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# Capacités exigibles

(O Déterminer "amplitude de ’onde résultante en un point
en fonction du déphasage.

O Interférences entre deux ondes acoustiques, mécaniques
ou lumineuses de méme fréquence.

(O Relier le déphasage entre les deux ondes a la différence
de chemin optique.

(O Différence de chemin optique. Conditions d’interfé-
rences constructives ou destructives.

(O Etablir 'expression littérale de la différence de chemin
optique entre les deux ondes.

(O Exemple du dispositif des trous d”YOUNG éclairé par
une source monochromatique.

(O Exploiter la formule de FRESNEL fournie pour décrire
la répartition d’intensité lumineuse.

(O Exprimer les conditions d’interférences constructives
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2 Ondes — chapitre 2. Interférences a deux ondes

‘ I |Superposition d’ondes planes sinusoidales de mémes fréquences

IV Déphasage et différence de marche

I/A)1| Approximation par une onde plane

Soit une source en un point S, émettant une onde sinusoidale. En toute généralité, et méme sans atténuation, son
amplitude A dépend du point considéré :
s(7,t) = A(r) cos(wt . cpo)

avec k le vecteur d’onde et 7 le vecteur position en 3 dimensions. En effet, I’énergie totale d’une perturbation se
répartit selon I’espace disponible, donc A dépend de r. On les différencie alors selon les « vagues » qu’elles forment :

E ,—| Définition ON2.1 : Fronts d’ondes i

Si les fronts d’ondes dessinent :
< une droite, alors I'onde est plane;

< un cercle, alors 1’onde est circulaire;

< une sphére, alors I'onde est sphérique.

FicureE ON2.1 — Front d’onde sphérique.

Pour obtenir de résultats simples, on se limite a des ondes planes avec I’approximation suivante :

— @ Propriété ON2.1 : Approximation onde plane | Démonstration ON2.1 : o
¢ =mmm
A . X © =mmm

A des distances de la source S suffisamment grandes devant
la longueur d’onde )\, on peut approximer la vibration s(M,t)
par une onde plane :

‘ s(M,t) = Acos(wt — k - SM + ¢q) ‘

avec A constante au voisinage de M. FicurRE ON2.2 —

Approximation par une onde plane

I/A)2| Déphasage

@ Définition ON2.2 : Phase spatiale et déphasage

E Soit deux signaux sinusoidaux, de méme fréquence, longueur d’onde et nature, provenant de 2 sources S;
et Sy, se superposant en un point M. Avec n € [1;2] :
sn(M,t) = A, cos(wt — kSyM + @o,)

; . \,' SiM
Nt M

On introduit alors pour simplifier la phase spatiale :

s SoM
S5/
©1 (M) = —kS1M + ©o1 et QDQ(M) = —kSoM + o2 b
Ficure ON2.3

Ainsi, le déphasage entre s, et s se réduit a leur différence de phase spatiale :

Agog/l(M) = (wt 7]{7811\/[ + QD()Q) - (wtrkSQM + Q001I) <~ ‘ A§02/1(M) = QDQ(M) — ng(M) ‘
p2(M) p1(M)
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Superposition d’ondes planes sinusoidales de mémes fréquences 3

@ Rappel ON2.1 : Déphasages particuliers

Deux signaux sont en phase si leur déphasage est nul (modulo 27) :

Ap=0 [27T]<:> pEL 3

Les signaux passent par leurs valeurs maximales et minimales aux mémes
instants, et s’annulent simultanément.

FicUure ON2.4 — En phase.

$1(1) p52(t)
En quadrature

Deux signaux sont en quadrature phase si leur déphasage est de +m/2
(modulo 27) :

1
A@E:I:% [27] A(pz(p+2)7r peEL

Quand un signal s’annule, 'autre est & son maximum ou & son minimum :
c’est la relation entre un cosinus et un sinus. FicURE ON2.5 — Quadrature.

|
? s1(t) ps2(t)

| En opposition |

Deux signaux sont en opposition de phase si leur déphasage est de +7
(modulo 27) :

=
~

Ap==+r [27T]<:>’A(p:(2p+1)71" pEZ

Lorsqu’un signal passe par sa valeur maximale, I’autre est & sa valeur
minimale, mais ils s’annulent simultanément.

