Mécanique — chapitres 1 et 2

Correction du TD d’application

. ‘ I |Collision entre deux voitures

Pendant le GP explorer organisé par Squeezie en octobre 2022, Pierre suit Xari de prés en vue de le dépasser. On
considére ici que les deux voitures se suivent sur une ligne droite & la vitesse de vop = 30m-s~' & une distance d = 20m

l'une de autre. A la date ¢t = 0, la premiére freine avec une accélération constante a; = —20,0m-s~2. Celle qui suit
commence son freinage a to = 1s plus tard (a cause du temps de réaction du conducteur), avec une accélération de
as = —10,0m-s~2.

En prenant pour origine du repére spatial la position de la seconde voiture & la date ¢ = 0, établir les équations
horaires du mouvement des deux véhicules.

Réponse

Notons M; et Ms les points matériels représentant chacun une des deux voitures. On se limite au mouvement
unidimensionnel selon 'axe = et on notera x1(t) et x2(t) les positions respectives de M; et My selon cet axe.
Initialement, z1(t = 0) = d = 20m et 25(t = 0) = 0.

La voiture M; de Xari subit l'accélération (qui est négative donc c’est une décélération) constante a1. Ainsi, par
intégration successive,
1
x1(t) = §a1t2 +at+p

Avec a et  deux constantes d’intégration. En considérant par ailleurs une vitesse initiale vg et une position initiale
d, on obtient :

1
Il(t) = §a1t2 + ’Uot + d
Pour le second véhicule, il faut décomposer le mouvement en deux étapes successives :

<& pour t € [0; 1]s, a = 0. La position initiale étant par ailleurs nulle et la vitesse initiale étant égale & vy, il vient,
pour t € [0; 1]s:
To (t) = ’Uot

<& pour t > 1, 'accélération vaut as constante. Notons par ailleurs t5 = 1s. On a par intégration :
va(t) = agt + 7
Avec « une constante a déterminer. Or, par continuité de la vitesse, vo(t = t3) = vg. Ainsi,
va(t) = ag(t — t2) + vo

Intégrons une nouvelle fois, avec § une nouvelle constante d’intégration :

1
w3(t) = Saa(t —t2)* + vt +0
En utilisant le fait que x(t3) = vpte, il vient finalement

1
xo(t) = 5@2(15 —t9)% + wpt

&

Déterminer la position z. et la date t. du contact. Pierre avait-il le temps d’esquiver Xari?

Réponse

Il y a contact a I'instant ¢, tel que
z1(te) = z2(te)
Supposons d’abord le contact sur U'intervalle ¢ € [0 ; 1] s. Il faut alors résoudre :

1
§a1tc2 + vete + d = vets

ol [ . d=20m
c ay avee a1 = —30,0m-s2
AN. :[t,=141s > 15\

Cette solution est donc exclue puisqu’elle n’est pas en accord avec notre hypothése initiale ¢t € [0 ; 1] s.
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2 Mécanique — chapitres 1 et 2. Correction du TD d’application

Supposons maintenant ¢, > 1s. Il faut résoudre :

1 1
—ait’ + vete +d = a2 (te = t2)? + vots

2
1 2 1 2 2
© sat +d=3a (te® = 2tat. + 127)
1 1
= 5 (a1 — CLQ) tCZ + aotot, + d — §a2t22 =0

C’est un polynéme de degré 2 dont le discriminant A est tel que

d=20m
1 a; = —30,0m-s 2
B 2 B 1 2 1 )
A = (azt2)” —2(a1 — a2) (d 2a2t2 ) avec as = —20,0m-s 2
t2 =1 S
AN. : [A=600m-s 2
—agty + VA
Do 1. = —t22EVA
(a1 — az)

St =—345s ou t._ =145s

La solution négative étant exclue, on trouve finalement

et ’xl(tc):42,5m‘

Il était donc pratiquement impossible que Pierre esquive Xari, étant donné qu’en freinant au plus tot il n’a eu que
0,45s avant de rentrer en collision avec lui, laissant peu de marge & un autre temps de réaction et a une autre
manoceuvre évasive.

II | Masse attachée a 2 ressorts

n

O/
A
On considére un point M de masse m attaché & deux ressorts identiques verticaux, de
constante de raideur k et de longueur & vide 3. Les deux autres extrémités O et O’ des L
ressorts sont fixes et espacées d’une distance L. On définit 'axe (Oz) vertical ascendant. M
\ 4
O

Déterminer la position d’équilibre z.q de M.

