-1})$	10	25	50	75	100
$ au_{1/2}(\min)$	1100	445	220	150	110

1 Démontrer que ces données sont **compatibles** avec une réaction d'ordre partiel 1 par rapport à **chacun des réactifs**, en écrivant c(t) leur concentration à l'instant t. On trouvera pour cela une régression linéaire à tracer sur $\tau_{1/2}$ dont la variable doit être reliée aux concentrations c_0 .

- Réponse -

Si la réaction est d'ordre 1 par rapport à chacun des réactifs, cela veut dire qu'elle s'écrit

$$v = k[\mathrm{CH_3CH_2Br}](t)[\mathrm{HO}^-](t)$$

Leurs coefficients stœchiométriques sont égaux à -1, ce qui veut dire que chacun de ces réactifs a une concentration $c(t) = c_0 - x(t)$ à chaque instant; ainsi

$$v(t) = kc(t)^2$$

Cette réaction est équivalente à une réaction d'ordre 2 par rapport à un unique réactif, dont le temps de demi-réaction est

$$\tau_{1/2} = \frac{1}{kc_0}$$

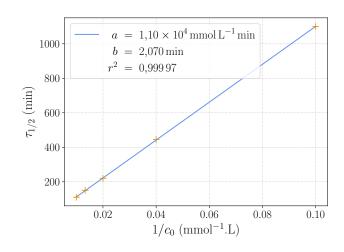
Pour vérifier que les données sont compatibles avec cette relation, on trace $\tau_{1/2} = f(1/c_0)$ en traçant

$$y=ax+b \quad \text{ avec } \quad \begin{cases} y=\tau_{1/2}\\ a=1/k\\ x=1/c_0\\ b=0 \quad \text{en th\'eorie} \end{cases}$$

On trouve bien ici une droite avec un coefficient de corrélation $r^2 = 0,99997$, confirmant que l'**ordre global** est compatible avec 2.

Attention

Cette démarche ne prouve en rien que les ordres partiels sont chacun de 1 : ils pourraient être de 1/2 et 3/2 respectivement.



Déterminer la constante de vitesse de la réaction. L'exprimer en $\mathrm{mol}^{-1}\cdot\mathrm{L}\cdot\mathrm{s}^{-1}$.

- Réponse ·

Comme déterminé dans la régression linéaire, le coefficient directeur de la droite est l'inverse de la constante de vitesse. On trouve donc

$$\underline{k} = 9.10 \times 10^{-5} \, \mathrm{mmol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 9.10 \times 10^{-2} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.5 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{s}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{s}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{s}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{s}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{mol}^{-1} = 1.0 \times 10^{-3} \, \mathrm{mol}^{-1} \cdot \mathrm{$$

III | Méthode intégrale en manométrie

À température élevée et en phase gazeuse, le buta-1,3-diène se dimérise en 4-vinylcyclohexène suivant la réaction totale d'équation

$$2\,C_4H_{6(g)}=C_8H_{12(g)}$$

Afin d'étudier cette réaction, une certaine quantité de buta-1,3-diène est introduite dans un récipient de volume Vconstant, maintenu à température constante $T=326\,\mathrm{K}.$ On mesure alors la pression partielle en butadiène p_B dans le récipient en fonction du temps :

$t(\min)$	0	3,25	8,02	12,18	17,3	24,55	33,0	43,0	55,08	68,05	90,1	119
$p_B(\mathrm{bar})$	0,843	0,807	0,756	0,715	0,670	0,615	0,565	0,520	0,465	0,423	0,366	0,311

1 Montrer, en utilisant la loi des gaz parfaits, que la connaissance de la pression initiale $p_{B,0}$ et de la température T suffit pour calculer la concentration initiale $c_{B,0}$ en buta-1,3-diène. Faire l'application numérique.

— Réponse -

On utilise la loi du gaz parfait :

$$\frac{n_{B,0}}{V} = \frac{p_{B,0}}{RT} \Leftrightarrow \boxed{c_{B,0} = \frac{p_{B,0}}{RT}} \quad \text{avec} \quad \begin{cases} p_{B,0} = 0.843 \,\text{bar} = 8.43 \times 10^{-4} \,\text{Pa} \\ R = 8.314 \,\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \\ T = 326 \,\text{K} \end{cases}$$

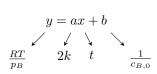
$$\text{A.N.} : \quad \boxed{c_{B,0} = 31.5 \,\text{mol} \cdot \text{m}^{-3}} \Leftrightarrow \boxed{c_{B,0} = 31.5 \times 10^{-3} \,\text{mol} \cdot \text{L}^{-1}}$$

Faites bien attention aux unités utilisées dans l'application numérique, qui viennent ici de celles de l'équation d'état des gaz parfait.

Pour simplifier les écritures, on notera $X = C_4H_6$. Montrer que les résultats sont compatibles avec une cinétique d'ordre 2. Déterminer alors la constante de vitesse à cette température.