I/A)3 | Différence de marche

FIGURE ON2.6 — Opposition.

Démonstration ON2.2 : Différence de marche |

Comme les fréquences sont les mémes, le déphasage se réexprime par une différence de distances :

A(,Dg/l(M) = —kSoM + ©o2 — (—kSlM + (,001) = -k (SQM — SlM) + Y02 — Yo1 |

@ Propriété ON2.2 : Déphasage et différence de marche

2
On a alors ‘ Apsy1 (M) = —kALy ;1 (M) 4 Ao ‘ avec k = Tﬂ

|Différence de marchel ‘ALg/l(M) = S,M — SlM‘ 3 |Déphasage a l’originel ‘A(po = @2 — Po1

pa—

Interprétation ON2.1 : Différence de marche

AL traduit la distance supplémentaire que doit parcourir une onde par rapport a une autre pour arriver au
méme point M. Comme elles vont & la méme vitesse ¢, cela introduit un retard, c’est-a-dire un déphasage.

—

@ Propriété ON2.3 : AL particuliers

Pour des sources de méme phase a I’origine, on a Apg = 0. Les déphasages particuliers se réécrivent alors
en termes de différence de marche, avec p € 7Z :

Type | En phase | En quadrature | En opposition
| | 1 A | )\
AL(M) 1 A | -\ 2 \ A
(M) | | <p+2>2 | (2p+1)2
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4 Ondes — chapitre 2. Interférences a4 deux ondes

¥ Démonstration ON2.3 : AL particuliers

© ==m l
© =mmm |
o= On part du lien entre Ay et AL, avec Apg = 0, et de la | si;} R
définition du vecteur d’onde : 1 (p+13) 3
A ! quadrature
Ap(M) = —kALM) & AL(M) = —A@(M)? |
™ |
Comme p € Z, —p € Z, donc le signe — importe peu. Ainsi, | ALy
! 2p+ 1A DA
A : O— &S— cos
<> En phase : AL(M) — 2pﬂ- . 27 — p>\ | en ()pp()SltI()H en I;fl‘rls(‘,
T l
1 A 1\ A
< En quadrature : ALM)= (p+-|7n-—=(p+=]|= |
2 2m 2/ 2 L
OE it ALOM) = 2p+Dr- 2 = (2p+1)2 | i)
n opposition : (M) = (2p+1)m- T (2p+1) 2 quadrature
Tout fonctionne comme si on remplagait 27 par A. 3 FIGURE ONZ2.7

IVASE Somme de signaux

I/B)1| Présentation

La plupart du temps, les ondes se croisent sans interagir particuliérement, et on ne voit que la somme des signaux.
Voir cette animation geogebra.

Exemple ON2.1 : Superpositions sur une corde

4

t=At JSo=c
t=At

t=2At /X( c

FiGURE ON2.8 — Mémes amplitudes.

FiGURE ON2.9 — Amplitudes opposées.
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Définition ON2.3 : Hypothéses de somme

Chaque source émet une Onde Plane Progressive Sinusoidale (OPPS) de méme
fréquence et méme nature depuis les points S; et So :

s1(M,t) = Ay cos(wt + 1 (M)) et so(M,t) = Ay cos(wt + @po(M))

Ficure ON2.10 —

et on s’intéresse a leur somme s(M,t) = s1(M, ) 4+ s2(M, ¢) en un point M.

Schéma.
I/B)2| Signaux de méme amplitude : A = Ay = Ay
‘ | Outils ON2.1 : Somme de cosinus
DN . B p—q p+q
On remplace la somme par un produit grace a la relation cos p + cos q = 2 cos 7 cos| —
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I. Superposition d’ondes planes sinusoidales de mémes fréquences 5

¥ Démonstration ON2.4 : Signal somme de méme amplitude

s(M,t) = s1(M,t) + so(M,t)
& s(M,t) = Ag [cos(wt + @1 (M)) + cos(wt + @a2(M))]

wt + ¢1 (M) gwt - <P2(M)> COS<Wf + e1(M) ;rwt + Wz(M))

& s(Mt) =240 COS(A@W;(M)) Cos (wt + W) m

< s(M,t) = 24, cos(

@ Propriété ON2.4 : Signal somme méme amplitude

Ainsi, s(M,t) = A(M) cos(wt + (M) avec

. Mgy MDY | 21(M) + a(M)
A = 2dgcos( S0 |1 [Phase] | o) - 20012200

Exemple ON2.2 : Somme de signaux

s(t)

s1(t) p52(1)

S
‘., " .
°, 1 N ’
K ’ y ‘' s ’
\ °, ’ B ’ \ 7
1 A LS
s 9 \ !
' ‘ S \ r
1 I ’
\J 3 . U
A )
. ¢ 4
~e Soe ~_¢

Ficure ON2.11 —
Somme avec déphasage A,/ = —m/3.

