
Électrocinétique – chapitre 8

Correction du TD d’application

I Filtrage et spectres

Un signal périodique e(t) (de fréquence 1 kHz), dont le spectre est donné en figure 1, est envoyé à l’entrée de trois
filtres différents. On effectue l’analyse spectrale du signal de sortie pour chaque filtre, les spectres obtenus sont donnés
en figure 2, 3 et 4.

1 2 3 4 5 6 7
Fig. 1 f (kHz)

En

1 2 3 4 5 6 7
Fig. 2 f (kHz)

Sn

1 2 3 4 5 6 7
Fig. 3 f (kHz)

Sn

1 2 3 4 5 6 7
Fig. 4 f (kHz)

Sn

1 Quelles caractéristiques de chaque filtre peut-on déduire de ces spectres ?
Réponse

1) Sur la figure deux, les basses fréquences sont globalement conservées, et les fréquences à partir de 3 kHz sont
fortement atténuées voire coupées : c’est un passe-bas.

2) Sur la figure trois, seules les fréquences entre 3 et 4 kHz sont gardées, les fréquences supérieures ou inférieures sont
coupées : c’est un passe-bande.

3) Sur la figure quatre, on ne distingue pas de relation simple vue en cours ; on remarque de plus que de nouvelles
fréquences apparaissent, ce qui n’est pas le cas dans le filtrage linéaire : c’est un filtre non-linéaire.

⋄
II Filtre avec une bobine

On considère ce circuit, avec R = 1,0 kΩ et L = 10mH, donnant le diagramme de Bode ci-dessous où ωc =
1× 105 rad·s−1 :

•

ue(t)

•

L us(t)

R

10−2 10−1 100 101 102
−40
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0

10
GdB(x)

x = ω
ωc

1 Quelle est la nature du filtre ? Comment se comporte-t-il aux basses et hautes fréquences ? On donnera notamment
sa pente en basses fréquences.

Réponse
On observe sur le diagramme de Bode en gain qu’il coupe les basses-fréquences mais conserve les hautes
fréquences ; c’est donc un filtre passe-haut d’ordre 1. Un signal d’entrée en hautes fréquences sera conservé ; en
très basses fréquences il sera d’une part fortement atténué à la sortie, mais surtout dérivé étant donné la pente
visible de 20 dB/décade. ⋄
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2 Électrocinétique – chapitre 8. Correction du TD d’application

2 On considère une tension d’entrée ue(t) somme de 3 harmoniques de mêmes amplitudes E, de mêmes phases initiales,
mais de fréquences respectives f1 = 100Hz, f2 = 1kHz et f3 = 100 kHz. Donner le spectre de sortie en utilisant le
diagramme.

Réponse
On trouve le spectre de sortie en multipliant chaque amplitude d’entrée par le gain linéaire pour avoir l’amplitude
de sortie. On convertit donc notre lecture de gain en dB en gain linéaire, en faisant attention que pulsation ̸=
fréquence. On a ainsi

us(t) = S1 cos(2π · f1t+ ϕ1) + S2 cos(2π · f2t+ ϕ2) + S3 cos(2π · f3t+ ϕ3)

S1 = E · 10
G(f1)

20 et S2 = E · 10
G(f2)

20 et S3 = E · 10
G(f3)

20avec

xn =
ωn

ωc
=

2πfn
ωc

avec


f1 = 100Hz
f2 = 1kHz
f3 = 100 kHz
ωc = 1× 105 rad·s−1

Or,

A.N. : x1 = 6,3× 10−3 et x2 = 6,3× 10−2 et x3 = 6,3

On ne voit pas GdB(f1) sur le diagramme, mais on est clairement dans la zone où la pente est de 20 dB/décade.
Ainsi, on lit d’abord GdB(f2) et on lui soustrait 20 dB pour obtenir GdB(f1). On a donc :

GdB(f1) ≈ −44 dB ⇐ GdB(f2) ≈ −24 dB et GdB(f3) ≈ 0 dB

S1 ≪ E

100
et S2 ≪ E

10
et S3 ≈ EAutrement dit,

⋄
3 Déterminer sa fonction de transfert et l’écrire sous la forme

H(jω) = H0

j
ω

ωc

1 + j
ω

ωc

avec H0 et ωc des constantes à préciser.
Réponse

us =
jLω

R+ jLω
ue ⇔

us

ue
= H =

�
��R

R
× jω L

R

1 + jω L
R

Pont diviseur :

⇔ H(jω) = H0

j ω
ωc

1 + j ω
ωc

avec H0 = 1 et ωc =
R

L
= 1× 105 rad·s−1 ⇔ fc =

ωc

2π
≈ 16 kHz

⋄
4 Montrer par le calcul que la pente de l’asymptote du diagramme de Bode pour ω ≪ ωc est de 20 dB/décade.

