
Ondes – chapitre 2

Interférences à deux ondes
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2 Ondes – chapitre 2. Interférences à deux ondes

I Superposition d’ondes planes sinusoïdales de mêmes fréquences

I/A Déphasage et différence de marche

I/A) 1 Approximation par une onde plane

Soit une source en un point S, émettant une onde sinusoïdale. En toute généralité, et même sans atténuation, son
amplitude A dépend du point considéré :

s( #»r ,t) = A(r) cos
(
ωt− #»

k · #»r + φ0

)

avec
#»

k le vecteur d’onde et #»r le vecteur position en 3 dimensions. En effet, l’énergie totale d’une perturbation se
répartit selon l’espace disponible, donc A dépend de r. On les différencie alors selon les « vagues » qu’elles forment :

Définition ON2.1 : Fronts d’ondes
[

Si les fronts d’ondes dessinent :

⋄ une droite, alors l’onde est plane ;

⋄ un cercle, alors l’onde est circulaire ;

⋄ une sphère, alors l’onde est sphérique.

Figure ON2.1 – Front d’onde sphérique.

Pour obtenir de résultats simples, on se limite à des ondes planes avec l’approximation suivante :

♥ Propriété ON2.1 : Approximation onde plane

�
À des distances de la source S suffisamment grandes devant
la longueur d’onde λ, on peut approximer la vibration s(M,t)
par une onde plane :

s(M,t) = A cos(ωt− k · SM+ φ0)

avec A constante au voisinage de M.

Démonstration ON2.1 :
�

•S
λ

SM ≫ λ •M

Figure ON2.2 –
Approximation par une onde plane

I/A) 2 Déphasage

♥ Définition ON2.2 : Phase spatiale et déphasage

[ Soit deux signaux sinusoïdaux, de même fréquence, longueur d’onde et nature, provenant de 2 sources S1
et S2, se superposant en un point M. Avec n ∈ [1; 2] :

sn(M, t) = An cos(ωt− kSnM+ φ0n)

On introduit alors pour simplifier la phase spatiale :

φ1(M) = −kS1M+ φ01 et φ2(M) = −kS2M+ φ02

•
S2

S2M

•S1 S1M

•M

Figure ON2.3

Ainsi, le déphasage entre s2 et s1 se réduit à leur différence de phase spatiale :

∆φ2/1(M) = (ωt−kS1M+ φ02

φ2(M)

)− (ωt−kS2M+ φ01

φ1(M)

) ⇔ ∆φ2/1(M) = φ2(M)− φ1(M)
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I. Superposition d’ondes planes sinusoïdales de mêmes fréquences 3

♥ Rappel ON2.1 : Déphasages particuliers

]
En phase

Deux signaux sont en phase si leur déphasage est nul (modulo 2π) :

∆φ ≡ 0 [2π] ⇔ ∆φ = 2pπ p ∈ Z

Les signaux passent par leurs valeurs maximales et minimales aux mêmes
instants, et s’annulent simultanément.

0

s2(t)

t

s1(t)

Figure ON2.4 – En phase.

En quadrature

Deux signaux sont en quadrature phase si leur déphasage est de ±π/2
(modulo 2π) :

∆φ ≡ ±π

2
[2π] ⇔ ∆φ =

(
p+

1

2

)
π p ∈ Z

Quand un signal s’annule, l’autre est à son maximum où à son minimum :
c’est la relation entre un cosinus et un sinus.

0

s2(t)

t

s1(t)

Figure ON2.5 – Quadrature.

En opposition

Deux signaux sont en opposition de phase si leur déphasage est de ±π
(modulo 2π) :

∆φ ≡ ±π [2π] ⇔ ∆φ = (2p+ 1)π p ∈ Z

Lorsqu’un signal passe par sa valeur maximale, l’autre est à sa valeur
minimale, mais ils s’annulent simultanément.

0

s2(t)

t

s1(t)

Figure ON2.6 – Opposition.