Ficure ON2.12 —
Somme avec déphasage A,/ = 37 /4.

@ Propriété ON2.5 : Cas extrémes méme amplitude

L’amplitude de s(M,t) est maximale pour des signaux en phase et minimale pour des signaux en opposition
de phase, avec :

|En phase | ‘Amax =24, En oppositionl ‘ Apin =0

¥ Démonstration ON2.5 : Cas extrémes méme amplitude

| Amplitude maximale |

A M
A(M) est maximale pour os(¢2/21(>> =41 = A, = 240
A M A M
= cos ((@/21()) =41 & <p2+() =pr & Apy (M) =2pr pEZ

Ce déphasage correspond & des signaux en phase : les maxima et minima de vibration se correspondent et
donnent & chaque instant une amplitude double.

Amplitude minimale |

A M
A(M) est minimale pour cos 902/21()) =0= Ann=0
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6 Ondes — chapitre 2. Interférences & deux ondes

A M A M
= cos(wwl( )>=O = 7@2/1( )

; :p7r+g & Ay (M) = (2p+ ) pez

Ce sont donc des signaux en opposition de phase : les maxima et minima de vibration s’opposent, et
I'amplitude résultante est nulle.

— Important ON2.1 : Analyse méme amplitude

Le signal somme de deux OPPS de méme amplitude Ay et méme pulsation w est :
1) Un signal sinusoidal et de méme pulsation w;
2) D’amplitude dépendante de M, et

& Maximale Ap., = 24, pour signaux en phase (A, = 2pm, p € Z);
<& Minimale Ay, = 0 pour signaux en opposition de phase (Apy/y = (2p +1)m, p € Z).

I/B) 3| Signaux d’amplitudes différentes : 4; # A,

On peut soit utiliser la trigonométrie classique, soit les complexes :

Outils ON2.2 : Trigonomeétrie

cos(a 4+ b) = cosacosb —sinasinb

(a—b) — cos S < I
cos(a —b) = cosacosb+sinasinb z2=z-2" et tan(arg(z)) = ;;(2
— Propriété ON2.6 : Signal somme amplitudes #
Alors, s(M,t) = A(M) cos(wt + ¢(M)) avec

A1 sin ®1 (M) + A2 sin ©2 (M) )
Ajq cos (M) + A cos pa (M)

A(M) = \/A12 + A22 + 2A1A2 COS(ALPQ/l(M)) i (p(M) = arctan<

Démonstration ON2.6 : Signal somme amplitudes #

En réels

s(M,t) = Aj cos(wt + p1(M)) + As cos(wt + p2(M))
< s(M,t) = Aj(cos(wt) cos(p1(M)) — sin(wt) sin(¢1(M)))
+ Az (cos(wt) cos(pa(M)) — sin(wt) sin(p2(M)))
& s(M,t) = (Aq cos(p1(M)) + Az cos(p2(M))) cos(wt)
— (Aysin(p1(M)) + As sin(p2(M))) sin(wt)
& s(M,t) = A(M) cos(wt + p(M)) |
car A(M) cos(wt + o(M)) = A(M) cos(p(M)) cos(wt) — A(M) sin(p(M)) sin(wt)

A(M) cos (M) = Az cos p1 (M) + Az cos p2(M) (ON2.1)

On t d
n trouve OHC{A(M) sin (M) = A sin g1 (M) 4 Ay sin @o (M) (ON2.2)

On obtient A(M) Pamplitude de I'onde somme en prenant (ON2.1Y’+(ON2.1)%, et tan (M) avec (ON2.1)/(ON2.1):

A(M)?2 (cos? (M) + sin? p(M)) = A;2 + A2 + 241 Ay (cos 1 (M) cos p2(M) + sin 1 (M) sin o (M))

