
Ondes – chapitre 2

Correction du TD d’application

I Trombone de Kœnig

Le trombone de Kœnig est un dispositif de laboratoire permettant de faire interférer
deux ondes sonores ayant suivi des chemins différents. Le haut-parleur, alimenté par
un générateur de basses fréquences, émet un son de fréquence f = (1500± 1)Hz.
On mesure le signal à la sortie avec un microphone branché sur un oscilloscope.

1 Exprimer en fonction de la distance d de coulissage de T2 par rapport à T1 le déphasage au niveau de la sortie entre
l’onde sonore passée par T2 et celle passée par T1.

Réponse

∆φ2/1(M) = −k∆L2/1(M) = −k(OT2 −OT1)

Or, si on déplace T2 par rapport à T1 de d, l’onde passant dans T2 doit parcourir 2d de plus, une fois pour chaque
partie rectiligne ; ainsi

∆φ2/1(M) = −2kd

⋄
2 En déplaçant la partie mobile T2, on fait varier l’amplitude du signal observé. On observe que lorsqu’on déplace T2

de d = (11,5± 0,2) cm, on passe d’un minimum d’amplitude à un autre. En déduire la valeur de la célérité du son
dans l’air à 20 °C, température à laquelle l’expérience est faite.

Réponse
Cette observation traduit qu’un décalage de 11,5 cm fait passer d’une interférence destructive à celle qui la suit, donc
augmente le déphasage de 2π ou la différence de marche de λ. On a donc

|A2kd| = A2π ⇔ 2�π

λ
d =�π ⇔ 2df = c avec

{
d = 11,5× 10−2 m
f = 1500Hz

A.N. : c = 345m·s−1

⋄
II Interférences de 2 ondes sonores frontales

Dans le montage ci-contre, les deux haut-parleurs, notés HP1 et HP2 et
séparés de la distance 2D, sont alimentés en parallèle par une même tension
électrique : les deux sources sonores émettent donc des vibrations p1(t) et
p2(t) de même pulsation ω, même phase à l’origine φ0 et même amplitude P0.
Les deux ondes arrivent au point M d’abscisse x avec des phases différentes
et donc interfèrent.

On considère que les ondes sonores se propagent sans déformation ni atténuation à la célérité c constante.

1 Exprimer le déphasage ∆φ au point M entre les ondes issues de HP1 et HP2.
Réponse

À partir de HP1, repéré par le point H1, les ondes parcourent la distance D + x pour arriver au micro. À partir de
HP2, repéré par le point H2, elles parcourent la distance D − x. Ainsi,

∆φ1/2(M) = −k∆L1/2(M) +∆φ0(M)

=0 d’après l’énoncé

⇔ ∆φ1/2(M) = −k (|H1M| − |H2M|)
⇔ ∆φ1/2(M) = −k (��D + x− (��D − x))

⇔ ∆φ1/2(M) = −2kx

⋄
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2 Ondes – chapitre 2. Correction du TD d’application

2 En déduire l’amplitude de l’onde sonore résultante au point M.
Réponse

Les ondes p1(M, t) et p2(M,t) étant de même amplitude P0, on calcule l’onde somme p(M, t) = p1(M, t) + p2(M, t) :

p(M,t) = p1(M,t) + p2(M,t)

⇔ p(M,t) = P0 [cos(ωt+ φ1(M)) + cos(ωt+ φ2(M))]

⇔ p(M,t) = 2P0 cos

(
ωt+ φ1(M)− ωt− φ2(M)

2

)
cos

(
ωt+ φ1(M) + ωt+ φ2(M)

2

)
⇔ p(M,t) = 2P0 cos

(
∆φ2/1(M)

2

)
=P (M)

cos

(
ωt+

φ1(M) + φ2(M)

2

)

P (M) = 2P0 cos

(
∆φ(M)

2

)
⇔ P = 2P0 cos(−kx)Soit

⋄
3 Déterminer les positions xn pour lesquelles il y a interférences constructives au point M. En déduire la distance d

entre deux maximums successifs d’intensité sonore.
Réponse

On a interférences constructives si l’amplitude est maximale, ici pour cos(−kxn) = ±1 ⇔ −kxn = nπ. Or,

−kxn = nπ ⇔ −2�π

λ
xn = n�π ⇔ xn = n

λ

2

Les maximums se trouvent aux positions xn. La distance entre deux maximums est donc

d = xn+1 − xn =
λ

2

⋄
4 Expérimentalement on trouve d = 21,2 cm pour une fréquence sonore f = 800Hz. En déduire la valeur de la célérité

du son dans l’air pour cette expérience.
Réponse

Étant donné que λ = cT = c/f , on trouve

λ

2
= d ⇔ c

2f
= d ⇔ c = 2df avec

{
d = 21,2× 10−2 m
f = 800Hz

A.N. : c = 339m·s−1

C’est la valeur usuelle de célérité du son dans l’air à 20 °C.