I/A) 3 Différence de marche

Démonstration ON2.2 : Différence de marche
� Comme les fréquences sont les mêmes, le déphasage se réexprime par une différence de distances :

∆φ2/1(M) = −kS2M+ φ02 − (−kS1M+ φ01) = −k (S2M− S1M) + φ02 − φ01 ■

♥ Propriété ON2.2 : Déphasage et différence de marche

� ∆φ2/1(M) = −k∆L2/1(M) +∆φ0 avec k =
2π

λ
On a alors

∆L2/1(M) = S2M− S1MDifférence de marche ∆φ0 = φ02 − φ01Déphasage à l’origine

Interprétation ON2.1 : Différence de marche

� ∆L traduit la distance supplémentaire que doit parcourir une onde par rapport à une autre pour arriver au
même point M. Comme elles vont à la même vitesse c, cela introduit un retard, c’est-à-dire un déphasage.

♥ Propriété ON2.3 : ∆L particuliers

� Pour des sources de même phase à l’origine, on a ∆φ0 = 0. Les déphasages particuliers se réécrivent alors
en termes de différence de marche, avec p ∈ Z :

Type En phase En quadrature En opposition

∆L(M) pλ
(
p+

1

2

)
λ

2
(2p+ 1)

λ

2
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4 Ondes – chapitre 2. Interférences à deux ondes

♥ Démonstration ON2.3 : ∆L particuliers

� On part du lien entre ∆φ et ∆L, avec ∆φ0 = 0, et de la
définition du vecteur d’onde :

∆φ(M) = −k∆L(M) ⇔ ∆L(M) = −∆φ(M)
λ

2π

Comme p ∈ Z, −p ∈ Z, donc le signe − importe peu. Ainsi,

∆L(M) = 2pπ · λ

2π
= pλ⋄ En phase :

∆L(M) =

(
p+

1

2

)
π · λ

2π
=

(
p+

1

2

)
λ

2
⋄ En quadrature :

∆L(M) = (2p+ 1)π · λ

2π
= (2p+ 1)

λ

2
⋄ En opposition :

Tout fonctionne comme si on remplaçait 2π par λ.

∆L2/1

pλ

en phase

(2p+ 1)λ

en opposition

(
p+ 1

2

)
λ
2

quadrature

(
p+ 1

2

)
λ
2

quadrature

cos

sin

Figure ON2.7

I/B Somme de signaux

I/B) 1 Présentation

La plupart du temps, les ondes se croisent sans interagir particulièrement, et on ne voit que la somme des signaux.
Voir cette animation geogebra.

Exemple ON2.1 : Superpositions sur une corde

2
f(x− ct) f(x+ ct)

c ct = 0

c ct = ∆t

cct = 2∆t

Figure ON2.8 – Mêmes amplitudes.

f(x− ct) f(x+ ct)

c

c

t = 0

c

c

t = ∆t

c

c

t = 2∆t

Figure ON2.9 – Amplitudes opposées.

Définition ON2.3 : Hypothèses de somme

[
Chaque source émet une Onde Plane Progressive Sinusoïdale (OPPS) de même
fréquence et même nature depuis les points S1 et S2 :

s1(M,t) = A1 cos(ωt+ φ1(M)) et s2(M,t) = A2 cos(ωt+ φ2(M))

et on s’intéresse à leur somme s(M, t) = s1(M, t) + s2(M, t) en un point M.

•
S2

S2M

•S1 S1M

•M

Figure ON2.10 –
Schéma.