= —cos (1 (M) —p2 (M) -
fan (M) = Ajp sin 1 (M) + Ag sin o2 (M)
7 Aj cos i (M) + Ay cos pa(M)

| En complexes |
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A

I. Superposition d’ondes planes sinusoidales de mémes fréquences

En supposant directement que s(M,t) = A(M) cos(wt + ¢(M)) (par linéarité),

§(M,t> = ﬂ(Mvt) + Q(M,t)
o A(M)ej‘P(M))eM: Alejsol(M)EM+ AQQJW(M)M
PN A(M)GJW(M) — Aleicm(M) + Azeiwz(M)
N JAM)P = AM) - A"(M) = (A; + Ag) (A" + A37)
arg(A) = arg(A; + Ay)
- { A(M)2 = (Alejv’l(M) + A2ei</72(M)) . (Ale—jsal(M) + A2e—j¢2(M))
©(M) = arg(A; cos 1 (M) + jA; sin @y (M) + Ay cos p2(M) 4 jAz sin pa(M)))

=1 =1 L

AQM)? = 4y2 (1 OD=010) 4 4.2 6ile2(M)=0200) 4 4, 4, (ei(sol(M)—saz(M» n e—j(wl(M)—soz(M))>

~ Apsing (M) + Az sin (M)
Ay cos o1 (M) + Az cos g2 (M)

AM) = \/A12 + As? + 24, Ay cos(Apy /1 (M)

Ay sin o1 (M) 4 Ay sin (M)
M =
©(M) = arctan <A1 cos 1 (M) + Ay cos pz (M)

Dans tous les cas, on trouve

& =2cos Apz/1 (M)

— @ Propriété ON2.7 : Cas extrémes amplitudes #

de phase, avec :

L’amplitude de s(M,t) est maximale pour des signaux en phase et minimale pour des signaux en opposition

|En phase | ‘Amax =A; + Ay 1 |En oppositionl ‘Amin = |A; — As| ‘

¥ Démonstration ON2.7 : Cas extrémes amplitudes #

| Amplitude maximale |

Max pour cos (A¢2/1(M)) =1= Apax = \/‘412 + A% + 2414, = A1 + Ay
Or, cos(Apan(M)) =1 & Ay (M) = 2pr

| Amplitude minimale |

Min pour cos(Apg/1 (M) = —1 = Apin = VA2 + Ax2 — 24,45 = |[A; — A
Or, cos(Apgi (M) =1 & Apypn(M) = (2p+ )7

Exemple ON2.3 : Cas extrémes amplitudes #

s(t)

s1(t) pS2(t)

pEZL

FicUurRE ON2.13 — Signaux en phase.

FiGUuRE ON2.14 — Signaux en opposition.
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8 Ondes — chapitre 2. Interférences & deux ondes

— Important ON2.2 : Analyse amplitudes différentes

Le signal somme de deux OPPS d’amplitudes A; et As de méme pulsation w est :
1) Un signal sinusoidal et de méme pulsation w;
2) D’amplitude dépendante de M, et

<& Maximale Ayax = A1 + Ay pour signaux en phase (A, = 2p7);
<& Minimale Ay, = [A1 — Az| pour signaux en opposition de phase (Apy/ = (2p + 1)7).

iflell Bilan

—| Important ON2.3 : Interférences (pour Ay, = 0)

Pour deux OPPS de méme fréquence, nature et phase a ’origine* se superposant en M :

L’amplitude de la somme est minimale si les signaux

L’amplitude de la somme est maximale si les signaux o
sont en opposition de phase :

sont en phase :

(A0 (M) = 2pr ] & (AL (M) = ]

(3o (M) = Gpt Dn| & |ALyp(M) = (@p+ 1))

|
|
1
|
|
1
} *
|
|
1
|
On parle d’interférences constructives. !
|

On parle d’interférences destructives.

p € Z est appelé 'ordre d’interférence. Pour une animation et visualisation dans le plan, voir ce site.