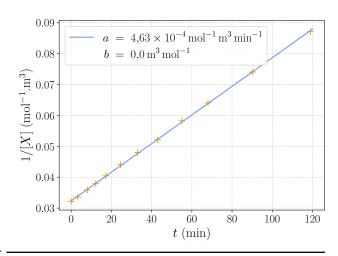
$v(t) = k[X]^{2}(t) \quad \text{mais on a aussi} \quad v(t) = -\frac{1}{2} \frac{d[X]}{dt} \Big|_{t}$ $\Leftrightarrow -\frac{1}{2} \frac{d[X]}{dt} = k[X]^{2} \Leftrightarrow \frac{d[X]}{[X]^{2}} = -2kdt \Leftrightarrow -d\left(\frac{1}{[X]}\right) = -2kdt$ $\frac{1}{[X]} - \frac{1}{[X]_{0}} = 2k(t-0) \Leftrightarrow \boxed{\frac{1}{[X]} = 2kt + \frac{1}{c_{B,0}}}$

En intégrant :



On observe que la régression passe bien par tous les points, validant l'ordre 2. Le coefficient directeur valant 2k, on trouve finalement

$$k = 2.32 \times 10^{-4} \,\mathrm{mol}^{-1} \cdot \mathrm{m}^{3} \cdot \mathrm{min}^{-1}$$
$$\Leftrightarrow k = 2.32 \times 10^{-1} \,\mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{min}^{-1}$$



3 Déterminer le temps de demi-réaction du système précédent.

- Réponse -

Pour un système d'ordre 2, on a $t_{1/2} = \frac{1}{ka[A]_0}$ avec a le coefficient stœchiométrique arithmétique de l'élément A. Ici, le coefficient stœchiométrique du butadiène est 2, et on a donc

$$t_{1/2} = \frac{1}{2kc_{B,0}} \Leftrightarrow \boxed{t_{1/2} = 70.0 \, \mathrm{min}}$$

4 On admet souvent qu'une réaction est pratiquement terminée lorsque au moins 99% du réactif limitant a été consommé. Déterminer la durée d'évolution du système précédent; exprimer cette durée en fonction du temps de demi-réaction.

Réponse

On cherche donc t_{99} tel qu'il ne reste que 1% de $c_{B,0}$, c'est-à-dire :

$$[X](t = t_{99}) = \frac{1}{100}c_{B,0} \Leftrightarrow \frac{100}{c_{B,0}} = \frac{1}{c_{B,0}} + 2kt_{99} \Leftrightarrow t_{99} = \frac{1}{2k} \cdot \frac{99}{c_{B,0}}$$

$$\Leftrightarrow \boxed{t_{99} = 99t_{1/2}} \quad \text{donc} \quad \underline{t_{99} = 6,93 \times 10^3 \,\text{min} = 116 \,\text{h} = 4,81 \,\text{jours}}$$

Lycée Pothier 3/13 MPSI3 – 2025/2026

Transformation de la matière – chapitre 3

Correction du TD d'entraînement

I | Méthodes intégrales en situations particulières

On considère la réaction suivante :

$$2 \operatorname{Hg}_{(aq)}^{2+} + 2 \operatorname{Fe}_{(aq)}^{2+} \longrightarrow \operatorname{Hg}_{2}^{2+}_{(aq)} + 2 \operatorname{Fe}_{(aq)}^{3+}$$

On considère que la réaction est d'ordre partiel p par rapport à Fe^{2+} et q par rapport à Hg^{2+} , et m = p + q l'ordre global de la réaction. Écrire l'expression de la vitesse de réaction.

Réponse

Par définition,

$$v(t) = k[\text{Fe}^{2+}]^p(t)[\text{Hg}^{2+}]^q(t)$$

On suit deux expériences à 80 °C par spectrophotométrie. On définit $\alpha(t) = \frac{[\mathrm{Hg}^{2+}](t)}{[\mathrm{Hg}^{2+}]_0}$, avec $[\mathrm{Hg}^{2+}]_0 = [\mathrm{Hg}^{2+}]_{01}$ dans la première expérience et $[\mathrm{Hg}^{2+}]_0 = [\mathrm{Hg}^{2+}]_{02}$ dans la seconde.

I/A Expérience 1

Expérience 1

$$[\mathrm{Fe}^{2+}]_0 = 0{,}100\,\mathrm{mol}{\cdot}\mathrm{L}^{-1} \text{ et } [\mathrm{Hg}^{2+}]_{01} = 0{,}100\,\mathrm{mol}{\cdot}\mathrm{L}^{-1}$$

$t (10^5 \mathrm{s})$	0,0	1,0	2,0	3,0	∞
$\alpha(t)$	1,000	0,500	0,333	0,250	0,000

Dans quelle situation particulière se trouve-t-on dans l'expérience 1? Ré-exprimer alors la loi de vitesse $v_1(t)$ sous la forme

$$v_1(t) = k_{\text{app},1} \cdot \alpha^m(t)$$

avec $k_{\text{app},1}$ une constante à exprimer en fonction de k, $[\text{Hg}^{2+}]_{01}$ et l'ordre global m.