I/B) 2 Signaux de même amplitude : A1 = A2 = A0

Outils ON2.1 : Somme de cosinus
å

On remplace la somme par un produit grâce à la relation cos p+ cos q = 2 cos

(
p− q

2

)
cos

(
p+ q

2

)
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I. Superposition d’ondes planes sinusoïdales de mêmes fréquences 5

♥ Démonstration ON2.4 : Signal somme de même amplitude

� s(M,t) = s1(M,t) + s2(M,t)

⇔ s(M,t) = A0 [cos(ωt+ φ1(M)) + cos(ωt+ φ2(M))]

⇔ s(M,t) = 2A0 cos

(
ωt+ φ1(M)− ωt− φ2(M)

2

)
cos

(
ωt+ φ1(M) + ωt+ φ2(M)

2

)

⇔ s(M,t) = 2A0 cos

(
∆φ2/1(M)

2

)
cos

(
ωt+

φ1(M) + φ2(M)

2

)
■

♥ Propriété ON2.4 : Signal somme même amplitude

� s(M,t) = A(M) cos(ωt+ φ(M)) avecAinsi,

A(M) = 2A0 cos

(
∆φ2/1(M)

2

)
Amplitude φ(M) =

φ1(M) + φ2(M)

2
Phase

Exemple ON2.2 : Somme de signaux

2

0

s2(t)
s(t)

t

s1(t)

Figure ON2.11 –
Somme avec déphasage ∆φ2/1 = −π/3.

0

s2(t)
s(t)

t

s1(t)

Figure ON2.12 –
Somme avec déphasage ∆φ2/1 = 3π/4.

♥ Propriété ON2.5 : Cas extrêmes même amplitude

� L’amplitude de s(M,t) est maximale pour des signaux en phase et minimale pour des signaux en opposition
de phase, avec :

Amax = 2A0En phase Amin = 0En opposition

♥ Démonstration ON2.5 : Cas extrêmes même amplitude

�
Amplitude maximale

cos

(
∆φ2/1(M)

2

)
= ±1 ⇒ Amax = 2A0A(M) est maximale pour

cos

(
∆φ2/1(M)

2

)
= ±1 ⇔ ∆φ2/1(M)

2
= pπ ⇔ ∆φ2/1(M) = 2pπ p ∈ Z⇒

Ce déphasage correspond à des signaux en phase : les maxima et minima de vibration se correspondent et
donnent à chaque instant une amplitude double.

Amplitude minimale

cos

(
∆φ2/1(M)

2

)
= 0 ⇒ Amin = 0A(M) est minimale pour
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6 Ondes – chapitre 2. Interférences à deux ondes

cos

(
∆φ2/1(M)

2

)
= 0 ⇔ ∆φ2/1(M)

2
= pπ +

π

2
⇔ ∆φ2/1(M) = (2p+ 1)π p ∈ Z⇒

Ce sont donc des signaux en opposition de phase : les maxima et minima de vibration s’opposent, et
l’amplitude résultante est nulle.

Important ON2.1 : Analyse même amplitude

Le signal somme de deux OPPS de même amplitude A0 et même pulsation ω est :

1) Un signal sinusoïdal et de même pulsation ω ;

2) D’amplitude dépendante de M, et

⋄ Maximale Amax = 2A0 pour signaux en phase (∆φ2/1 = 2pπ, p ∈ Z) ;

⋄ Minimale Amin = 0 pour signaux en opposition de phase (∆φ2/1 = (2p+ 1)π, p ∈ Z).

I/B) 3 Signaux d’amplitudes différentes : A1 ̸= A2

On peut soit utiliser la trigonométrie classique, soit les complexes :

Outils ON2.2 : Trigonométrie

å
cos(a+ b) = cos a cos b− sin a sin b

cos(a− b) = cos a cos b+ sin a sin b

cos θ =
ejθ + e−jθ

2

|z|2 = z · z∗ et tan(arg(z)) =
Im(z)

Re(z)

Propriété ON2.6 : Signal somme amplitudes ̸=
� s(M,t) = A(M) cos(ωt+ φ(M)) avecAlors,

A(M) =
√
A1

2 +A2
2 + 2A1A2 cos

(
∆φ2/1(M)

)
φ(M) = arctan

(
A1 sinφ1(M) +A2 sinφ2(M)

A1 cosφ1(M) +A2 cosφ2(M)

)