@ Application ON2.1 : Interférences sonores

Soient 2 émetteurs sonores envoyant une onde progressive sinusoidale

de méme fréquence, méme amplitude et méme phase a ’origine. d

Le premier est fixé a l'origine du repére, I’émetteur 2 est mobile [ @ >

et & une distance d du premier, et un microphone est placé & une | " et ) X"h X
: I A . 2 emetteur emetteur microphone

distance fixe z9 > d de I'émetteur 1 et est aligné avec les deux _ -~ "0 oo " fixe

émetteurs. On néglige l'influence de I'émetteur 2 sur 'émetteur 1 et fixe mobile
toute atténuation.

Lorsque d = 0, qu’enregistre-t-on au niveau du microphone ?

On part de d = 0 et on augmente d jusqu’a ce que le signal enregistré soit nul. Ceci se produit pour d; = 6,0 cm.
Expliquer cette extinction.

En déduire la longueur d’onde puis la fréquence du son émis.

Pour ds = 12,0 cm, quelle sera 'amplitude du signal enregistré 7

Si d = 0, alors la différence de marche AL, /5(z0) = 0; de plus, comme les phases a l'origine des temps de
chaque source est la méme, on a Agpy = 0 : ainsi, on a

Api/a(w) =0
Autrement dit, les signaux sont en phase. Comme ils ont la méme amplitude, au microphone on enregistre un
signal de la fréquence d’émission, avec une amplitude double de celle d’'un émetteur.

On a toujours Apg = 0, donc Apy a(z0) = kAL 2(70). En augmentant la distance entre les sources, on
augmente le déphasage (en valeur absolue), en mettant la source 1 en retard par rapport a la 2. Ainsi, il y a
une valeur de différence de marche telle que Ay /5(z0) = —, c’est-a-dire que les signaux seront en opposition
de phase et s’annuleront.

3
ALI/Q(LE()) = SlM — SQM = d1
& Apyja(r0) = —kALyjp = —kdy

2T
s —n =2, o[22

di=60cm = AN.: A=12,0cm

& f:% = f=28kHz
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A

II. Interférences lumineuses

Si on double la distance, alors on aura Ay /5(x9) = —2kd = —27 : ceci est congru a 0 modulo 27, donc les
signaux seront de nouveau en phase, et on récupére le signal maximal trouvé question .

IT | Interférences lumineuses

,—| Définition ON2.4 : Cohérence entre sources i

PV Condition d’interférences : cohérence d’ondes lumineuses

La plupart des sources lumineuses ont une phase a 1’origine qui n’est pas constante, mais prend une valeur
aléatoire au bout d’un certain temps généralement trés court : on dit qu’elles envoient des trains d’ondes, avec :

<& Temps de cohérence : 7., durée pour laquelle ¢y = cte. Aprés 7., le prochain train d’onde a un autre .

< Longueur de cohérence : L. = c7,, c’est la distance de cohérence d’un train d’onde, i.e. avec une unique
phase a l'origine.

— Important ON2.4 : Condition d’interférence

Pour interférer, deux sources doivent étre cohérentes, c’est-a-dire avoir Apg = cte; ceci n’est en général
pas réalisable par manque de contrdle sur cette variation de phase a lorigine (désexcitation quantique aléatoire).
Les interférences lumineuses se font donc avec une unique source, donnant forcément des ondes cohérentes.

—| € Propriété ON2.8 : Intensité lumineuse

Exemple ON2.4 : Cohérence

TABLEAU ON2.1 — Temps et longueurs de cohérence

Source 7o (8) L. (m)
Ampoule 3x107" 1x107°
Raie rouge hydrogéne 1 x 107 4x 1073
Laser hélium-néon 1x10°? 3x10!

} Lumiére du Soleil 2x107"® 6x1077

IIFAER Formule de FRESNEL

I(M) = K (s*(Mt)) = Kseq® . [OPPS| |1(M) = %KA(M)Q

| Démonstration ON2.8 : Intensité lumineuse OPPS |

La période (temporelle) typique d'une onde lumineuse est de Pordre de 1071°s, ou ~ 1fs : c’est une échelle de
temps infinitésimale bien inférieure au temps de détection de n’importe quel capteur optique : I'ceil humain
a un temps de réponse ~ 10~ s, un capteur CCD =~ 107 6.