Avec les proportions stechiométriques, on a $\frac{[\mathrm{Fe}^{2+}](t)}{2} = \frac{[\mathrm{Hg}^{2+}](t)}{2} \Leftrightarrow [\mathrm{Fe}^{2+}](t) = [\mathrm{Hg}^{2+}],$ et par définition de $\alpha(t)$ on a $[\mathrm{Hg}^{2+}](t) = \alpha(t)[\mathrm{Hg}^{2+}]_{01}$. Ainsi,

$$v_1(t) = k \left(\alpha(t) [\mathrm{Hg}^{2+}]_{01}\right)^{p+q} \Leftrightarrow \boxed{v_1(t) = k_{\mathrm{app},1} \cdot \alpha^m(t)} \quad \text{avec} \quad \boxed{k_{\mathrm{app},1} = k [\mathrm{Hg}^{2+}]_{01}^m}$$

 $\boxed{3}$ En rappelant le lien entre la vitesse de réaction et la variation de la concentration $[\mathrm{Hg}^{2+}]$, écrire l'équation différentielle vérifiée par $\alpha(t)$ sous la forme

$$\left. \frac{\mathrm{d}\alpha}{\mathrm{d}t} \right|_t + K_1 \alpha^m(t) = 0$$

avec K_1 une constante à exprimer en fonction de $k_{\text{app},1}$ et $[\text{Hg}^{2+}]_{01}$.

Réponse

$$v(t) = k_{\text{app},1}\alpha^{m}(t) = -\frac{1}{2} \left. \frac{\text{d}[\text{Hg}^{2+}]}{\text{d}t} \right|_{t} = -\frac{[\text{Hg}^{2+}]_{01}}{2} \left. \frac{\text{d}\alpha}{\text{d}t} \right|_{t} \Leftrightarrow \left. \frac{\text{d}\alpha}{\text{d}t} \right|_{t} + \frac{2k_{\text{app},1}}{[\text{Hg}^{2+}]_{01}} \alpha^{m}(t) = 0$$

$$\Leftrightarrow \left[\left. \frac{\text{d}\alpha}{\text{d}t} \right|_{t} + K_{1}\alpha^{m}(t) = 0 \right] \quad \text{avec} \quad \left[K_{1} = \frac{2k_{\text{app},1}}{[\text{Hg}^{2+}]_{01}} \right]$$

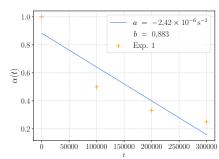
 \Diamond Ordre 2:

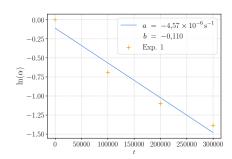
Par analogie avec le cours et la méthode intégrale selon l'ordre sur un réaction, donner sans démonstration la solution de l'équation différentielle ainsi la régression linéaire à tracer pour chaque possible valeur de m parmi 0, 1 et 2.

$$\alpha(t) = \frac{\alpha_0}{1 + K_1 \alpha_0 t} \Rightarrow y = ax + b$$

$$\Rightarrow \frac{1}{\alpha_0} \Rightarrow \frac{1}{\alpha$$

On a tracé les trois régressions linéaires possibles pour l'expérience 1, voir Figure TM3.1. Laquelle est correcte? Justifier. En déduire l'ordre global m de la réaction.





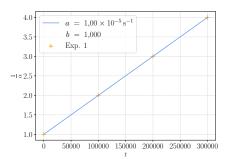
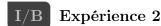


Figure TM3.1 – Réponse —

Seule la régression linéaire de $\frac{1}{\alpha(t)}$ en fonction de t donne une régression linéaire valide. On en conclue que l'ordre global de la réaction est m=2.

6 Déterminer la constante de vitesse apparente $k_{\text{app},1}$ puis la constante de vitesse k de la réaction.

On a $K_{1} = \frac{2k_{\text{app},1}}{[\text{Hg}^{2+}]_{01}} \Leftrightarrow \boxed{k_{\text{app},1} = \frac{K_{1}[\text{Hg}^{2+}]_{01}}{2}} \quad \text{avec} \quad \begin{cases} K_{1} = 1,00 \times 10^{-5} \, \text{s}^{-1} \\ [\text{Hg}^{2+}]_{01} = 0,100 \, \text{mol} \cdot \text{L}^{-1} \end{cases}$ $A.N. : \underline{k_{\text{app},1}} = 5,0 \times 10^{-7} \, \text{mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}$ $be plus, \qquad k_{\text{app},1} = k[\text{Hg}^{2+}]_{01}^{m} \Leftrightarrow \boxed{k = \frac{k_{\text{app},1}}{[\text{Hg}^{2+}]_{01}^{m}}}$ $A.N. : \underline{k = 5,0 \times 10^{-5} \, \text{mol}^{-1} \cdot \text{L} \cdot \text{s}^{-1}}$



Expérience 2

$$[\mathrm{Fe}^{2+}]_0 = 0.100\,\mathrm{mol} \cdot \mathrm{L}^{-1} \text{ et } [\mathrm{Hg}^{2+}]_0 = 0.001\,\mathrm{mol} \cdot \mathrm{L}^{-1}$$

$t (10^5 \mathrm{s})$	0,0	0,5	1,0	1,5	2,0	∞
$\alpha(t)$	1,000	0,585	0,348	0,205	0,122	0,000

7 Dans quelle situation particulière se trouve-t-on dans l'expérience 2? Ré-exprimer alors la loi de vitesse $v_2(t)$ sous la forme

$$v_2(t) = k_{\rm app,2} \cdot \alpha^q(t)$$

avec $k_{\text{app},2}$ une constante à exprimer en fonction de k, $[\text{Fe}^{2+}]_0$, $[\text{Hg}^{2+}]_{02}$ et les ordres partiels p et q.