⋄
III Contrôle actif du bruit en conduite

On s’intéresse à un système conçu pour l’élimination d’un bruit in- désirable
transporté par une conduite. Le bruit est détecté par un premier micro dont le
signal est reçu par un contrôleur électronique. Le contrôleur, qui est le centre du
système, envoie sur un haut-parleur la tension adéquate pour générer une onde de
signal exactement opposé à celui du bruit de manière à ce que l’onde résultante au
point A (voir figure ci-contre) et au-delà de A soit nulle.

1 Exprimer, en fonction de L, l et de la célérité c du son, le temps disponible pour le calcul du signal envoyé sur le
haut-parleur.

Réponse
Entre l’instant où le signal est détecté par le micro 1 et l’instant où ce signal passe en A, il s’écoule un temps égal à
L/c. Pendant ce temps, il faut que le contrôleur calcule et produise le signal qu’il envoie dans le haut-parleur, et que
ce signal se propage jusqu’à A, ce qui prend le temps ℓ/c. Ainsi, le temps disponible pour le calcul est

L− ℓ

c

⋄
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IV. Interférences et écoute musicale 3

2 On suppose le bruit sinusoïdal de pulsation ω. On appelle φ1 la phase initiale du signal détecté par le micro 1 et
φHP la phase initiale du signal émis par le haut-parleur. Exprimer, en fonction de ω, c, L et l, la valeur que doit
avoir ∆φ = φHP − φ1

Réponse
La phase du signal de bruit arrivant en A est

φbruit = φ1 − kL

La phase du signal de correction arrivant en A est

φcorr = φHP − kℓ

Pour avoir interférences destructives, il faut que φcorr = φbruit + π, c’est-à-dire

∆φc/b(A) = φHP − φ1 =
ω

c
(ℓ− L) + π

⋄
3 L’onde émise par le haut-parleur se propage dans la conduite dans les deux sens à partir de A. Expliquer l’utilité du

micro 2.
Réponse

Le micro 1 capte un signal qui est la superposition du bruit et du signal émis par le haut-parleur se propageant à
partir de A vers l’amont. Le micro 2 donne un contrôle du résultat et permet la détermination du meilleur signal de
correction.

⋄
IV Interférences et écoute musicale

La qualité de l’écoute musicale que l’on obtient avec une chaîne hi-fi
dépend de la manière dont les enceintes sont disposées par rapport à
l’auditaire. On dit qu’il faut absolument éviter la configuration repré-
sentée sur la figure : présence d’un mur à une « petite » distance D
derrière l’auditaire.

Comme représenté sur la figure, l’onde issue de l’enceinte se réfléchit sur le mur. On note c = 342m·s−1 la célérité
du son dans l’air.

1 Exprimer le décalage temporel τ qui existe entre les deux ondes arrivant dans l’oreille de l’auditaire : l’onde arrivant
directement et l’onde réfléchie.

En déduire le déphasage ∆φ de ces deux ondes supposées sinusoïdales de fréquence f . La réflexion sur le mur ne
s’accompagne d’aucun déphasage pour la vibration acoustique.

Réponse
Chaque onde parcourt la distance enceinte – auditaire directement, mais l’onde réfléchie parcourt en plus 2D entre
l’auditaire et le mur. Ainsi, la célérité étant notée c, on a

τ =
2D

c

La source étant similaire pour les deux ondes, la phase à l’origine des temps est la même ; de plus il est indiqué que
la réflexion sur le mur n’implique pas de déphasage supplémentaire, donc le déphasage n’est dû qu’à la propagation.
Ainsi, l’onde réfléchie a un déphasage

∆φr/i(M) = ωτ =
4πfD

c

⋄
2 Expliquer pourquoi il y a risque d’atténuation de l’amplitude de l’onde pour certaines fréquences. Exprimer ces

fréquences en fonction d’un entier n. Quelle condition devrait vérifier D pour qu’aucune de ces fréquences ne soit
dans le domaine audible. Est-elle réalisable ?