Démonstration ON2.6 : Signal somme amplitudes ̸=
�

En réels
s(M,t) = A1 cos(ωt+ φ1(M)) +A2 cos(ωt+ φ2(M))

⇔ s(M,t) = A1(cos(ωt) cos(φ1(M))− sin(ωt) sin(φ1(M)))

+A2(cos(ωt) cos(φ2(M))− sin(ωt) sin(φ2(M)))

⇔ s(M,t) = (A1 cos(φ1(M)) +A2 cos(φ2(M))) cos(ωt)

− (A1 sin(φ1(M)) +A2 sin(φ2(M))) sin(ωt)

⇔ s(M,t) = A(M) cos(ωt+ φ(M))

A(M) cos(ωt+ φ(M)) = A(M) cos(φ(M)) cos(ωt)−A(M) sin(φ(M)) sin(ωt)car

On trouve donc
{
A(M) cosφ(M) = A1 cosφ1(M) +A2 cosφ2(M)

A(M) sinφ(M) = A1 sinφ1(M) +A2 sinφ2(M)

(ON2.1)
(ON2.2)

On obtient A(M) l’amplitude de l’onde somme en prenant (ON2.1)2+(ON2.1)2, et tanφ(M) avec (ON2.1)/(ON2.1) :




A(M)2 (cos2 φ(M) + sin2 φ(M))

=1

= A1
2 +A2

2 + 2A1A2 (cosφ1(M) cosφ2(M) + sinφ1(M) sinφ2(M))

=cos(φ1(M)−φ2(M))

tanφ(M) =
A1 sinφ1(M) +A2 sinφ2(M)

A1 cosφ1(M) +A2 cosφ2(M)

■

En complexes
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I. Superposition d’ondes planes sinusoïdales de mêmes fréquences 7

En supposant directement que s(M,t) = A(M) cos(ωt+ φ(M)) (par linéarité),

s(M,t) = s1(M,t) + s2(M,t)

⇔ A(M)ejφ(M)��ejωt = A1e
jφ1(M)��ejωt +A2e

jφ2(M)��ejωt

⇔ A(M)ejφ(M) = A1e
jφ1(M) +A2e

jφ2(M)

⇒
{ |A(M)|2 = A(M) ·A∗(M) = (A1 +A2)(A1

∗ +A2
∗)

arg(A) = arg
(
A1 +A2

)

⇔
{
A(M)2 = (A1e

jφ1(M) +A2e
jφ2(M)) · (A1e

−jφ1(M) +A2e
−jφ2(M))

φ(M) = arg(A1 cosφ1(M) + jA1 sinφ1(M) +A2 cosφ2(M) + jA2 sinφ2(M)))

⇔





A(M)2 = A1
2 ej(φ1(M)−φ1(M))

=1

+A2
2 ej(φ2(M)−φ2(M))

=1

+A1A2

(
ej(φ1(M)−φ2(M)) + e−j(φ1(M)−φ2(M))

)

=2 cos∆φ2/1(M)

tanφ(M) =
A1 sinφ1(M) +A2 sinφ2(M)

A1 cosφ1(M) +A2 cosφ2(M)

■





A(M) =
√

A1
2 +A2

2 + 2A1A2 cos
(
∆φ2/1(M)

)

φ(M) = arctan

(
A1 sinφ1(M) +A2 sinφ2(M)

A1 cosφ1(M) +A2 cosφ2(M)

)Dans tous les cas, on trouve

♥ Propriété ON2.7 : Cas extrêmes amplitudes ̸=
� L’amplitude de s(M,t) est maximale pour des signaux en phase et minimale pour des signaux en opposition

de phase, avec :

Amax = A1 +A2En phase Amin = |A1 −A2|En opposition

♥ Démonstration ON2.7 : Cas extrêmes amplitudes ̸=
�

Amplitude maximale

cos
(
∆φ2/1(M)

)
= 1 ⇒ Amax =

√
A1

2 +A2
2 + 2A1A2 = A1 +A2Max pour

cos
(
∆φ2/1(M)