Réponse –

Avec un large excès d'ions fer II, on se place dans l'approximation de la dégénérescence de l'ordre, c'est-à-dire que $\forall t \quad [Fe^{2+}] \approx [Fe^{2+}]_0$. Ainsi,

$$v_{2}(t) = k[\text{Fe}^{2+}]_{0}^{p}[\text{Hg}^{2+}]^{q}(t) = k[\text{Fe}^{2+}]_{0}^{p} \left(\alpha(t)[\text{Hg}^{2+}]_{02}\right)^{q} = k[\text{Fe}^{2+}]_{0}^{p}[\text{Hg}^{2+}]_{02}^{q} \cdot \alpha^{q}(t)$$

$$\Leftrightarrow \boxed{v_{2}(t) = k_{\text{app},2} \cdot \alpha^{q}(t)} \quad \text{avec} \quad \boxed{k_{\text{app},2} = k[\text{Fe}^{2+}]_{0}^{p}[\text{Hg}^{2+}]_{02}^{q}}$$

Rappeler l'expression de $k_{\text{app},1}$ de l'expérience 1. En observant la relation entre $[\text{Hg}^{2+}]_{01}$ et $[\text{Hg}^{2+}]_{01}$ avec $[\text{Fe}^{2+}]_{0}$, réécrire $k_{\text{app},1}$ et $k_{\text{app},2}$ en fonction de k, $[\text{Fe}^{2+}]_{0}$, p et q.

— Réponse —

$$[\mathrm{Hg}^{2+}]_{01} = [\mathrm{Fe}^{2+}]_0 \quad \mathrm{donc} \quad k_{\mathrm{app},1} = k[\mathrm{Hg}^{2+}]_{01}^m = k[\mathrm{Fe}^{2+}]_0^{p+q}$$

$$[\mathrm{Hg}^{2+}]_{02} = \frac{[\mathrm{Fe}^{2+}]_0}{100} \quad \mathrm{donc} \quad k_{\mathrm{app},2} = k[\mathrm{Fe}^{2+}]_0^p [\mathrm{Hg}^{2+}]_{02}^q = \frac{k}{100^q} [\mathrm{Fe}^{2+}]_0^{p+q}$$

9 En rappelant le lien entre la vitesse de réaction et la variation de la concentration $[Hg^{2+}]$, écrire l'équation différentielle vérifiée par $\alpha(t)$ sous la forme

$$\left. \frac{\mathrm{d}\alpha}{\mathrm{d}t} \right|_t + K_2 \alpha^q(t) = 0$$

avec K_2 une constante à exprimer en fonction de $k_{\rm app,2}$ et $[{\rm Hg}^{2+}]_{02}$.

Réponse

On procède de la même manière que pour l'expérience 1 :

$$v_2(t) = k_{\text{app},2} \cdot \alpha^q(t) = -\frac{[\text{Hg}^{2+}]_{02}}{2} \frac{d\alpha}{dt} \Big|_t \Leftrightarrow \frac{d\alpha}{dt} \Big|_t + \frac{2k_{\text{app},2}}{[\text{Hg}^{2+}]_{02}} \alpha^q(t) = 0$$
$$\Leftrightarrow \boxed{\frac{d\alpha}{dt} \Big|_t + K_2 \alpha^q(t) = 0} \quad \text{avec} \quad \boxed{K_2 = \frac{2k_{\text{app},2}}{[\text{Hg}^{2+}]_{02}}}$$

Résoudre cette équation différentielle dans le cas particulier q = 1 et en déduire la régression linéaire à tracer pour vérifier cette hypothèse.

— Réponse –

$$q=1 \Rightarrow \frac{\mathrm{d}\alpha}{\mathrm{d}t} + K_2\alpha = 0 \Leftrightarrow \frac{\mathrm{d}\alpha}{\alpha} = -K_2\,\mathrm{d}t \Leftrightarrow \boxed{\ln(\alpha) = -K_2t + \ln(\alpha_0)}$$
 D'où
$$y = ax + b$$

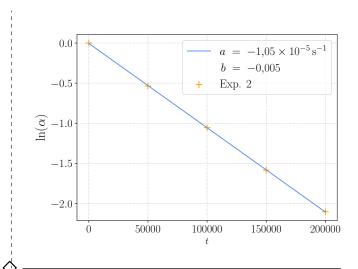
$$\ln(\alpha) - K_2 \quad t \quad \ln(\alpha_0)$$

Réaliser la régression pour valider l'hypothèse q = 1. En déduire p, puis la valeur de $k_{\text{app},2}$ et enfin la valeur de k. Vérifier que la valeur trouvée est cohérente avec celle de l'expérience 1.