Réponse

On étudie ici le point matériel M de masse m, dans le référentiel du laboratoire supposé galiléen avec le repére (O,u;),
u, vertical ascendant. On repére le point M par son altitude OM = z(t). On effectue le bilan des forces :

—

Poids P=mg = —mgu,
Ressort 1 Frcssort 1 = —k(OM(t) — bo)uz = —k(z(t) — €o)uz
Ressort 2 Frcssort 2 = +k(O'M(t) — lo)uz = +k(L — z(t) — lo)uz

— —
avec le ressort 1 celui d’en-dessous, le ressort 2 celui d’au-dessus. On notera simplement F'; et F'y dans la suite. Avec
le PFD, on a

m&'(t)zﬁ+ﬁ1+1?2
e mi(t) = —mg — k(z(t) — &) + k(L — 2(t) — )
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III. Plan incliné et frottements solides 3

A Téquilibre, le ressort ne bouge plus; on a donc Z = Z = 0, et on trouve ainsi 2eq :

L mg
T T Y T ok

Sans la pesanteur, la masse sera & 1’équilibre entre les deux ressorts, en toute logique. La gravité diminue cette
altitude. On remarque que cette association de ressort est équivalente & avoir un seul ressort de raideur 2k.

&

Déterminer 1'équation différentielle a laquelle satisfait z(¢). On écrira cette équation en fonction de wy a définir et de

Zeq-
Réponse

On a commencé la détermination de I'équation différentielle dans la question 2. On peut simplifier son expression en
remarquant qu’a droite du signe égal, on doit trouver quelque chose homogéne & wp?z. On commence par identifier

wp avec la forme canonique :
2k k
wp=14/— donc —L—g= wozzeq
m m

et finalement, 54w’z = wOZzeq

&

On écarte M d’une hauteur a par rapport a sa position d’équilibre, et on le lache sans vitesse. Déterminer z(t).

Réponse

La solution compléte z(¢) est la somme de la solution particuliére constante z, et de la solution homogéne z;,. La
solution particuliére est, par définition, z.q (on I’a montré question 1). La solution homogéne est celle d’un oscillateur
harmonique, & savoir

zn, = Acos(wot) + B sin(wot)

Ainsi,
2(t) = zeq + A cos(wot) + Bsin(wot)
On trouve A et B avec les conditions initiales :
& 2(0) = zeq + a (masse lachée d’une hauteur a par rapport a la position d’équilibre), or z(0) = A + 2z, donc
A=a
<& 2(0) = 0 (masse lachée sans vitesse initiale), or 2(0) = Bwg donc

B=0

Ainsi, ‘ 2(t) = zeq + a cos(wot) ‘
&

& | 111 Plan incliné et frottements solides

On considére un plan incliné d’'un angle o = 20° par rapport a
I’horizontale. Une brique de masse m = 600 g est lancée depuis le
bas du plan vers le haut, avec une vitesse vg = 2,4m-s~!. Pour
étudier le mouvement, on utilise le repére (O,z,y) avec O coincidant
avec la position de départ de la brique. On note g 'accélération de

la, pesanteur, avec g = 9,81 m-s~2.

On suppose en premier lieu que le contact entre la brique et le plan incliné se fait sans frottements

a — Etablir 'équation horaire du mouvement de la brique lors de sa montée.
Réponse

<& Systéme : {brique}
<& Reéférentiel : terrestre supposé galiléen

<& Repére : (O, u,,u,) (voir schéma)
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4 Mécanique — chapitres 1 et 2. Correction du TD d’application

& Repérage : OM(t) = z(t)ig + y(t)iy, T(t) = @(t)ig + §(t)iay, @(t) = i(t)im + §(t)i,
<& O et t initial : tels que W(O) =0
& Vitesse initiale : 7(0) = vou,

< Bilan des forces :

Poids P = —mgcos alty — mgsin o,
Réaction B= Ru,
<& PFD :
N WX = —prgsin
md=P+R& %Z:—mgcosa—i—R
=0

Il n’y a pas de mouvement sur 4, étant donné que le mouvement se fait selon u, ; ainsi |y =y =§ =0}, et la

seconde équation donne
R =mgcosa

On intégre la premiére pour avoir ’équation horaire sur z(t) :

. . 1 5.
#(t) = —gtsina +vo = | z(t) = —igt sin o + vot

avec les conditions initiales #(0) = vy et 2(0) = 0.