Réponse

H(jω) ∼
ω≪ωc

j ω
ωc

1
⇔ G(ω) = |H(ω)| ∼

ω≪ωc

ω

ωc
⇔ GdB = 20 log(G(ω)) ∼

ω≪ωc

20 log

(
ω

ωc

)
Ainsi, une multiplication de la pulsation par 10 (une décade) augmente bien le gain de 20 log(10) = 20 dB, d’où la
pente de 20 dB/décade. ⋄

5 Déterminer alors le spectre de sortie du singal précédent par le calcul direct.
Réponse

G(f) =

2πf

ωc√
1 +

(
2πf

ωc

)2
On a

⋄ G(f1) ≈ 6,3× 10−3 : le fondamental est complètement atténué, il ne reste que 0,6% de son amplitude initiale ;

⋄ G(f2) ≈ 6,3× 10−2 : l’harmonique f2 est fortement atténué, il n’en reste que 6% ;

⋄ G(f3) ≈ 0,99 : l’harmonique f3 est pratiquement entièrement conservé.

On retrouve bien les mêmes résultats que précédemment.⋄
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II. Filtre avec une bobine 3

Figure E8.1 – Diagrammes exercice III
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4 Électrocinétique – chapitre 8. Correction du TD d’application

III Lecture de diagrammes de Bode

On donne Figure E8.1 les diagrammes de Bode de quatre filtres.

1 Pour chacun d’eux :

1) Indiquer le type de filtre dont il s’agit.

2) Déterminer l’expression du signal s(t) de sortie du filtre pour un signal d’entrée

e(t) = E0 + E1 cos(ωt) + E10 cos
(
10ωt+

π

4

)
+ E100 cos

(
100ωt− π

3

)
avec une fréquence f = 1kHz

Réponse
Pour faciliter la rédaction on note e(t) = e0 + e1(t) + e10(t) + e100(t), et de même pour le signal de sortie s. Ainsi,
par linéarité, chaque composante en du signal d’entrée donne une composante sn au signal de sortie.

⋄ Filtre 1 : d’après l’allure du diagramme de Bode, il s’agit d’un filtre passe-haut, de fréquence de coupure fc de
l’ordre de 10 kHz. Reconstruisons le signal de sortie :
▷ Le terme constant e0 est complètement coupé par le filtre, donc s0 = 0.
▷ L’harmonique de fréquence f est atténuée de 40 dB et peut donc être négligée dans le signal de sortie (40 dB

correspond à une division de l’amplitude par 100), soit s1(t) ≪ autres harmoniques de s(t).
▷ L’harmonique de fréquence 10f est atténuée de 10 dB, soit

S10 = 10−10/20E10 = 10−1/2E10 ≈ 0,3E10

et elle est également déphasée d’environ +π/2. Ainsi

s10(t) ≈ 0,3E10 cos(10ωt+ π/4 + π/2)

▷ L’harmonique de fréquence 100f n’est presque pas atténuée ni déphasée, donc s100(t) ≈ e100(t). Au final, on
obtient le signal de sortie s(t) suivant :

s(t) ≈ 0,3E10 cos

(
10ωt+

3π

4

)
+ E100 cos

(
100ωt− π

3

)
⋄ Filtre 2 : d’après l’allure du diagramme de Bode, il s’agit d’un filtre passe-haut, de fréquence de coupure fc de

l’ordre de 0,1 kHz. De la même manière que pour le fitre 1, on détermine que :

s(t) ≈ E1 cos(ωt) + E10 cos
(
10ωt+

π

4

)
+ E100 cos

(
100ωt− π

3

)
⋄ Filtre 3 : d’après l’allure du diagramme de Bode, il s’agit d’un filtre coupe-bande, la bande coupée étant proche

de 1 kHz. Ainsi seule l’harmonique e1(t) est coupée (soit s1 = 0). Les autres composantes harmoniques du signal
d’entrée, y compris la composante continue, sont de fréquences suffisamment différentes de la fréquence coupée
pour n’être ni atténuée ni déphasée. La signal de sortie s(t) s’écrit donc sous la forme :

s(t) = E0 + E10 cos
(
10ωt− π

4

)
+ E100 cos

(
100ωt− π

3

)
⋄ Filtre 4 : d’après l’allure du diagramme de Bode, il s’agit d’un filtre passe-bas, de fréquence de coupure fc de