Réponse
Il peut y avoir une atténuation de l’amplitude si les deux ondes sont en opposition de phase, et donc que les interférences
sont destructives, c’est-à-dire

∆φr/i(M) = (2n+ 1)π ⇔ 4�πfnD

c
= (2n+ 1)�π ⇔ fn = (2n+ 1)

c

4D
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4 Ondes – chapitre 2. Correction du TD d’application

avec n ∈ N. Étant donné que le domaine audible s’étant de [20 ; 20× 103] Hz, il faudrait que la plus petite fréquence
d’atténuation, celle avec n = 0, soit au-delà de 20 kHz ; autrement dit on cherche

fmax <
c

4D
⇔ D <

c

4fmax
avec

{
c = 342m·s−1

fmax = 20 kHz

A.N. : D < 4,3mm

On est donc sûrx de ne pas avoir d’atténuation dans l’audible si on colle notre oreille au mur. . . ce qui est réalisable,
mais correspond presque à ne pas avoir d’interférences du tout.

⋄
3 Expliquer qualitativement pourquoi on évite l’effet nuisible en éloignant l’auditaire du mur.

Réponse
Quand D augmente, l’onde réfléchie par le mur finit par avoir une amplitude faible devant l’onde directe étant donné
qu’une onde sphérique voit son amplitude diminuer avec le rayon : les interférences deviennent de plus en plus
négligeables.

⋄
V Mesure de la vitesse du son avec des trous d’Young

On considère un dispositif composé de deux trous d’Young percés dans un écran opaque et séparés d’une distance
a = 10,0 cm. Une onde ultrasonore de fréquence f = 40 kHz est envoyée en direction des trous. L’amplitude de l’onde
en sortie des trous est mesurée en utilisant un récepteur qui peut être translaté suivant un axe (Ox) parallèle à la
direction des trous et situé à une distance D = 50,0 cm du plan des trous. Le dispositif expérimental est représenté sur
la figure 1. Par la suite, les valeurs de D et a sont supposées connues avec une précision de 1 mm et l’incertitude-type
sur la valeur de f est supposée négligeable.

1 En supposant que la condition D ≫ a, x est vérifiée, rappelez l’expression de l’interfrange i correspondant à la
distance sur l’axe (Ox) entre deux interférences constructives.

Réponse
L’interfrange dans une expérience de trous d’Young dont les fentes sont séparées de a est

i =
λD

a

⋄
Le résultat de la mesure de l’amplitude du signal électrique délivré par le récepteur en différentes positions sur l’axe

(Ox) est représenté sur la figure 2.

2 À partir de la figure 2, estimer la valeur de l’interfrange ainsi que son incertitude-type.
Réponse

On mesure avec une règle graduée au millimètre pour mesurer (conversion d’échelle comprise) 4i = 17,1 cm. La
précision est ici limitée par l’écart entre deux positions de mesure du détecteur. Avec l’échelle de la figure et le facteur
1/

√
3, on trouve l’incertitude-type de mesure u4i = 0,8 cm. Ainsi,

i = (4,3± 0,2) cm

⋄
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V. Mesure de la vitesse du son avec des trous d’Young 5

3 En déduire une estimation de la célérité c du son dans l’air ainsi que de son incertitude-type. On néglige toute
incertitude sur la fréquence f . On rappelle la formule de propagation des incertitudes :

y = ax1
α1x2

α2 ⇒

√(
α1

u(x1)

x1

)2

+

(
α2

u(x2)

x2

)2

Réponse
En utilisant l’expression de l’interfrange et de λ = c/f , on a

c = λf =
fa

D
⇔ c = 3,4× 102 m·s−1

On détermine d’abord l’incertitude sur λ = λD
a avec la formule de propagation, puis u(c) = f · u(λ) :

u(λ)

λ
=

√(
u(i)

i

)2

+

(
u(a)

a

)2

+

(
u(D)

D

)2

avec



λ = 8,4mm
i = 4,3 cm

u(i) = 0,2 cm
a = 10,0 cm

u(a) = 1mm√
3

= 0,6mm

D = 50,0 cm
u(D) = 1mm√

3
= 0,6mm

A.N. : c = (3,4± 0,1)× 102 m·s−1

⋄
Un phénomène de diffraction est observé lorsqu’une onde traverse un trou de rayon r ≈ λ. Le faisceau en sortie du

trou présente alors un demi-angle d’ouverture θ tel que sin(θ) ≈ λ/2r.