&

b — Déterminer la date a laquelle la brique s’arréte, ainsi que la distance qu’elle aura parcourue.
Réponse

On trouve le temps d’arrét quand la vitesse est nulle. Soit ¢, ce temps d’arrét :

v
I(ts) =0 vy = gtssina < |t = gsifla

On remarque alors que si o« = 0, ty — 400, ce qui est logique puisque sans frottement la brique ne s’arréterait
jamais. On obtient la distance d’arrét en injectant ce temps dans x(t) :

1 ’002

1 2
x(ts) = —igLﬁhﬂJr vo—2 & x(ts)

0 = -
g¢ sini o gsina 2¢gsina

&

On suppose ensuite qu’il existe des frottements solides, avec f le coefficient de frottements solides tel que f = 0,20.

a — Etablir 'équation horaire du mouvement de la brique lors de sa montée.
Réponse

On reprend le méme systéme, mais le bilan des forces change :

< Bilan des forces :

Poids

— . — >
= —Mg CosS Uy — Mg S QUy

= Ry, — Ry

O

Réaction

En effet, sur la montée de la brique, sa vitesse est dirigée vers +u,, donc la force de frottement (qui est une
force de freinage et donc opposée a la vitesse) est dirigée vers —u,. De plus, avec les lois du frottement de
COULOMB, sur la montée la brique glisse sur le support, on a donc

& PFD - N mi = —mgsina — fRy
ma =P+ R< szz = —mgcosa+ Ry
=0

Il n’y a pas de mouvement sur u, étant donné que le mouvement se fait selon u, ; ainsi |y =y =3 =0, et la

seconde équation donne
Ry = mgcosa
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III. Plan incliné et frottements solides 5

Que l'on réinjecte dans la premiére :
Z(t) = —gsina — fgcosa

On intégre cette derniére pour avoir I’équation horaire sur z(t) :

1
z(t) = —gt(sina + fcosa) +vg = | z(t) = figtz(sina + fcosa) + vot

avec les conditions initiales #(0) = vy et 2(0) = 0. On retrouve le résultat précédent en posant f = 0.

&

b — Déterminer la date a laquelle la brique s’arréte, ainsi que la distance qu’elle aura parcourue.
Réponse

On trouve le temps d’arrét quand la vitesse est nulle. Soit t5 ce temps d’arrét :

vy
g(sina + f cosa)

Z(ts) =0 vy = gts(sina+ feosa) & |t, =

Ce temps est plus court que sans frottements. On obtient la distance d’arrét en injectant ce temps dans z(t) :
1 vp? Yo
x(ts) = —= W v
(ts) 24 ) + Og(sina+fcosa)

(g(sina + f cos 04))¢

1 U02

- 2 g(sina + f cosa)

&

On suppose finalement que la brique est posée sur le plan avec « variable.

< | z(ts)

a — Quel doit étre ’angle o pour que I'objet se mette en mouvement ?
Réponse
Cette fois, la brique est initialement & l'arrét, soit @ (0) = 6, et la brique ne glisse pas donc Ry < fRy. On aura
mouvement quand il y aura glissement, c’est-a-dire quand R = fRy. On reprend donc le systéme précédent
avec @ = 0 :

> BB 0= —mgsina — fRy sina = fcosa
@_P_FR@{O:—mgcosa—i—RN < Ry = mgcosa

—

=0

& f=tana & | a = atan(f)

&

b — Si le plan est en bois et la brique en métal, donner la valeur de cet angle. Méme question si la brique est en bois.

On donne
Jter/chene = 0,26 et fenene/chene = 0,34
Réponse
On trouve Qerfenene = 14°| et | aenene/ehone = 19°

&

Avec oo = 0°, on souhaite déplacer une armoire de 100 kg en tirant dessus avec la force F. On donne Jarmoire/sol = 0,25.