)
= 1 ⇔ ∆φ2/1(M) = 2pπ p ∈ ZOr,

Amplitude minimale

cos
(
∆φ2/1(M)

)
= −1 ⇒ Amin =

√
A1

2 +A2
2 − 2A1A2 = |A1 −A2|Min pour

cos
(
∆φ2/1(M)

)
= −1 ⇔ ∆φ2/1(M) = (2p+ 1)π p ∈ ZOr,

Exemple ON2.3 : Cas extrêmes amplitudes ̸=
2

0

s2(t)
s(t)

t

s1(t)

Figure ON2.13 – Signaux en phase.

0

s2(t)
s(t)

t

s1(t)

Figure ON2.14 – Signaux en opposition.
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8 Ondes – chapitre 2. Interférences à deux ondes

Important ON2.2 : Analyse amplitudes différentes

Le signal somme de deux OPPS d’amplitudes A1 et A2 de même pulsation ω est :

1) Un signal sinusoïdal et de même pulsation ω ;

2) D’amplitude dépendante de M, et

⋄ Maximale Amax = A1 +A2 pour signaux en phase (∆φ2/1 = 2pπ) ;

⋄ Minimale Amin = |A1 −A2| pour signaux en opposition de phase (∆φ2/1 = (2p+ 1)π).

I/C Bilan

Important ON2.3 : Interférences (pour ∆φ0 = 0)

Pour deux OPPS de même fréquence, nature et phase à l’origine∗ se superposant en M :

L’amplitude de la somme est maximale si les signaux
sont en phase :

∆φ2/1(M) = 2pπ ⇔* ∆L2/1(M) = pλ

On parle d’interférences constructives.

L’amplitude de la somme est minimale si les signaux
sont en opposition de phase :

∆φ2/1(M) = (2p+ 1)π ⇔* ∆L2/1(M) = (2p+ 1)
λ

2

On parle d’interférences destructives.

p ∈ Z est appelé l’ordre d’interférence. Pour une animation et visualisation dans le plan, voir ce site.

♥ Application ON2.1 : Interférences sonores

� Soient 2 émetteurs sonores envoyant une onde progressive sinusoïdale
de même fréquence, même amplitude et même phase à l’origine.
Le premier est fixé à l’origine du repère, l’émetteur 2 est mobile
et à une distance d du premier, et un microphone est placé à une
distance fixe x0 > d de l’émetteur 1 et est aligné avec les deux
émetteurs. On néglige l’influence de l’émetteur 2 sur l’émetteur 1 et
toute atténuation.

1 Lorsque d = 0, qu’enregistre-t-on au niveau du microphone ?

2 On part de d = 0 et on augmente d jusqu’à ce que le signal enregistré soit nul. Ceci se produit pour d1 = 6,0 cm.
Expliquer cette extinction.

3 En déduire la longueur d’onde puis la fréquence du son émis.

4 Pour d2 = 12,0 cm, quelle sera l’amplitude du signal enregistré ?

1 Si d = 0, alors la différence de marche ∆L1/2(x0) = 0 ; de plus, comme les phases à l’origine des temps de
chaque source est la même, on a ∆φ0 = 0 : ainsi, on a

∆φ1/2(x0) = 0

Autrement dit, les signaux sont en phase. Comme ils ont la même amplitude, au microphone on enregistre un
signal de la fréquence d’émission, avec une amplitude double de celle d’un émetteur.

2 On a toujours ∆φ0 = 0, donc ∆φ1/2(x0) = −k∆L1/2(x0). En augmentant la distance entre les sources, on
augmente le déphasage (en valeur absolue), en mettant la source 1 en retard par rapport à la 2. Ainsi, il y a
une valeur de différence de marche telle que ∆φ1/2(x0) = −π, c’est-à-dire que les signaux seront en opposition
de phase et s’annuleront.