l’ordre de 0,1 kHz. Le terme constant e0 passe au travers du filtre sans être modifié. Les termes suivants sont
de fréquence suffisamment supérieure à la fréquence de coupure pour que le diagramme de Bode puisse être
approximé par son asymptote. On peut alors déterminer le signal de sortie comme dans le cas du premier filtre,
mais il y a plus simple ! Comme le filtre est d’ordre 1 (une seule asymptote de pente −20 dB/décade), alors il se
comporte comme un intégrateur pour les signaux de fréquence supérieure à sa fréquence de coupure. En déduire le
signal de sortie est donc très simple :

s(t) = E0 +
ωc

ω
E1 sin(ωt) +

ωc

10ω
E10 sin

(
10ωt+

π

4

)
+

ωc

100ω
E100 sin

(
100ωt− π

3

)
⋄ En écrivant le signal en termes de cosinus, on obtient :

s(t) = E0 +
ωc

ω
E0 cos

(
ωt− π

2

)
+

ωc

10ω
E10 cos

(
10ωt− π

4

)
+

ωc

100ω
E100 cos

(
100ωt− 5π

6

)
⋄
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IV. Filtre de Wien 5

IV Filtre de Wien

On s’intéresse au filtre de Wien, représenté ci-contre.

•

e(t)

•

C
C s(t)

R

R

1 Par analyse des comportements asymptotiques, déterminer le type de filtre dont il s’agit.
Réponse

ω → 0

•

E

•

S S = 0

R

R

I = 0

ω → ∞

•

E

•

E = 0

R

R

Dans la limite très hautes fréquences, les condensateurs sont équivalents à des fils, donc S = 0. Dans la limite très
basses fréquences, les condensateurs sont cette fois équivalents à des interrupteurs ouverts. Aucun courant ne circule
dans les résistances, et on a donc également S = 0. Selon toute vraisemblance, c’est donc un filtre passe-bande.⋄

2 Établir sa fonction de transfert complexe sous la forme

H(x) =
H0

1 + jQ

(
x− 1

x

) avec x =
ω

ω0

où H0, ω0 et Q sont des constantes à exprimer en fonction (éventuellement) de R et C.
Réponse

Notons Zpara l’impédance et Y para l’admittance de l’association RC parallèle. En utilisant cette impédance, on
reconnaît un pont diviseur de tension :

•

E

•
I

•
IR

•

IC

S

R

R

1/jCω

1
jCω ≡

•

E

•
I

S

R 1/jCω

Z
pa

ra

H =
U

E
=

Zpara

Zpara + ZR + ZC

⇔ H =
1

1 + (ZR + ZC)Y para

⇔ H =
1

1 +

(
R+

1

jCω

)
Y para

=
1

1 +

(
R+

1

jCω

)(
1

R
+ jCω

)
⇔ H =

1

3 + j

(
RCω − 1

RCω

)
En factorisant par 3 et en utilisant les notations introduites dans l’énoncé, on trouve

H =
1/3

1 +
j

3

(
x− 1

x

) ⇔ H =
H0

1 + jQ

(
x− 1

x

) avec


H0 = 1/3

ω0 =
1

RC
Q = 1/3

Ce qui est remarquable avec ce montage, c’est que le facteur de qualité est de 1/3 peu importe les valeurs
de R et C, tant que ce sont les mêmes R et C en série et en dérivation.⋄
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6 Électrocinétique – chapitre 8. Correction du TD d’application

3 Calculer simplement le gain maximal du filtre, puis le gain maximal en décibels, et le déphasage correspondant à ce
maximum.

Réponse

G(x) = |H(x)| = H0√
1 +Q2

(
x− 1

x

)2
Le gain du filtre est défini par

Il est maximal lorsque le dénominateur est minimal, c’est-à-dire lorsque le terme entre parenthèses s’annule. Cela
correspond à x = 1, d’où le gain maximal :

Gmax = G(x = 1) =
H0√

1 +Q2(1− 1)2
⇔ Gmax = H0 A.N. : Gmax =

1

3

GdB, max = 20 log(Gmax) ⇔ GdB,max = 20 log(H0) A.N. : GdB,max = −20 log(3) ≈ −9,5 dBD’où

∆φs/e(x) = arg(H(x)) ⇔ ∆φs/e(1) = arg(H0) A.N. : ∆φs/e(1) = 0Et

⋄
4 Représenter le diagramme de Bode asymptotique du filtre et en déduire qualitativement le tracé réel.