N
a — Déterminer la valeur de F' pour mettre en mouvement 1’armoire.
Réponse

<& Systéme : {armoire}
<& Reéférentiel : appartement supposé galiléen

& Repere : (0, u,, u,) avec u, vertical asendant ; on suppose la force de traction dirigée vers +u,, et donc la
vitesse de I’armoire selon +u,

O Repérage : OM = z(t)uy, T = 2(t)is, @ = &(t)un

< Bilan des forces :

Poids P=mgq= —mgi,
Reéaction normale Ry = Ry,
Réaction tangentielle Ry = — Ry
Traction F= Fu,

A la limite du glissement, on a R = fRy.
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6 Mécanique — chapitres 1 et 2. Correction du TD d’application

<& PDF : quand le mouvement est lancé, ’accélération est nulle.

—mg+ Ry
@ P+RN+RT+F(:>{ — F— fRy
Ry = mg m = 100kg
& avec g =10m-s~2
|F = fmy] F=025
F
AN. : [F=250N| & |~ = 25kg
g

Ainsi, il suffit de fournir une force égale & un quart du poids.

b — En déduire & quoi sert de mettre des patins en téflon sur les pieds de I'armoire.
Réponse

Mettre des patins permet de diminuer le coefficient de frottement, et donc de diminuer la force de traction
nécessaire pour déplacer le meuble.

B | IV Charge soulevée par une grue

Une grue de chantier de hauteur h doit déplacer d’'un point & un autre du chantier une charge M de masse m
supposée ponctuelle. On appelle A le point d’attache du cable sur le chariot de la grue.

FIGURE M2.1 — Mouvement vertical FIGURE M2.2 — Mouvement horizontal

Le point A est a la verticale de M posée sur le sol. Déterminer la tension du céable lorsque M décolle (figure M2.1).

Réponse

<& Systéme : {masse m} repérée par son centre d’inertie M.
< Reéférentiel : relié au sol, galiléen.
& Repére : cartésien, (O,u,,u,,u,) avec u; vertical ascendant, O au pied de la grue.

<& BDF : avant qu’elle ne décolle, il y a la réaction du sol; on s’intéresse au décollage, donc au moment o1 elle
s’annule. On aura donc

Poids

Tension

<& PFD : au moment ot la masse décolle, son accélération est positive et selon u,, soit @ (t) = 2(t)u, ; en supposant
un décollage en douceur, Z = 0, soit

ma() = B+T 0= —mg+ T &[T = my]

On a donc la tension égale au poids.

&

L’enrouleur de cable de la grue remonte le cable avec une accélération a, constante. Déterminer la tension du céble
et conclure.

Réponse

Dans ce cas, on a explicitement T =m(a, +g)

La tension est supérieure au poids, et fonction affine de a, : si 'accélération est trop forte, le cable peut rompre.

&
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IV. Charge soulevée par une grue 7

La montée de M est stoppée & mi-hauteur, puis le chariot A se met en mouvement vers la droite (figure M2.2) avec
une accélération aj constante.

a — Quelle est 'accélération de M sachant que M est alors immobile par rapport a A ?
Réponse

L’accélération de M est @y = dz%M. Or, OM = OA + AM avec AM constant : ainsi

d20M _ d’0A
a4t

&

b — Déterminer 'angle « (figure M2.2) que fait le cable avec la verticale en fonction de m, g, a, ainsi que la tension

—
apn =

du céable.
Réponse
Z
On a alors le PFD :
map=mg + 1T < mapu, = —mgu, + 1T cosau, + T sin au,
t h
mayp, = T sin o ano = —
Ainsi, { h T 2N g ?
mg =T cos T—m /7ah2+92

&
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Mécanique — chapitres 1 et 2

Correction du TD d’entrainement

L

I |Etude d’un volant de badminton

B

Un volant de badminton a une masse m = 5,0g. On veut vérifier expérimentalement 'information trouvée sur
internet qui précise qu'un volant laché de trés haut atteint une vitesse limite v; = 25km-h~'. Pour tester cette
affirmation, on veut déterminer l'altitude h a laquelle il faut le lacher (sans vitesse initiale) pour qu’il atteigne cette
vitesse limite.

On lache le volant d’une fenétre en hauteur et on filme sa chute verticale. On note O le point de départ de la
chute, et (Oz) l'axe vertical dirigé vers le bas. Au cours de la chute, on prend en compte une force de frottement due a

Pair de la forme F' = —\oT ou T est le vecteur vitesse du point M, v sa norme et A un coefficient positif. On note g
'accélération de la pesanteur et on rappelle que g = 9,81 m-s~2.