4 À partir de la figure 2, estimer l’ordre de grandeur du rayon des trous utilisés dans l’expérience.
Réponse

La diminution de l’amplitude des interférences lorsque x augmente est due au phénomène de diffraction par un trou
d’Young. Sur la figure 2, on peut voir que l’amplitude des interférences s’annule pour xa ≈ 15 cm. Or, d’après la
figure 1, tan(θ) = xa/D ; ainsi, en combinant avec sin(θ) ≈ λ/2r et avec l’approximation des petits angles (tan(θ) ≈ θ
et sin(θ) ≈ θ), on a

xa

D
≈ λ

2r
⇔ r ≈ λD

2xa
≈ 1,4 cm

⋄
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Ondes – chapitre 2

Correction du TD d’entraînement

I Mesure de l’épaisseur d’une lame de verre

On considère un dispositif de trous d’Young composé de deux trous T1 et T2 séparés d’une distance a = 100 µm.
Ce dispositif est éclairé par une source ponctuelle S monochromatique de longueur d’onde dans l’air λ = 532 nm située
sur l’axe optique. La figure d’interférences est observée sur un écran situé à une distance D = 1,00m du plan des trous.
Une lame de verre à faces parallèles d’épaisseur e inconnue et d’indice nv = 1,57 est positionnée en sortie du trou T1.
L’indice optique de l’air est supposé égal à 1.

1 Montrer que la différence de chemin optique δ(M) en un point M de l’écran s’écrit

δ(M) =
ax

D
− (nv − 1)e

Réponse
En notant (SM) le chemin optique de S à M, la différence de chemin optique en M est donnée par

δ2/1(M) = (SM)2 − (SM)1 =���(ST2) + (T2M)−���(ST1)− (T1M)

La source étant sur l’axe optique et l’indice étant le même sur cette portion, on a (ST1) = (ST2) . On se retrouve

donc à calculer le chemin optique à partir des trous. Or, le chemin de T2 à M se fait dans l’air, donc (T2M) = T2M .
En notant F1 et F2 les points d’entrée et de sortie du rayon lumineux dans la lame de verre tels que F1F2 = e, on a

(T1M) = (T1F1) + (F1F2) + (F2M)

= T1F1 + nve+ F2M

= T1F1 + nve+ F1F2 − F1F2 + F2M

= T1F1 + F1F2 + F2M+ (nv − 1)e

= T1M+ (nv − 1)e

Avec T1M = T1F1 + F1F2 + F2M. Autrement dit,

δ2/1(M) = T2M− T1M− (nv − 1)e

et avec le résultat usuel de différence de marche des trous d’Young, c’est-à-dire ∆L2/1(M) = ax/D (attention à la
notation de la distance entre les fentes !), on trouve bien

δ2/1(M) =
ax

D
− (nv − 1)e

Autrement dit, la différence de chemin optique est celle sans la lame à laquelle s’ajoute le retard pris par l’onde issue
de T1 qui va moins vite/parcourt une plus grande distance (à la célérité c) à cause du verre. On retrouve bien que si
nv = 1, la différence de chemin optique est celle attendue sans lame de verre.

⋄
2 Déterminer la position xc sur l’écran de la frange centrale correspondant à δ(M) = 0. De quelle distance s’est déplacée

cette frange par rapport au cas où la lame est absente ?
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8 Ondes – chapitre 2. Correction du TD d’entraînement

Réponse

δ2/1(M) = 0 ⇔ axc

D
− (nv − 1)e = 0 ⇔ xc =

(nv − 1)eD

a

En l’absence de la lame de verre, la frange centrale serait sur l’axe optique, en x = 0 : dans cette situation, elle s’est
donc décalée de xc. ⋄

3 Exprimer l’épaisseur e de la lame en fonction de xc , a, nv et D, puis calculer e pour xc = 28,5 cm.
Réponse

e =
axc

D(nv − 1)
avec


a = 100 µm
D = 1,00× 109 µm
nv = 1,57
xc = 28,5× 107 µm

On isole :

A.N. : e = 50,0 µm

⋄
4 Expliquer pourquoi en réalité la position de la frange centrale ne peut être connue que modulo l’interfrange i.