Réponse
Dans la limite très basses fréquences, la fonction de transfert est équivalente à

H ∼
x→0

H0

−jQ/x
= j

H0

Q
x = jx donc


G(x) ∼

x→0
x

GdB(x) ∼
x→0

20 + 20 log(x)

∆φs/e(x) ∼
x→0

π
2

De même, dans la limite très hautes fréquences, on a

H ∼
x→∞

H0

jQx
= −j

H0

Q

1

x
= −j

1

x
donc


G(x) ∼

x→∞
1
x

GdB(x) ∼
x→∞

−20 log(x)

∆φs/e(x) ∼
x→∞

−π
2

Ainsi, le diagramme de Bode asymptotique en gain compte deux asymptotes de pentes ± 20 dB/décade
passant par GdB = 0 pour x = 1, alors que le diagramme asymptotique en phase compte deux asymptotes
horizontales de hauteurs ±π/2.

Pour tracer l’allure du diagramme réel, on utilise en plus les résultats de la question précédente qui indique que la
courbe réelle passe par GdB = −9,5 dB en x = 1, alors que la courbe de phase réelle passe par 0 en x = 1 ; d’où les
diagrammes ci-dessous.

⋄
5 Calculer la pulsation propre ω0 pour R = 1,0 kΩ et C = 500 nF. Donner le signal de sortie du filtre si le signal

d’entrée est
e(t) = E0 + E0 cos(ωt) + E0 cos(10ωt) + E0 cos(100ωt)

avec E0 = 10V et ω = 200 rad·s−1.
Réponse

Numériquement, on trouve ω0 = 2,0× 103 rad·s−1. Comme le diagramme de Bode réel n’est pas donné dans l’énoncé,
on peut au choix utiliser la fonction de transfert ou raisonner sur le diagramme asymptotique. Étudions le signal de
sortie du filtre associé à chaque composante du signal d’entrée :
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IV. Filtre de Wien 7

⋄ Le terme continu est complètement coupé par le filtre ;

⋄ Le terme de pulsation ω = ω0/10 se trouve une décade en-dessous de la pulsation propre : avec le diagramme
asymptotique il est donc atténué de 20 dB, ce qui correspond à un facteur 10 en amplitude, et déphasé d’environ
1,2 rad si le diagramme réel tracé ;

⋄ Le terme de pulsation 10ω = ω0 est à la pulsation propre du filtre : il n’est pas déphasé mais seulement atténué
d’un facteur 1/3 (gain maximal) ;

⋄ Le terme à la pulsation 100ω = 10ω0 est une décade au-dessus de la pulsation propre : il est atténué comme le
premier terme d’un facteur 10 en amplitude, et déphasé d’environ −1,2 rad. Ainsi,

s(t) =
E0

10
cos(ωt− 1,2) +

E0

3
cos(10ωt) +

E0

10
cos(100ωt+ 1,2)

⋄
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Électrocinétique – chapitre 8

Correction du TD d’entraînement

I Filtre ADSL

Vous avez égaré votre filtre ADSL. Heureusement, vous avez les connaissances pour en recréer un ! En sachant que
les signaux transmis par une ligne téléphonique utilisent une très large gamme de fréquences, divisée en deux parties :

⋄ les signaux téléphoniques (transmettant la voix) utilisent les fréquences de 0 à 4 kHz ;

⋄ les signaux informatiques (Internet) utilisent les fréquences de 25 kHz à 2 MHz.

1 Quel type de filtre faut-il utiliser pour récupérer seulement les signaux téléphoniques ? Les signaux informatiques ?
Quelle fréquence de coupure peut-on choisir ?

Réponse
On isole les signaux téléphoniques avec un filtre passe-bas, et les signaux informatiques avec un filtre passe-haut.
La fréquence de coupure doit être à la fois nettement supérieure aux fréquences téléphoniques et nettement plus
faible que les fréquences informatiques : on prendra donc f0 = 10 kHz .

⋄
Vous réalisez le filtre ci-dessous.

•

L

•

ue(t) L us(t)

R R

2 Déterminer la nature du filtre grâce à son comportement asymptotique en basses fréquences et en hautes fréquences.
En déduire pour quels signaux il peut être utilisé.

Réponse

En basses fréquences (ω → 0), les bobines se comportent
comme des fils, soit

•
uRg,BF(t) = ue(t)

•

ig, BF(t) =
ue(t)
R ••

ue(t)

uRd,BF(t) = 0

u
s
,B

F
(t
)
=

0

id, BF(t) = 0

R R

En hautes fréquences (ω → ∞), les bobines se com-
portent comme des interrupteurs ouverts, soit

•
uRg,HF(t) = 0

ig, HF(t) = 0
•

ue(t)

uRd,HF(t) = 0
u
s
,H

F
(t
)
=

u
e
(t
)

id, HF(t) = 0

R R

Ainsi, le signal de sortie est non nul pour les hautes fréquences, et négligeable pour les basses fréquences : c’est un
filtre passe-haut. Il permettra d’obtenir les signaux informatiques.⋄