Réponse

On trouve ici aussi une droite passant par les valeurs, confirmant que l'ordre partiel en mercure est compatible avec 1: q=1. Comme p+q=2, on a forcément p=1. Comme précédemment, on trouve

On a
$$\begin{aligned} k_{\text{app,2}} &= \frac{K_2[\text{Hg}^{2+}]_{02}}{2} \\ &\text{avec} \quad \begin{cases} K_2 = 1{,}05 \times 10^{-5} \, \text{s}^{-1} \\ [\text{Hg}^{2+}]_{02} &= 0{,}001 \, \text{mol} \cdot \text{L}^{-1} \end{cases} \\ &\text{A.N.} \quad : \quad \underbrace{k_{\text{app,2}}}_{\text{app,2}} = 5{,}25 \times 10^{-9} \, \text{mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}}_{\text{c}} \end{aligned} \\ &\text{et} \qquad \begin{aligned} k &= \frac{100 k_{\text{app,2}}}{[\text{Fe}^{2+}]_0^m} \\ &\text{A.N.} \quad : \quad \underbrace{k = 5{,}25 \times 10^{-5} \, \text{mol}^{-1} \cdot \text{L} \cdot \text{s}^{-1}}_{\text{c}} \\ &\varepsilon_r &= \frac{|k_{\text{exp,1}} - k_{\text{exp,2}}|}{k_{\text{exp,1}}} \\ &\Rightarrow \varepsilon_r = 5 \,\% \quad \text{ce qui est acceptable.} \end{aligned}$$



I | Méthode des vitesses initiales

Le chlorure d'hydrogène (B) réagit sur le cyclohexène (A) avec formation de chlorocyclohexane (C), selon la réaction :

$$C_6H_{10} + HCl \, \longrightarrow C_6H_{11}Cl \quad schématisée \; par \quad A+B \longrightarrow C$$

On réalise une série d'expériences à 25 °C, où l'on mesure la vitesse initiale v_0 de la réaction en fonction des concentrations molaires initiales $[A]_0$ en cyclohexène et $[B]_0$ en chlorure d'hydrogène dans le milieu réactionnel. Le volume du mélange est constant et égal à 1 L. Les résultats sont rassemblés dans le tableau ci-dessous :

Expérience	1	2	3	4
$[A]_0 \text{ (mol} \cdot L^{-1})$	0,470	0,470	0,470	0,313
$[B]_0 \ (\text{mol} \cdot L^{-1})$	0,235	$0,\!328$	0,448	0,448
$v_0 \ (10^{-9} \mathrm{mol \cdot s^{-1}})$	15,7	30,6	57,1	38,0

On désigne par p et q les ordres partiels initiaux de la réaction par rapport au cyclohexène (A) et au chlorure d'hydrogène (B). Exprimer la loi de vitesse initiale de cette réaction en fonction de p et q.

- Réponse

Par définition,

$$v_0 = k[\mathbf{A}]_0^p [\mathbf{B}]_0^q$$

|2| Déterminer p.

— Réponse —

Comme dans l'exercice III, il suffit de trouver deux expériences où $[B]_0$ est constante pour voir comment v_0 varie par multiplication de $[A]_0$. Ici, dans les expériences 3 et 4, $[B]_0 = 0.448 \,\text{mol} \cdot \text{L}^{-1}$. On a donc

$$\begin{cases} v_{0,3} = k[\mathbf{B}]_0^q \times [\mathbf{A}]_{0,3}^p \\ v_{0,4} = k[\mathbf{B}]_0^q \times [\mathbf{A}]_{0,4}^p \end{cases} \Leftrightarrow \frac{v_{0,3}}{v_{0,4}} = \left(\frac{[\mathbf{A}]_{0,3}}{[\mathbf{A}]_{0,4}}\right)^p \\ \Leftrightarrow \boxed{p = \frac{\ln(v_{0,3}/v_{0,4})}{\ln([\mathbf{A}]_{0,3}/[\mathbf{A}]_{0,4})}}$$

$$\mathbf{A.N.} : \boxed{p \approx 1}$$

On en conclut que $\boxed{p=1}$, en supposant l'ordre entier.

 $\boxed{3}$ Déterminer q; en déduire l'ordre global de la réaction.

- Réponse -

On fait de même avec les expériences 1 et 2 par exemple, où cette fois c'est [A]₀ qui est constante. On trouve alors

$$q = \frac{\ln(v_{0,1}/v_{0,2})}{\ln([B]_{0,1}/[B]_{0,2})}$$

Lycée Pothier 8/13 MPSI3 - 2025/2026

A.N. :
$$q \approx 2$$

On en conclut que q=2, en supposant l'ordre entier. L'ordre global, défini par p+q, est donc q=3

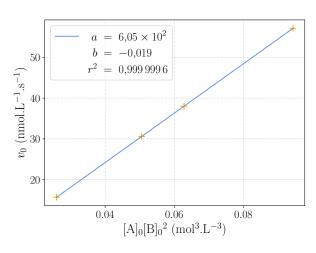
4 Calculer la constante cinétique de la réaction.