Etablir I’équation différentielle portant sur la norme du vecteur vitesse v(t).

Réponse
<& Systéme : {volant} assimilé & un point matériel M de masse m

< Reéférentiel : terrestre supposé galiléen

& Repére : (0,u;) avec O départ de chute, u; vertical descendant (voir schéma)

<& Repérage : O_l\/f(t) = z(t)uz, U(t) = 2(t)uz, a(t) = Z(t)u;

g gfi]g)iﬁe et instant initial : OM(0) = 2(0)a2 = 0
Poids P=mq =mgi. 0¢z2(t=0)=0
Frottements F=—X0)T(t) = - 2(t)a2 y
<& PFD : h M(t)4z(t)
ma(t):ﬁ—i—l_’)@mz(t):mg M2t & 20+ =2 (t) =g - -
P=mg
Ainsi D+ 2 =g A
,om

<

Montrer I'existence d’une vitesse limite v; et I'exprimer en fonction de A\, m et g.

Réponse
Lorsqu’on lache M sans vitesse initiale d’une hauteur h, la vitesse est faible au départ et la force principale est le
poids, accélérant le mobile vers le bas. Quand la vitesse augmente, les frottements s’intensifient jusqu’a ce qu’ils
compensent le poids, donnant @ = 0 : la vitesse n’évolue plus et reste a sa valeur avant compensation, la vitesse
limite v;. v; étant constante, ¥; = 0, donc 1’équation différentielle donne

A
fU12=g<:> v = mg
m A

&

On note t* =¢/7, z* = z/L et v* =v/v;, avec T = v; /g et L = u;T.

Montrer que t*, z* et v* sont trois grandeurs sans dimension.

Réponse
v* est le rapport de deux vitesses, donc est forcément sans dimension. Ensuite,

g m-s—2

[L] =[v][f] =ms™ ! xs=m

donc 7 est bien un temps et L une longueur ; ce faisant, t* et z* sont évidemment adimensionnées.

&
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Montrer que I’équation différentielle portant sur la vitesse peut se mettre sous la forme :

dv* 9
* -1
a T
Réponse
On réécrit ’équation avec v = vv* et t = 7t* :
dv A d(viv*) A 2 vpdv* Au?, L,
—+ —v=g& — =g — — =
a T mt Y d(rt*) o () 7 dt* m )" =g
) A2 dov* 9
: ;9 m g dt* + ()

La résolution de I’équation précédente conduit & des solutions dont on donne les représentations graphiques ci-dessous.

1,25 5

1 4 /
0,75 / 3 Z
y* z* /
0,25 1 //

0 o =

0 1 2 3 4 5 0 1 2 3 4 5

A Taide des courbes, décrire les deux phases du mouvement.

Réponse

Ces courbes montrent que la vitesse augmente pendant 2 & 37, avant de se stabiliser & v;. Le mouvement est ensuite
rectiligne uniforme, et z est une fonction affine du temps.

&

Déterminer I'altitude minimale h & laquelle il faut lacher le volant pour que sa vitesse au sol soit supérieure ou égale
a 95% de v;. On exprimera cette altitude en fonction de L. Déterminer également la durée At de I'expérience en
fonction de 7.

Réponse

Le courbe représentant v*(t*) montre que v* = 0,95 pour ¢t* = 1,8. La durée de I’expérience pour arriver a cette
valeur est donc 1,8 7, et la hauteur z* & ce temps est z* = 1,2, ce qui correspond a z = 1,2L; ainsi

E=157] o [i=i2n
&

En admettant que la vitesse limite est proche de la valeur trouvée sur internet, calculer numériquement L et 7 puis h
et At.