3 Montrer que la fonction de transfert de ce filtre peut se mettre sous la forme :

H(x) =
−x2

1− x2 + 3jx
avec x =

ω

ω0

et exprimer ω0 en fonction de R et L.
Réponse

Pour exprimer Us en fonction de Ue, on peut faire un premier pont diviseur de tension pour exprimer Us en fonction
de UAB du milieu ; puis avec une impédance équivalente à l’ensemble des 3 dipôles de droite, on refait un pont
diviseur de tension pour avoir UAB en fonction de Ue, et on combine.
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10 Électrocinétique – chapitre 8. Correction du TD d’entraînement

• •A

L UAB

•
B

•

Ue L Us

R R

≡

• •A

UAB

•
B

•

Ue

R

Z
eq

Us =
ZL

ZL + ZR

UAB ⇔ Us =
jLω

jLω +R
UABOn a donc d’abord :

UAB =
Zeq

Zeq + ZR

Ue ⇔ UAB =
1

1 + ZRY eq
UeOn aura donc ensuite :

Y eq =
1

jLω
+

1

R+ jLω
On calcule alors Y eq :

Us =
jLω

R+ jLω
· 1

1 + ZRY eq
Ue ⇔ Us =

jLω

R+ jLω +R

(
R+ jLω

jLω
+ 1

) · jLω
jLω

UeEt on combine :

⇔ Us =
−(Lω)2

R2 − (Lω)2 + 3jRLω
Ue ⇔ Us =

�
��R
2

R2

−
(
L

R
ω

)2

1−
(
L

R
ω

)2

+ 3j
L

R
ω

Ue

Ainsi, en divisant par Ue pour avoir la fonction de transfert, on a :

H(x) =
−x2

1− x2 + 3jx
avec ω0 =

R

L

⋄
4 Y a-t-il résonance ? Justifier.

Réponse
On cherche le maximum de G(x) = |H(x)|. Or, le numérateur n’est pas constant ; on se ramène donc à une
forme facile à étudier en divisant H(x) par son numérateur :

H(x) =
−x2

1− x2 + 3jx
=⇔ H(x) =

�
�
�@
@@

−x2

−x2
· 1

1− 1
x2 − 3 j

x

G(x) =
1√(

1− 1
x2

)2
+
(
3
x

)2 max quand dénominateur minD’où le gain

f : x 7→
(
1− x−2

)2
+ 9x−2On étudie donc

f ′(x) = 2
(
−���(−2)x−3

) (
1− x−2

)
+ 9���(−2)x−3Dérivée :

f ′(xr) = 0 ⇔ x−3
r

(
2
(
1− x−2

r

)
− 9
)
= 0Annulation :

⇔ 1− x−2
r =

9

2
⇔ x−2

r = −7

2
Résonance ssi xr ̸= (0,+∞) donc

ce qui n’a pas de solution réelle. Ainsi, le maximum se trouve en x−1
max = 0 ⇔ xmax → ∞ ; ça n’est pas une

résonance. ⋄
5 Tracer le diagramme de Bode asymptotique (gain et phase) de ce filtre, puis esquisser les allures de leurs courbes

réelles en les justifiant.
Réponse

G(x) =
x2

(1− x2)
2
+ (3x)

2 et GdB(x) = 40 log(x)− 10 log
(
(1− x2)2 + 9x2

)
OPTIONNEL Gains ∀x :

∆φs/e(x) = arg(H(x)) = arg

(
1

1− 1
x2 − 3 j

x

)
OPTIONNEL Déphasage ∀x :
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I. Filtre ADSL 11

⇔ ∆φs/e(x) = − arg

((
1− 1

x2
− 3j

x

)
j

j

)
⇔ ∆φs/e(x) = −

[
arg

(
3

x
+ j

(
1− 1

x2

))
− arg(j)

]
⇔ ∆φs/e(x) = − arg

(
3

x
+ j

(
1− 1

x2

))
+

π

2

⇔ ∆φs/e(x) = − arctan

(
x

3

(
1− 1

x2

))
+

π

2

⇔ ∆φs/e(x) =
π

2
− arctan

(
1

3

(
x− 1

x

))
H(x) ∼

x→0

1

− 1
x2

= −x2 et H(x) ∼
x→∞

−x2

−x2
= 1OBLIGATOIRE Asymptotes :

G(x) ∼
x→0

|−x2| = x2 et G(x) ∼
x→∞

1Pour G :