Qu’est-ce que cela implique sur e ? L’expérience vous paraît-elle réalisable ?
Réponse

La frange centrale, en première approximation, n’est pas distinguable des autres franges brillantes correspondant
également à des interférences constructives : on a donc sa position modulo l’interfrange, soit

xc ≡ xc

[
λD

a

]
et ainsi

e ≡ e

[
λ

nv − 1

]
Autrement dit, la mesure de e n’est possible que modulo λ/(nv − 1) = 0,9 µm : la mesure de la lame de verre ne
serait donc pas réalisable avec cette expérience, puisqu’elle est plus grande que 0,9 µm.

Dans la pratique, la frange brillante principale est distinguable des autres par atténuation de la luminosité sur les
bords, donc l’expérience fonctionne.

⋄
II Interférences sur la cuve à ondes

La figure ci-dessous représente une cuve à ondes éclairée en éclairage stroboscopique. Deux pointes distantes de
a frappent la surface de l’eau de manière synchrone (même fréquence et phase à l’origine), générant deux ondes qui
interfèrent. La figure est claire là où la surface de l’eau est convexe et foncée là où elle est concave. L’amplitude
d’oscillation est plus faible là où la figure est moins contrastée.

1 On suppose pour simplifier que des ondes sinusoïdales partent des deux points S1 et S2 où les pointes frappent
la surface. En notant λ la longueur d’onde, donner la condition pour que l’interférence en un point M situé aux
distances d1 et d2 respectivement de S1 et S2, soit destructrice. Cette condition fait intervenir un entier m.

Réponse

∆φ1/2(M) = −k∆L1/2(M) = −k(d1 − d2) =
2π

λ
(d2 − d1)Par définition,
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III. Interférences ultrasonores sur un cercle 9

Et pour avoir des interférences destructives,

∆φ1/2(M) = (2m+ 1)π ⇔ 2�π

λ
(d2 − d1) = (2m+ 1)�π ⇔ d2 − d1 =

(
m+

1

2

)
λ

⋄
2 Pour chaque entier m le lieu des points vérifiant cette condition est une courbe que l’on appelle dans la suite ligne de

vibration minimale. Les lignes de vibration minimale sont représentées sur la figure de droite : ce sont des hyperboles.
Les parties x < −a/2 et x > a/2 de l’axe (Ox) sont des lignes de vibration minimale. En déduire un renseignement
sur a/λ.

Réponse
Avec S1S2 = a, on observe que tout l’axe x > a/2 correspond à une ligne de vibration minimale, c’est-à-dire un
endroit de l’espace où les interactions sont destructives, i.e. d2 − d1 = (m+ 1/2)λ. Or, pour x > a/2, on a

d2 − d1 = S2M− S1M =���S2M− S1S2 +���S2M ⇔ d2 − d1 = −a

|aλ | = m+
1

2
On en déduit donc

c’est-à-dire que a/λ est un demi-entier (1/2, 3/2, 5/2. . .). Le résultat est le même en raisonnant sur x < −a/2.

⋄
3 Sur le segment S1S2, quel est l’intervalle de variation de d2 − d1 ? Déduire de la figure la valeur de a/λ.

Réponse
Entre S1 et S2, on prend 3 cas extrêmes pour déterminer l’amplitude de d2 − d1 :

d2 − d1 = −a⋄ En S1, d2 = −a et d1 = 0, donc
d2 − d1 = 0⋄ En O, d2 = −a/2 et d1 = a/2, donc
d2 − d1 = −a⋄ En S2, d2 = 0 et d1 = a, donc

−a ⩽ d2 − d1 ⩽ aAinsi,

Or, entre S1S2 on observe plusieurs vibrations minimales, donnant chacune d2−d1 = (m+ 1
2 )λ. On en compte 8 entre

S1S2, correspondant chacune à un ordre d’interférence m. À partir de O et vers les x croissants, on a la première
vibration minimale pour m = 0, la deuxième pour m = 1, la troisième pour m = 2 et la dernière pour m = 3 ; on a
de même par symétrie vers les x décroissants. Ainsi, l’ordre d’interférence obtenu le plus grand est m = 3, et
on n’a pas l’ordre d’interférence m = 4 sinon on aurait une parabole en plus de chaque côté. Ainsi,(