Pour plus de précision, on peut tracer une régression linéaire de $v_0 = f([A]_0[B]_0^2)$ avec

$$y = ax$$
 avec
$$\begin{cases} y = v_0 \\ a = k \\ x = [A]_0[B]_0^2 \end{cases}$$

On trouve bien ici une droite avec un coefficient de corrélation $r^2 = 0.999\,97$, confirmant que l'**ordre global** est compatible avec 3. Le coefficient directeur donne directement k, et on a

$$k = 6.05 \times 10^{-7} \,\mathrm{mol}^{-2} \cdot \mathrm{L}^2 \cdot \mathrm{s}^{-1}$$



5 Dans le cas d'un mélange stœchiométrique en A et B, déterminer la loi de vitesse de la réaction en fonction de [A]. En déduire l'équation différentielle satisfaite par [A](t), puis la résoudre.

— Réponse

Si le mélange est stœchiométrique, cela veut dire que les concentrations des réactifs sont égaux à chaque instant, soit [A] = [B]. Ainsi, la loi de vitesse serait

$$v = k[A]^3 = -\frac{d[A]}{dt}$$

$$\Leftrightarrow \frac{d[A]}{dt} = -k[A](t)^3$$

$$\Leftrightarrow \int_{[A]_0}^{[A](t)} \frac{d[A]}{[A](t)^3} = -k \int_{t=0}^t dt$$

$$\Leftrightarrow \int_{[A]_0}^{[A](t)} d\left(-\frac{1}{2}[A]^2\right) = -k \int_{t=0}^t dt$$

$$\Leftrightarrow -\frac{1}{2} \left(\frac{1}{[A](t)^2} - \frac{1}{[A]_0^2}\right) = -k(t-0)$$

$$\Leftrightarrow \frac{1}{[A](t)^2} = 2kt + \frac{1}{[A]_0^2}$$

$$([A]^{-2})' = -2\frac{d[A]}{[A](t)^3}$$
On intègre

III Oxydation des ions iodure par ions ferriques

La réaction étudiée est l'oxydation des ions iodure par les ions ferriques Fe(III). Les couples d'oxydoréduction mis en jeu sont les couples I_2/I^- et Fe^{3+}/Fe^{2+} , toutes les espèces étant dissoutes dans l'eau.

1 Écrire l'équation-bilan de l'oxydation des ions iodure par les ions fer (III), en affectant les espèces du fer du nombre stœchiométrique 1.

– Réponse -

Même sans connaître le principe de l'oxydo-réduction, la réaction étudiée met en contact les ions iodure, donc I^- , et les ions fer III, donc Fe^{3+} . Par déduction les produits sont les autres composés cités, c'est-à-dire I_2 et Fe^{2+} . La manière la plus simple de l'équilibrer serait avec des nombres entiers et notamment 2 devant chaque élément sauf I_2 , mais on nous demande de l'écrire avec un nombre stœchiométrique de 1 devant les espèces du fer.

En tant qu'équation-bilan et donc qu'équation, il suffit de diviser chaque côté par 2 pour obtenir :

$$Fe_{(aq)}^{3+} + I_{(aq)}^{-} = Fe_{(aq)}^{2+} + \frac{1}{2}I_{2(aq)}$$

Il n'est en effet pas choquant d'avoir des coefficients stœchiométriques qui ne sont pas entiers dans une équation-bilan.

On suppose une cinétique avec ordre, de constante de vitesse k; on note p l'ordre partiel par rapport aux ions fer (III) et q l'ordre partiel par rapport aux ions iodure. Comment s'écrit la vitesse v? Quelle est alors l'unité usuelle de k en fonction de p et de q?

Une réaction aA + bB = cC + dD a une loi de vitesse admettant un ordre si elle s'écrit

$$v(t) = k[A]^p(t)[B]^q(t)$$

avec p l'ordre partiel par rapport au réactif A et q l'ordre partiel par rapport au réactif B.

Ici, les réactifs sont les ions fer III et les ions iodure, donc la vitesse s'écrirait donc

$$v(t) = k[\text{Fe}^{3+}]^p(t)[\text{I}^-]^q(t)$$

On trouve l'unité de k en étudiant celles des termes en jeu dans l'équation :

$$\operatorname{mol} \cdot \mathbf{L}^{-1} \cdot \mathbf{s}^{-1} = [k] \times (\operatorname{mol} \cdot \mathbf{L}^{-1})^{p+q}$$

donc l'unité de k est $\left\lceil (\text{mol} \cdot \mathbf{L}^{-1})^{1-p-q} \mathbf{s}^{-1} \right\rceil$.

3 À la date t après le mélange d'une solution d'iodure de potassium avec une solution ferrique, on prélève à la pipette $5\,\mathrm{mL}$ de solution et on dilue 10 fois avant de procéder à un dosage de la quantité d'iode formée. Justifier l'intérêt cinétique de cette dilution.