GdB(x) ∼
x→0

20 log
(
x2
)
= 40 log(x) et GdB(x) −−−−→

x→∞
20 log(1) = 0Pour GdB :

∆φs/e(x) ∼
x→0

arg
(
−x2

)
= ±π et ∆φs/e(x) −−−−→

x→∞
arg(1) = 0Pour ∆φs/e :

H(1) =
−1

1− 1 + 3j
=

−1

3j
=

j

3
donc ∆φs/e(1) =

π

2
et ∆φs/e(x) ∼

x→0
arg
(
−x2

)
= πOr,

G(1) = |H(1)| = 1

3
et GdB(1) = 20 log

(
1

3

)
= −9,5 dBGains en 1 :

GdB(x → 0) = GdB(x → ∞) ⇔ 40 log(xits) = 0 ⇔ xits = 1 et yits = GdB(x → 0)

∣∣∣∣
xits

= 0Intersections des asymptotes :

10−1 100 101 102
−40

−30

−20

−10

0

•

x =
ω

ω0

G
d
B

(d
B

)

10−2 10−1 100 101 102

0

1

2
π

2

π

•

x =
ω

ω0

∆
φ
s
/
e

(r
ad

)

⋄
6 Vous possédez des résistances de 100Ω. Quelle valeur d’inductance L choisir pour réaliser le filtre souhaité ?

Réponse

La fréquence de coupure est f0 =
ω0

2π
=

R

2πL
; on doit donc prendre

L =
R

2πf0
avec

{
R = 100Ω
f0 = 10 kHz

A.N. : L = 1,6mH

⋄
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12 Électrocinétique – chapitre 8. Correction du TD d’entraînement

II Filtre de Colpitts

On considère le quadripôle suivant, où C est une capacité,
R une résistance et L une inductance. Il est utilisé en régime
sinusoïdal forcé de pulsation ω, en sortie « ouverte » (rien
n’est branché aux bornes de sortie).

•

L

•

e(t)

C

3C s(t)

R

1 Étudier qualitativement le comportement de ce quadripôle en hautes et basses fréquences. De quel type de filtre
s’agit-il ?

Réponse

En basses fréquences (ω → 0), les condensateurs se
comportent comme des interrupteurs ouverts, la bobine
comme un fil : la tension s(t) est donc nulle.

• •

u
L
,B

F
(t
)
=

0

••

e(t)

s B
F
(t
)
=

0

R

En hautes fréquences (ω → ∞), les condensateurs se
comportent comme des fils, la bobine comme un inter-
rupteur ouvert : la tension s(t) est donc nulle.

• •

u
L
,H

F
(t
)
=

0

••

e(t)

s H
F
(t
)
=

0

R

Comme la tension est nulle aux extrêmes, c’est un passe-bande. Si elle était égale à la tension d’entrée aux extrêmes,
ça serait un coupe-bande. ⋄

2 Déterminer sa fonction de transfert H(jω) et la mettre sous l’une des formes équivalentes :

H(jω) =
A

1 + jQ

(
ω

ω0
− ω0

ω

) =

j
A

Q

ω

ω0

1− ω2

ω0
2
+

j

Q

ω

ω0

En introduisant des constantes A, ω0 et Q dont on précisera les expressions en fonction de R, L et C.
Réponse

On effectue deux diviseurs de tension successifs : un pour déterminer S en fonction de UAB, puis avec une impé-
dance équivalente des trois dipôles de droite, on détermine UAB en fonction de E et on combine. C’est le même
fonctionnement que pour l’exercice sur l’ADSL, question 3 .

• •A

L

U
A
B

•
B

•

E

C

3C S

R

≡

• •A

UAB

•
B

•

E

R

Z
eq
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II. Filtre de Colpitts 13

S =
Z3C

Z3C + ZC

UAB ⇔ S =
1

1 + ZC · Y 3C

UABOn a ainsi en premier lieu

⇔ S =
1

1 + 3
UAB ⇔ S =

UAB

4

UAB =
Zeq

Zeq + ZR

E ⇔ UAB =
1

1 + ZRY eq
EOn aura donc ensuite :

On calcule alors Y eq de l’association en parallèle de L et C en série avec 3C. Attention à l’association en série de
capacités :

ZC+3C =
1

j3Cω
+

1

jCω
×3

3
=

4

j3Cω

⇒ Y eq = Y L + Y C+3C ⇔ Y eq =
1

jLω
+ j3Cω/4

S =
1

4

1

1 +R

(
1

jLω
+

j3Cω

4

)E ⇔ S =
1

4

1

1 + j

(
− R

Lω
+

3RCω

4

)EEt on combine :

H(jω) =
1/4

1 + j

(
3RCω

4
− R

Lω

) ⇔ H =
A

1 + jQ

(
ω

ω0
− ω0

ω

) avec A =
1

4
Soit

Reste à trouver Q et ω0. Pour cela, on identifie membre à membre :

Q

ω0
=

3RC

4
(1) et Qω0 =

R

L
(2)

⇔ Q =
R

2

√
3C

L
et ω0 =

2√
3LC

où l’on obtient Q et ω0 en multipliant les équations (1) et (2) d’une part puis en en prenant la racine carrée, et en
divisant (2) par (1) en en prenant la racine carrée, respectivement.⋄
Le diagramme de Bode de ce quadripôle pour Q = 6 est donné ci-dessous.