3
∆L1/2(x0) = S1M− S2M = d1

⇔ ∆φ1/2(x0) = −k∆L1/2 = −kd1

⇔ −π = −2π

λ
d1 ⇔ λ = 2d1

d1 = 6,0 cm ⇒ A.N. : λ = 12,0 cm

λ =
c

f
⇔ f =

c

λ
⇒ f = 2,8 kHzet
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II. Interférences lumineuses 9

4 Si on double la distance, alors on aura ∆φ1/2(x0) = −2kd = −2π : ceci est congru à 0 modulo 2π, donc les
signaux seront de nouveau en phase, et on récupère le signal maximal trouvé question 1 .

II Interférences lumineuses

II/A Condition d’interférences : cohérence d’ondes lumineuses

Définition ON2.4 : Cohérence entre sources
[ La plupart des sources lumineuses ont une phase à l’origine qui n’est pas constante, mais prend une valeur

aléatoire au bout d’un certain temps généralement très court : on dit qu’elles envoient des trains d’ondes, avec :

⋄ Temps de cohérence : τc, durée pour laquelle φ0 = cte. Après τc, le prochain train d’onde a un autre φ0.

⋄ Longueur de cohérence : Lc = cτc, c’est la distance de cohérence d’un train d’onde, i.e. avec une unique
phase à l’origine.

Important ON2.4 : Condition d’interférence

Pour interférer, deux sources doivent être cohérentes, c’est-à-dire avoir ∆φ0 = cte ; ceci n’est en général
pas réalisable par manque de contrôle sur cette variation de phase à l’origine (désexcitation quantique aléatoire).
Les interférences lumineuses se font donc avec une unique source, donnant forcément des ondes cohérentes.

Exemple ON2.4 : Cohérence

2
Tableau ON2.1 – Temps et longueurs de cohérence

Source τc (s) Lc (m)

Lumière du Soleil 2 × 10−15 6 × 10−7

Ampoule 3 × 10−14 1 × 10−5

Raie rouge hydrogène 1 × 10−11 4 × 10−3

Laser hélium-néon 1 × 10−9 3 × 10−1

II/B Formule de Fresnel

♥ Propriété ON2.8 : Intensité lumineuse

�
I(M) = K

〈
s2(M,t)

〉
= Kseff

2En général I(M) =
1

2
KA(M)2OPPS

Démonstration ON2.8 : Intensité lumineuse OPPS
� La période (temporelle) typique d’une onde lumineuse est de l’ordre de 10−15 s, ou ≈ 1 fs : c’est une échelle de

temps infinitésimale bien inférieure au temps de détection de n’importe quel capteur optique : l’œil humain
a un temps de réponse ≈ 10−1 s, un capteur CCD ≈ 10−6 s.
Ainsi, un récepteur optique n’est sensible qu’à l’énergie moyenne
du signal. Cette énergie est proportionnelle au carré de la grandeur
s(M,t) propagée par l’onde (ici électromagnétique), d’où

I(M) = K
〈
s2(M,t)

〉

Pour une OPPS (monochromatique), on a

s(M,t) = A(M) cos(ωt+ φ(M))

⇒ I(M) = KA(M)2
〈
cos2(ωt+ φ(M))

〉

= 1
2

=
1

2
KA(M)2 ■

cohérent avec sa représentation temporelle. On le démontre aussi par
intégration (cf. Dm.E6.2).

0 0.5T 1.0T 1.5T

t (s)

0.5

1.0
cos2(ωt)

Figure ON2.15 –
cos2(ωt) et sa moyenne.
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♥ Propriété ON2.9 : Formule de Fresnel

� L’intensité lumineuse I(M) résultant de l’interférence de 2 ondes monochromatiques en un point M de l’espace
s’écrit :

I(M) = I1 + I2 + 2
√
I1I2 cos

(
∆φ2/1(M)

)
ou I(M) = 2I0(1 + cos

(
∆φ2/1(M)

)
)

si A1 = A2 = A0, c’est-à-dire I1 = I2 = I0. On trouve alors

Imax = 4I0En phase Imin = 0En opposition

Démonstration ON2.9 : Formule de Fresnel
� Soient 2 ondes lumineuses cohérentes et de même pulsation, d’amplitudes A1 et A2, interférant en un point M.