Ainsi, un récepteur optique n’est sensible qu’a 1’énergie moyenne
du signal. Cette énergie est proportionnelle au carré de la grandeur

s(M,t) propagée par l'onde (ici électromagnétique), d’ou cos?(wt)
I(M) = K (s*(Mt)) 1
Pour une OPPS (monochromatique), on a 051T——~
s(M,t) = A(M) cos(wt + ¢(M)) ' ' )
0 0.5T 1.07 1.5T

= I(M) = KAM)? (cos*(wt + w(M))>I = %KA(M)Z [ |

Ficure ON2.15 —
cos?(wt) et sa moyenne.

—1

2

cohérent avec sa représentation temporelle. On le démontre aussi par
intégration (cf. Dm.E6.2).
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10 Ondes — chapitre 2. Interférences a4 deux ondes

—| € Propriété ON2.9 : Formule de FRESNEL

L’intensité lumineuse I(M) résultant de 'interférence de 2 ondes monochromatiques en un point M de lespace
s’écrit :

IM)=5L+L+2V 1115 cos(Agaz/l(M)) ou |I(M)=2I)(1+ COS(A@g/l(M)))

si A1 = Ay = Ay, c’est-a-dire I1 = Iy = Iy. On trouve alors

|En phase I Tax = 41, | |En oppositionl Tin =0

| Démonstration ON2.9 : Formule de FRESNEL |

Soient 2 ondes lumineuses cohérentes et de méme pulsation, d’amplitudes Ay et Ao, interférant en un point M.
On a vu que le signal somme s(M,t) = s1(M,t) + s2(M,t) avait une amplitude

AM) = \/A12 + Ap? + 241 Ay cos Apy 1 (M)

On trouve donc l'intensité (M) en en prenant le carré et en multipliant par 3K :

1 1 1 1
[(M) = §KA(M)2 = §KA12 + QKAQQ + 2§KA1A2 COS(A(pg/l (M))
1 1 1
avec Il = 5KA12 et IQ = 5KA22 on trouve \ 11[2 = iKAlAQ |

IIFA®N Chemin optique et déphasage

La propagation des ondes lumineuses se fait dans des milieux avec des indices optiques n qui peuvent étre différents,
et donc avec des vitesses v = ¢/n différentes. Pour continuer a travailler comme on le fait, il faudrait se ramener a une
méme vitesse, quitte & changer la longueur. On définit ainsi le chemin optique :

—| € Définition ON2.5 : Chemin optique

Le trajet d’un rayon lumineux dans un milieu d’indice n entre les points A et B s’écrit (AB) :

(AB) =n-AB

Démonstration ON2.10 : Chemin optique et différence de chemin

En effet, si 'onde 1 parcourt la distance AB dans le milieu n, elle le fait a la vitesse v = ¢/n. Pour considérer
qu’elle va & la vitesse ¢ = nwv, il faut multiplier la distance par n :

nAB = nvt & nAB = ¢t

Tout se passe comme si ’onde allait a la vitesse ¢ mais parcourait une distance n fois plus grande : on
retrouve alors Impl.O1.2 :

Ao 2w 27 27
= — — Vf = —— Vf == ——— - V = —— M
A " et kSl \ Sl /\0 n81 /\0 (Sl )

— @ Propriété ON2.10 : Déphasage et différence de chemin optique

Pour 2 ondes lumineuses de Ayige = Ao : ‘ Agpa /1 (M) = —koda/1 (M) + Agpo ‘ avec kg = —

|Déphasage a l’originel ‘ Apo = po2 — o1

|Différence de cheminl ‘62/1(1\/[) = (S:M) — (S1M) ‘

IIFADE Expérience des trous d’YOUNG

II/D) 1| Introduction

La nature de la lumiére a été sujet a de grands débats durant de nombreux siécles, entre vision corpusculaire et
ondulatoire. C’est en 1802 que ’expérience dite des « trous d’YOUNG » a permis de confirmer la nature ondulatoire
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II. Interférences lumineuses 11

de la lumiére en réalisant une figure d’interférences lumineuses '. Une version moderne de cette expérience consiste &
pointer un unique laser de longueur d’onde A\g sur deux fentes fines horizontales et paralléles : ces fentes diffractent la
lumiére et se comportent comme deux sources cohérentes.

— Définition ON2.6 : Description du résultat

|
l
. |
La zone de I'espace ot les faisceaux se superposent
est appelé champ d’interférences. Sur un écran, !
on observe alors des variations d’intensité lumineuse : |
|
K . . . !
< au milieu des zones claires (maximum local d’in-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

tensité) on a des interférences constructives;

<& au milieu des zones sombres (minimum local d’in-
tensité) on a des interférences destructives.