102 103 104
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

5 × 102 5 × 103

Fréquence (Hz)

G
ai

n
(d

B
)

102 103 104
−100

−80

−60

−40

−20

0

20

40

60

80

100

5 × 102 5 × 103

Fréquence (Hz)

D
ép

ha
sa

ge
(°

)

3 Justifier l’allure des parties rectilignes du diagramme. Déduire du diagramme la valeur de la fréquence d’accord
f0 = ω0/2π ainsi que des fréquences de coupure. En rappelant le lien entre acuité, facteur de qualité et largeur de
bande passante, vérifier la cohérence de ces résultats.

Réponse
Les parties rectilignes du diagramme correspondent aux limites asymptotiques du gain en décibels, c’est-à-dire pour
ω ≪ ω0 et ω ≫ ω0 ; on y trouve des pentes de ±20 dB/dcade en gain et des droites de ±π

2 en déphasage. En effet,

H(ω) ∼
ω≪ω0

j
A

Q

ω

ω0
et H(ω) ∼

ω≫ω0

−j
A

Q

ω0

ω
Asymptotes :

⇔ G(ω) ∼
ω≪ω0

A

Q

ω

ω0
et G(ω) ∼

ω≫ω0

A

Q

ω0

ω
Pour G :

⇔ GdB(ω) ∼
ω≪ω0

20 log

(
A

Q

)
+ 20 log

(
ω

ω0

)
et GdB(ω) ∼

ω≫ω0

20 log

(
A

Q

)
− 20 log

(
ω

ω0

)
Pour GdB :
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14 Électrocinétique – chapitre 8. Correction du TD d’entraînement

⇔ ∆φs/e(ω) ∼
ω≪ω0

π

2
et ∆φs/e(ω) ∼

ω≫ω0

−π

2
Pour ∆φs/e :

H(ω0) =
A

1 + jQ(1− 1)
= A =

1

4
= GmaxEn ω = ω0, on a :

GdB(ω0) = −20 log(4) = −12 dB et ∆φs/e(ω0) = arg

(
1

4

)
= 0donc

La fréquence de résonance (ou fréquence d’accord) correspond au pic du diagramme de Bode (ou à l’intersection des
asymptotes du gain en décibels) d’une part, ou correspond à la fréquence pour laquelle la phase est nulle : on lit
simplement f0 = 1kHz .

On trouve les fréquences de coupure en trouvant les fréquences f1 et f2 telles que GdB = GdB,max − 3 dB, soit
GdB = −15 dB : on lit approximativement f1 = 950Hz et f2 = 1010Hz . Ainsi,

∆f = f2 − f1 = 60Hz et Ac = Q =
ω0

∆ω
=

f0
∆f

⇒ Q = 6 comme annoncé, c’est cohérent.

⋄
III Filtre de Butterworth d’ordre 3

On veut réaliser un filtre de Butterworth d’ordre 3, dont le gain de sa fonction de transfert harmonique en
tension H s’exprime :

G(x) = |H(x)| = 1√
1 + x6

1 Montrer qu’une fonction de transfert H(x) =
1

1 + 2jx+ 2(jx)2 + (jx)3
correspond bien à un filtre de Butterworth

d’ordre 3.
Réponse

Il suffit pour cette question de développer les puissances sur les j, de calculer le module et de développer :

H(x) =
(
1 + 2jx− 2x2 − jx3

)−1 ⇔ G(x) =
(
(1− 2x2)2 + (2x− x3)2

)−1/2

⇔ G(x) =
(
1−HH4x2 +��4x4 +HH4x2 −��4x4 + x6

)−1/2
=
(
1 + x6

)−1/2

ce qui correspond bien à un filtre de Butterworth d’ordre 3.⋄
2 Étudier et représenter le diagramme de Bode asymptotique en amplitude de cette fonction de transfert.