On a vu que le signal somme s(M,t) = s1(M,t) + s2(M,t) avait une amplitude

A(M) =
√

A1
2 +A2

2 + 2A1A2 cos∆φ2/1(M)

On trouve donc l’intensité I(M) en en prenant le carré et en multipliant par 1
2K :

I(M) =
1

2
KA(M)2 =

1

2
KA1

2 +
1

2
KA2

2 + 2
1

2
KA1A2 cos

(
∆φ2/1(M)

)

I1 =
1

2
KA1

2 et I2 =
1

2
KA2

2 on trouve
√
I1I2 =

1

2
KA1A2 ■avec

II/C Chemin optique et déphasage

La propagation des ondes lumineuses se fait dans des milieux avec des indices optiques n qui peuvent être différents,
et donc avec des vitesses v = c/n différentes. Pour continuer à travailler comme on le fait, il faudrait se ramener à une
même vitesse, quitte à changer la longueur. On définit ainsi le chemin optique :

♥ Définition ON2.5 : Chemin optique

[ Le trajet d’un rayon lumineux dans un milieu d’indice n entre les points A et B s’écrit (AB) :

(AB) = n ·AB

Démonstration ON2.10 : Chemin optique et différence de chemin

� En effet, si l’onde 1 parcourt la distance AB dans le milieu n, elle le fait à la vitesse v = c/n. Pour considérer
qu’elle va à la vitesse c = nv, il faut multiplier la distance par n :

nAB = nvt ⇔ nAB = ct

Tout se passe comme si l’onde allait à la vitesse c mais parcourait une distance n fois plus grande : on
retrouve alors Impl.O1.2 :

λ =
λ0

n
et − kS1M = −2π

λ
S1M = −2π

λ0
· nS1M = −2π

λ0
(S1M)

♥ Propriété ON2.10 : Déphasage et différence de chemin optique

� ∆φ2/1(M) = −k0δ2/1(M) +∆φ0 avec k0 =
2π

λ0
Pour 2 ondes lumineuses de λvide = λ0 :

δ2/1(M) = (S2M)− (S1M)Différence de chemin ∆φ0 = φ02 − φ01Déphasage à l’origine

II/D Expérience des trous d’Young

II/D) 1 Introduction

La nature de la lumière a été sujet à de grands débats durant de nombreux siècles, entre vision corpusculaire et
ondulatoire. C’est en 1802 que l’expérience dite des « trous d’Young » a permis de confirmer la nature ondulatoire
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de la lumière en réalisant une figure d’interférences lumineuses 1. Une version moderne de cette expérience consiste à
pointer un unique laser de longueur d’onde λ0 sur deux fentes fines horizontales et parallèles : ces fentes diffractent la
lumière et se comportent comme deux sources cohérentes.

Définition ON2.6 : Description du résultat

[
La zone de l’espace où les faisceaux se superposent
est appelé champ d’interférences. Sur un écran,
on observe alors des variations d’intensité lumineuse :

⋄ au milieu des zones claires (maximum local d’in-
tensité) on a des interférences constructives ;

⋄ au milieu des zones sombres (minimum local d’in-
tensité) on a des interférences destructives.

⋄ on appelle interfrange et on le note i la distance
séparant deux milieux de franges brillantes (ou
sombres) consécutives.

I

x

p = − 1
2

p = + 1
2

p = −1

p = +1

p = − 3
2

p = + 3
2

Figure ON2.16 – Figure d’interférence.

II/D) 2 Présentation

♥ Définition ON2.7 : Présentation trous d’Young
[ Soit S une source lumineuse ponctuelle, monochromatique de longueur d’onde λ0, éclairant deux fentes fines

horizontales et parallèles F1 et F2 distantes de 2a, avec O au milieu. S est situé sur un axe optique perpendiculaire
à un écran placé à une distance D très supérieure à a (pour l’approximation en ondes planes). Le milieu de
propagation est l’air, d’indice optique n = 1. On se limite au tracé de 2 rayons qui interfèrent au point M(x),
passant chacun par une des fentes.