- Réponse -

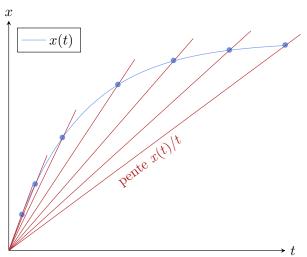
Dans la dernière partie du cours, nous avons introduit le concept du dosage par titrage, et exposé la nécessité de **ralentir la réaction** pour qu'un volume de solution prélevé à un instant t mais dosé par méthode chimique à un instant ultérieur ait une évolution négligeable entre ces deux instants : cette pratique s'appelle la **trempe chimique**, et une des manières de réaliser une trempe chimique est de fortement diluer la solution prélevée. En effet, la vitesse étant reliée à la concentration en les réactifs (pour une réaction admettant un ordre), on peut « geler » l'état de la réaction en augmentant le volume du solvant et donc en réduisant la concentration des éléments.

Les résultats d'une série de mesures sont présentés ci-dessous. x est la concentration d'ions iodure qui ont été oxydés dans le milieu réactionnel à la date du prélèvement.

t(s)	60	120	180	240	300
$x(\mu \text{mol} \cdot \text{L}^{-1})$	13	25	36	46	55

[4] Soit $r(t) = \frac{x(t)}{t}$. Relier cette grandeur à la vitesse de la réaction pour $t \to 0$. Pourquoi diminue-t-elle en cours de réaction? Représenter graphiquement r en fonction de t à partir du tableau ci-dessus, avec en abscisse $t \in [0; 300]$ s; en déduire une estimation de la valeur initiale $v_0 = \frac{dx}{dt}|_{0}$.

Lycée Pothier 10/13 MPSI3 – 2025/2026

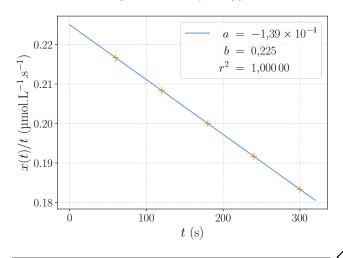


On peut commencer par remarquer que x(t)/t a la dimension d'une vitesse de réaction, en mol·L⁻¹·s⁻¹. Il faut ensuite remarquer que x(t)/t = (x(t)-x(0))/(t-0) avec un avancement nul à t=0; si t est suffisamment petit, on a donc

$$\frac{x(t)}{t} \approx \frac{\mathrm{d}x}{\mathrm{d}t}\Big|_{0}$$

et ainsi x(t)/t est une approximation de la vitesse de la réaction; c'est ce qu'on appelle l'approximation de la tangente par la sécante. En faisant la régression linéaire jusqu'en 0, on trouvera bien la vitesse en 0.

On réalise cette régression avec y = r(t), x = t et $b = v_0$, pour obtenir le résultat suivant :



On trouve alors, grâce à l'ordonnée à l'origine,

$$v_0 = 2.25 \times 10^{-7} \,\mathrm{mol \cdot L^{-1} \cdot s^{-1}}$$

Grâce à la méthode précédente, on détermine les valeurs initiales $v_0 = \frac{dx}{dt}|_0$ pour différentes concentrations initiales des deux réactifs. Quelques résultats sont présentés ci-dessous :

$c_0 = [\mathbf{I}^-]_0$	$(\mu \mathrm{mol}{\cdot} L^{-1})$	2	2	2	6	6	8
$[\text{Fe}^{3+}]_0$	$(\mu \mathrm{mol}{\cdot}L^{-1})$	2	4	8	2	4	8
$\frac{\mathrm{d}x}{\mathrm{d}t}\Big _{0}$	$(\mu \mathrm{mol} \cdot L^{-1} \cdot \mathrm{s}^{-1})$	5,7	11,1	22,5	52	99	354

En déduire les valeurs de p et q, supposées entières.

- Réponse -

Pour déterminer les valeurs de p et q, il faut utiliser des expériences dans lesquelles l'une des deux concentrations est fixe alors que l'autre non : ça revient au même principe que la dégénérescence de l'ordre.

Ici, dans les expériences 1, 2 et 3 par exemple, on a $[I^-]_0$ = cte. Dans ce cas, à chaque fois on a

$$v_{0,1} = k[\text{Fe}^{3+}]_{0,1}{}^p[\text{I}^-]_0{}^q$$

 $v_{0,2} = k[\text{Fe}^{3+}]_{0,2}{}^p[\text{I}^-]_0{}^q$

$$v_{0,3} = k[\text{Fe}^{3+}]_{0,3}{}^p[\text{I}^-]_0{}^q$$

et v_0 ne dépend que de la concentration en ions fer III. Comme on cherche des ordres partiels entier, on en déduit qu'il suffit d'étudier comment varie v_0 à une modification simple de la concentration initiale en ions fer III pour déduire l'ordre : ici par exemple, en multipliant par 2 cette concentration initiale, la vitesse est multipliée par environ 2 à chaque fois. Le seul ordre partiel p permettant cette relation est bien évidemment un ordre partiel égal à 1 : on en déduit p=1.