Réponse

GdB = 20 log(G(x)) = −10 log
(
1 + x6

)
⇒ GdB −−−→

x→0
0 et GdB ∼

x→∞
−60 log(x)

d’où le diagramme de Bode asymptotique ci-contre. Par
rapport à de l’ordre 1 (−20 dB/décade) ou de l’ordre 2
(−40 dB/décade), l’atténuation des hautes fréquences
est encore plus prononcé : une fréquence 10 fois supé-
rieure à f0 serait atténuée d’un facteur 1000 au lieu
d’un facteur 10.

10−1 100 101 102
−120

−100

−80

−60

−40

−20

0 −20dB/décade−40 dB/décade

−60 dB/décade

x

G
d
B

(d
B

)

⋄
3 On considère le quadripôle ci-dessous :
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III. Filtre de Butterworth d’ordre 3 15

•
L1

C

•

e(t)

L2

s(t)R

Calculer en fonction de R et ω0, les valeurs de L1, L2 et C pour que ce filtre soit un filtre de Butterworth.
Réponse

Ici encore, on utilise deux ponts diviseurs de tension successifs : on calcule us en fonction de uAB, puis uAB en
fonction de ue après avoir déterminé l’impédance équivalente de l’ensemble des dipôles de droite.

•
L1

•A

C UAB

•
B

•

E

L2

SR ≡

•
L1

•A

UAB

•
B

•

E

Z
eq

S =
ZR

ZR + ZL2

UAB ⇔ S =
R

R+ jL2ω
UABOn a d’abord :

UAB =
Zeq

Zeq + ZL1

E ⇔ UAB =
1

1 + ZL1
Y eq

EEt ensuite, on aura

On calcule alors Y eq de l’association en parallèle de C et L2 en série avec R :

ZL2+R = jL2ω +R ⇔ Y L2+R =
1

jL2ω +R

⇔ Y eq = Y C + Y L2+R ⇔ Y eq = jCω +
1

jL2ω +R

⇔ Y eq =
jCω(jL2ω +R) + 1

jL2ω +R
⇔ Y eq =

1− L2Cω2 + jRCω

R+ jL2ω

S =
R

R+ jL2ω
· 1

1 + jL1ω

(
1− L2Cω2 + jRCω

R+ jL2ω

)EEt on combine :

⇔ S =
R

R+ jL2ω
· 1

1 +
jL1ω − jL1L2Cω3 + (jω)2RCL1

R+ jL2ω

E

⇔ S =
R

R+ jL2ω + jL1ω − jL1L2Cω3 + (jω)2RCL1
E

⇔ S =
1

1 + jω
L1 + L2

R
+ (jω)2L1C + (jω)3

L1L2C

R

E

en utilisant que −j = j3. Ainsi, en divisant par E pour avoir la fonction de transfert, on a bien

H =
1

1 + 2jx+ 2(jx)2 + (jx)3
avec



2

ω0
=

L1 + L2

R

2

ω0
2
= L1C

1

ω0
3
=

L1L2C

R

⇔



L1 =
3R

2ω0

L2 =
R

2ω0

C =
4

3Rω0⋄
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16 Électrocinétique – chapitre 8. Correction du TD d’entraînement

4 Rappeler la condition sur les impédances des filtres pour les mettre en cascade. Justifier que l’on puisse réaliser le
filtre de Butterworth d’ordre 3 en associant en cascade un filtre d’ordre 1 et un filtre d’ordre 2, comme sur le
circuit suivant :

v1 v2 v3Ordre 1 Ordre 2

Préciser alors la valeur du facteur de qualité du filtre d’ordre 2.
Réponse

Pour mettre des filtres en cascade et avoir H(x) = H01H02 avec H0k les fonctions en boucles ouvertes, il faut que
l’impédance de sortie du filtre 1 soit faible devant l’impédance d’entrée du filtre 2.

Dans ce cas, on utilise un filtre d’ordre 1 avec un numérateur constant, donc un passe-bas de la forme H01(x) =
H1

1+jx ,
et un filtre d’ordre 2 avec un numérateur lui aussi constant. On a deux choix, soit un passe-bas soit un passe-bande

Le passe-bande fait intervenir jQ
(
x− 1

x

)
au dénominateur, donc il est plus simple d’utiliser une passe-bas d’ordre

2 avec 1 + j/Qx+ (jx)2 au dénominateur. Ainsi :

H(x) = H01(x) ·H02(x) =
H1

1 + jx
· H2

1 +
j

Q
x+ (jx)2

=
H1H2

1 + jx

(
1 +

1

Q

)
+ (jx)2

(
1 +

1

Q2

)
+ (jx)3

Pour trouver un filtre de Butterworth d’ordre 3 de cette manière, il faut donc H1 = H2 = 1 et Q = 1 .

⋄
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