Figure ON2.17 – Schéma des trous d’Young

♥ Interprétation ON2.2 : Expérience des trous d’Young

� On a alors successivement :

⋄ Diffraction : quand l’ouverture est de l’ordre de la longueur d’onde, on observe un étalement du
faisceau. Chaque trou créé une tâche de diffraction, de demi-angle θ ≈ λ0/a , et ces deux tâches se
superposent sur l’écran en créant des interférences observables.

⋄ Interférences : avec la formule de Fresnel pour des intensités égales,

I(M) = 2I0
(
1 + cos

(
∆φ2/1(M)

))

▷ Constructives : pour ∆φ2/1(M) = 2pπ ⇔ δ2/1(M) = pλ0 ;

▷ Destructives : pour ∆φ2/1(M) = (2p+ 1)π ⇔ δ2/1(M) = (2p+ 1)
λ0

2
.

1. Voir la vidéo La plus belle expérience de la Physique.
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II/D) 3 Résolution

♥ Propriété ON2.11 : Intensité et interfrange

� Pour I1 = I2 = I0, on obtient

I(M) = 2I0

(
1 + cos

(
4πax

λ0D

))

décrivant des franges, d’interfrange i =
λ0D

2a Figure ON2.18 – Franges avec atténuation.

♥ Démonstration ON2.11 : Intensité et interfrange

�
Intensité

δ2/1(M) = (SM)2 − (SM)1 =��SF2 + F2M− (��SF1 + F1M) ⇔ δ2/1(M) = F2M− F1M

On cherche donc à exprimer F1M et F2M. Pour cela, on place les points H1 et H2 projetés orthogonaux de F1 et
F2 sur l’écran, créant ainsi deux triangles rectangles : F1H1M et F2H2M.

F2M
2 = F2H2

2 +H2M
2 et F1M

2 = F1H1
2 +H1M

2

⇔ F2M =
√

D2 + (x+ a)2 et F1M =
√
D2 + (x− a)2

⇔ F2M = D

√
1 +

(
x+ a

D

)2

et F1M = D

√
1 +

(
x− a

D

)2

Or,
√
1 + ε ∼

ε→0
1 +

ε

2
; comme D ≫ (x ; a) ⇒ x± a

D
≪ 1, alors avec ε =

(
x± a

D

)2

on a :

F2M ≈ D

(
1 +

1

2

(
x+ a

D

)2
)

et F1M ≈ D

(
1 +

1

2

(
x− a

D

)2
)

⇔ F1M = D +
(x− a)2

2D
et F2M = D +

(x+ a)2

2D

F2M− F1M =
(x+ a)2 − (x− a)2

2D
Ainsi,

⇔ δ2/1(M) =
(x+ �a+ x− �a)× (Ax+ a− (Ax− a))

2D

⇔ δ2/1(M) =
4ax

2D
⇔ δ2/1(M) =

2ax

D

I(M) = 2I0

(
1 + cos

(
−2π

λ0

2ax

D

))
Soit

⇔ I(M) = 2I0

(
1 + cos

(
4πax

λ0D

))
■

Franges et interfrange

δ2/1(M) = pλ0 ⇔ xp = p
λ0D

2a
p ∈ Z⋄ Franges claires :

δ2/1(M) = (2p+ 1)
λ0

2
⇔ x′

p =

(
p+

1

2

)
λ0D

2a
p ∈ Z⋄ Franges sombres :

i = xp+1 − xp ⇔ i =
λ0D

2a
■⋄ Interfrange :

Exemple ON2.5 : Interfrange

2 Voir une autre animation ici. Avec 2a = 0,20mm, λ0 = 632 nm et D = 1,0m, on trouve i = 1,6mm
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