De même, avec des expériences où la concentration initiale en ions fer III est fixe, par exemple pour les 1 et 4, on a une variation de v_0 dépendante uniquement de la concentration initiale en ions iodure. Or, on remarque cette fois que multiplier par 3 cette concentration multiplie par 9 la vitesse initiale : le seul ordre partiel entier qui permet que $3^q = 9$ est bien évidemment 2, et on en déduit q = 2.

<> -

 $\boxed{6}$ Déterminer la constante de vitesse k définie à la question $\boxed{2}$; on précisera la méthode suivie pour utiliser au mieux les données.

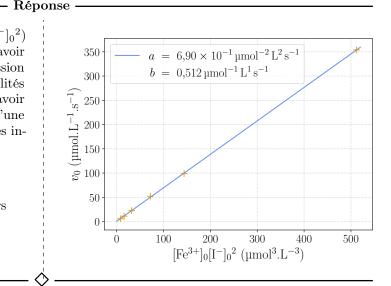
On pourrait mesurer k en prenant $v_0/([\mathrm{Fe}^{3+}]_0 \cdot [\mathrm{I}^-]_0^2)$ à chaque fois et en faisant la moyenne, mais pour avoir la meilleure estimation avec ces données la régression linéaire est plus efficace : les éventuelles variabilités de mesure se combinent toutes ensemble pour avoir une estimation combinée dépendante, plutôt qu'une estimation moyennée où les valeurs sont supposées indépendantes. Ainsi, on trace

$$v_0 = f([\text{Fe}^{3+}]_0 \cdot [\text{I}^-]_0^2)$$

dont le coefficient directeur sera k. On trouve alors

$$k = 6.90 \times 10^{-1} \,\mu\text{mol}^{-2} \cdot \text{L}^2 \cdot \text{s}^{-1}$$

 $\Leftrightarrow k = 6.90 \times 10^{11} \,\text{mol}^{-2} \cdot \text{L}^2 \cdot \text{s}^{-1}$



Dans l'hypothèse d'un état initial ne contenant que les deux réactifs à la même concentration c_0 , établier la relation littérale donnant x(t) sous la forme :

« expression en
$$(x,c_0)$$
 = expression en (k,t) »

En déduire la dépendance entre le temps de demi-réaction τ et la concentration c_0 .

- Réponse -

Les conditions de cette question sont celles des proportions stœchiométriques : en effet, comme les deux réactifs ont le même coefficient stœchiométrique **et que celui-ci est égal à 1**, leurs deux concentrations à un instant t valent $c_0 - x$. Ainsi, la vitesse de réaction s'écrit

$$v = k(c_0 - x)(c_0 - x)^2 = k(c_0 - x)^3 = \frac{\mathrm{d}x}{\mathrm{d}t}$$

en la reliant à la question 1). Comme pour l'ordre 2, on résout cette équation en séparant les variables :

$$\frac{\mathrm{d}x}{(c_0 - x)^3} = k\mathrm{d}t\tag{TM3.1}$$

On doit, de cette équation, en trouver une primitive. Pour effectuer ce raisonnement, il est plus simple de partir d'une forme simple à dériver qui donnerait celle à gauche du signe égal. Or, on sait que pour u une fonction.

$$(u^{\alpha})' = \alpha u' u^{\alpha - 1}$$

Donc si $\alpha = -2$, on aura u^{-3} en dérivant, ce qui correspond à notre équation à nous. Cependant, il faut faire attention aux constantes et signes \pm dans de telles situations : calculons la dérivée en entier.

$$(u^{-2})' = -2u'u^{-3}$$

Soit

$$\begin{array}{c} u : \mathbb{R}^+ \to \mathbb{R}^+ \\ x \mapsto c_0 - x \end{array} \Rightarrow \begin{array}{c} \mathrm{d} u : \mathbb{R}^+ \to \mathbb{R}^+ \\ x \mapsto - \mathrm{d} x \end{array}$$

On a donc

$$d((c_0 - x)^{-2}) = -2(-dx)(c_0 - x)^{-3}$$

Et en prenant la primitive de chaque côté,

$$\int d((c_0 - x)^{-2}) = \int -2(-dx)(c_0 - x)^{-3}$$

On peut donc résoudre l'équation différentielle TM3.1 par intégration, pour obtenir

$$\frac{1}{(c_0 - x)^2} = 2kt + K$$
 et $\frac{1}{c_0^2} = K$ donc $\frac{1}{(c_0 - x)^2} - \frac{1}{c_0^2} = 2kt$

Or, par définition, le temps de demi-réaction est le temps au bout duquel l'avancement est à la moitié de sa valeur finale, c'est-à-dire $x(\tau) = x_f/2$.

Ici, on trouve donc

$$x(\tau) = \frac{c_0}{2} \Leftrightarrow \frac{1}{(c_0 - \frac{c_0}{2})^2} - \frac{1}{c_0^2} = 2k\tau \Leftrightarrow \frac{4}{c_0^2} - \frac{1}{c_0^2} = 2k\tau$$

Soit finalement

$$\tau = \frac{3}{2k{c_0}^2}$$