< on appelle interfrange et on le note 4 la distance
séparant deux milieux de franges brillantes (ou
sombres) consécutives.

F1GURE ON2.16 — Figure d’interférence.

II/D) 2| Présentation

— € Définition ON2.7 : Présentation trous d’YOUNG

Soit S une source lumineuse ponctuelle, monochromatique de longueur d’onde )y, éclairant deux fentes fines
horizontales et paralléles F; et Fy distantes de 2a, avec O au milieu. S est situé sur un axe optique perpendiculaire
a un écran placé a une distance D trés supérieure & a (pour approximation en ondes planes). Le milieu de
propagation est l’air, d’indice optique n = 1. On se limite au tracé de 2 rayons qui interférent au point M(x),
passant chacun par une des fentes.

» M(z)

H;y

H»

FIGURE ON2.17 — Schéma des trous d’YOUNG

@ Interprétation ON2.2 : Expérience des trous d’YOUNG

On a alors successivement :

< Diffraction : quand 'ouverture est de ’ordre de la longueur d’onde, on observe un étalement du
faisceau. Chaque trou créé une tache de diffraction, de demi-angle , et ces deux téches se
superposent sur I’écran en créant des interférences observables.

< Interférences : avec la formule de FRESNEL pour des intensités égales,

I(M) =21, (1 + COS(ASO2/1(M)))

D> Constructives : pour Ay, (M) = 2pm < | 0,1 (M) = pAo |
Ao

D> Destructives : pour Ay, /1 (M) = (2p+ )7 < | 02/1 (M) = (2p+ 1) |

2

1. Voir la vidéo La plus belle expérience de la Physique.
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https://youtu.be/zPolTp0ddRg
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Ondes — chapitre 2. Interférences a deux ondes

II/D) 3| Résolution

—

@ Propriété ON2.11 : Intensité et interfrange

Pour Iy = I, = Iy, on obtient

4
I(M) = 21, (1 + cos( /\ZCL;))
XD
décrivant des franges, d’interfrange | i = ;
a

Fi1GURE ON2.18 — Franges avec atténuation.

¥ Démonstration ON2.11 : Intensité et interfrange

021 (M) =

On cherche donc a exprimer F1M et FoM. Pour cela, o
Fy sur ’écran, créant ainsi deux triangles rectangles :

(SM)2 — (SM); = SP5 + FoM —

(SPF{ + F1M) < ’ 83/1(M) = FoM — F1M

n place les points Hy et Hy projetés orthogonaux de Fp et
FlHlM et FQHQM.

FoM? = FoHo? + HoM? et FiM? = F1H, %2 + H;M?
SFM=+D?+ (x+a)> et FM=+/D?+(z—a)?
r+a 2 r—a 2
€ rta r+a)’
Or,V14+e ~ 1+ =; comme D > (z; )é7<<1 alors avec € = ona:
e—0 2 D D
enie (142 (259)) e mnan (14l
T 2\ D *3
2
erM=D+ @ o py-ps @t +)
2D
o (z +a)? — (z — a)?
A FoM — F{M =
1msi1, 2 1 2D
(zt+d+z—gd) X (X+a—(x—a))
dy/1(M) =
e 2/1( ) 2D
dax 2ax
©0nM) =5 & 10n (M) = —-
21 2
Soit I(M) = 21, <1 + cos (—)\Zan>)
e 10M) = 215 (1 + cos [ 2792 n
- XoD
|Franges et interfrangel
) Ao D
< Franges claires : 02/1(M) = pAo & |xp =p 5 pEZ
a
Ao 1\ AoD
< : = 20 i - 20X
Franges sombres do1(M) = (2p+1) 5 | % (p+2) 9q pEZL
D
< Interfrange : i=Tpp1 — Tp |10 /\5 [ |
a

Exemple ON2.5 : Interfrange

Voir une autre animation ici. Avec 2a = 0,20mm, Ay = 632nm et D = 1,0m, on trouve 7 = 1,6 mm
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https://phyanim.sciences.univ-nantes.fr/Ondes/lumiere/interference_lumiere.php
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