3 +
1

2

)
λ < a ⩽

(
4 +

1

2

)
λ

puisqu’on observe qu’il reste une distance sur S1S2 après l’ordre 3 avant d’atteindre S2 et que si a dépasse (4 + 1/2)λ
on verrait la parabole correspondant à l’ordre 4. Comme on a déterminé à la question précédente que a

λ = m+ 1
2 ,

avec cette étude on a 3 < m ⩽ 4 avec m ∈ N, autrement dit m = 4 , soit

a

λ
=

9

2

⋄
4 Expliquer pourquoi l’image est bien contrastée au voisinage de l’axe (Oy).

Réponse
Le contraste correspond à une grande différence entre les valeurs maximales et minimales. Or, sur (Oy) on a d2 = d1
donc d2 − d1 = 0, c’est-à-dire que les ondes sont en phase et les interférences constructives, donc l’amplitude est
maximale et le contraste est élevé.

⋄
III Interférences ultrasonores sur un cercle

Deux émetteurs E1 et E2 émettent des ondes ultrasonores de même fréquence f = 40 kHz (ce
qui correspond à une longueur d’onde λ = 8,5 nm) et en phase. On note O le milieu du segment
[E1 E2] de longueur a = 4 cm, et (Ox) l’axe situé sur la médiatrice de ce segment. On déplace
le microphone sur un grand cercle de rayon R = 0,5m et on relève l’évolution de l’amplitude
mesurée en fonction de l’angle θ que fait la direction O⃗M avec l’axe (Ox).
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10 Ondes – chapitre 2. Correction du TD d’entraînement

1 a – Faire une figure faisant apparaître les points O, E1, E2 et M, pour un petit angle θ non nul.
Réponse

On a

⋄
b – Tracer l’arc de cercle de centre M passant par E2. On note H son intersection avec la droite (E1M). Que

représente E1H ?
Réponse

E1H est la différence E1M− E2M = r1 − r2 = ∆L1/2(M) avec les notations du cours ; autrement dit, c’est
la différence de marche entre les deux ondes.

⋄
c – Puisque R ≫ a, on peut assimiler H et le projeté orthogonal de E2 sur (E1M). En déduire une expression du

déphasage entre les ondes reçues en M en fonction de θ, a et λ.
Réponse

En raisonnant dans le triangle E1E2H, considéré rectangle, on a E1H = a sin θ. D’où le déphasage :

∆φ2/1(M) =
2πa sin θ

λ

⋄
d – Quelles sont, dans l’intervalle [−30 ; 30] °, les valeurs de θ où on observe un maximum d’amplitude ?

Réponse
L’amplitude est maximale pour des interférences constructives, soit pour ∆φ2/1(M) = 2pπ avec p ∈ Z ; sur θ ça
donne donc

sin θ = p
λ

a
⇔ θ = asin

(
p
λ

a

)
On regarde donc quels sont les ordres d’interférences p tels que θ ∈ [−30 ; 30] ◦ :

⋄ p = 0 ⇒ θ = 0◦, soit un maximum pour tout l’axe x : c’était attendu étant donné les symétries du problème ;
⋄ p = ±1 ⇒ θ = ±12◦, donnant deux points symétriques par rapport à (Ox) ;
⋄ p = ±2 ⇒ θ = ±25◦, pratiquement le double des valeurs précédentes.

p > 2 donne des valeurs en-dehors de l’intervalle. ⋄
2 a – Sur l’intervalle précédent, quelles sont les positions où un minimum d’amplitude est attendu ?

Réponse
On a interférences destructives si ∆φ2/1(M) = (2p+ 1)π, soit

sin θ =

(
p+

1

2

)
λ

a
⇔ θ = asin

((
p+

1

2

)
λ

a

)
⋄ p = 0 ⇒ θ = ±6◦ ;
⋄ p = 1 ⇒ θ = ±19◦.

⋄
b – Si les ondes émises ont même amplitude, quelle est la valeur minimale d’amplitude pour le signal somme ?

Réponse
Pour des ondes reçues avec la même amplitude, l’opposition de phase conduit à une annulation totale de l’ampli-
tude somme. ⋄
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