Réponse

En supposant v; connue, on a

vy vy =25km-h™ ! =70m-s"!
T=— et L=wuyr avec 9
g g=9,81m-s
AN ¢ |7=T1x10"s| et
Ainsi, At=187 et h=12L

~[a=18] @ [i=50u]
&
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II. Coup franc et frottements fluides

11

IT [ Coup franc et frottements fluides

On étudie dans le référentiel terrestre galiléen de re-
peére fixe (O,z,y), un coup franc de football tiré a mur
20m, face au but de hauteur 2,44 m et dans son plan —

médian vertical (xOy). L’axe (Oy) est choisi suivant

la verticale ascendante.
o

0

but

X

Le ballon, de masse m = 430 g, est assimilé a un point matériel M initialement au sol en O. Le mur, de hauteur

N,
>

1,90 m,

est situé & 9,15 m du ballon. Le ballon est lancé & I'instant ¢ = 0 avec une vitesse initiale vy de norme 20m-s~ ! et formant

un angle o de 20° avec ’horizontale. On note g 'accélération de la pesanteur et on rappelle que g = 9,81 m-s™~.

Dans un premier temps, on néglige totalement les frottements de lair.

a — Etablir les équations horaires du mouvement du ballon ainsi que I’équation de la trajectoire.

2

Réponse

<& Systéme : {ballon}

& Reéférentiel : terrestre galiléen
& Repeére : cartésien (O,uy,uy), U, vertical ascendant, u, vers le but

O Repérage : ON(t) = #(t)i2 + y(1)5, T(t) = #0072 + §(0), T() = 20T + (0
<& Origine et instant initial : (71%(0) =0

<& Vitesse initiale : 7(0) = vg cos(a)i, + vo sin(a)iy,

< BDF :

P= mg = —mguy,
wa(t) = —piguy < {y(t) —
o z(t) = vot cos(a)
Ainsi, (M2.1) = {”?(t) = vocos(a) = 1
y(t) = —gt + vosin(a) y(t) = —§gt2 + votsin(a)

étant donné les conditions initiales. On trouve la trajectoire en isolant t(z) pour avoir y(x) :

(M2.1)

(M2.2)

x
t(x) = ———
(z) vo cos(a)
(M2.2) = g ;
= t
y(x) 500 co?(a) x® + ztan(a)
&
b — Le ballon passe-t-il au-dessus du mur ?
Réponse

Le ballon passe au-dessus du mur si ¢(Zmur) > Amur avec Apy, 1la hauteur du mur et zp,,, sa position horizontale.

Avec une application numeérique, on obtient
Y(ZTmur) = 2,17mM > Ay = 1,90m

donc le ballon passe bien au-dessus du mur.

&

¢ — Le tir est-il cadré?

Réponse
Le tir est cadré si y(aput) < hput- Or, y(put) = 1,73 m donc le tir est bien cadré.

&

Il y a en réalité des frottements, modélisés par une force F_’; = —aT(t) avec a = 5,00 x 103 kg-s71.

a — Déterminer les équations horaires en introduisant la constante 7 = .

Réponse

Avec le méme systéme, seul le bilan des forces est modifié (et donc le PFD) :
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12 Mécanique — chapitres 1 et 2. Correction du TD d’entrainement

< BDF :
Poids P= —mgily,
Frottements F= —aTU(t) = —az(t)u, — ay(t)u,
& PFD md(t) = —mgu, — az(t)u, — ay(t)u,
mi(t) = —az E(t) + —a(t) =0
& , &
mij(t) = =mg =ag | §ie) + (1) =

= —yorcos(a)e T 4+ C

donc {’Um(t) = vy cos(a)e /™ _ {m t

vy (t) = (vosin(a) 4+ gr) e/ — g7 y(t) = — (voT sin(a) + g7?) e YT —grt+ D
z(0) =0 C = vo1 cos(a)
or = ) )
y(0)=0 D=+ (U()T sin(a) + g7 )
Finalement,
x(t) = vo7 cos(a) (1 — e*t/T) (M2.3)
y(t) = (vorsin(a) + gr?) (1 - eft/7> —grt (M2.4)
<
b — Donner I’équation de la trajectoire.
Réponse
On isole t(x) de (M2.3) pour l'injecter dans (M2.4) :
M24) = | (1-e77) = — 2 M2.5
( )= ¢ ) voT cos() ( )
seotm=1-—F o (1l ———
voT cos(a) T voT cos(a)
& |t@) In(1-—— (M2.6)
= —T —_ *
voT cos(w)
Soit, en injectant (M2.5) et (M2.6) dans (M2.4) :
ylx) = (tan(a) + gT(a)> x + gr? ln(l - x) (M2.7)

Vg COS voT cos(a)

&

¢ — Le ballon passe-t-il au-dessus du mur ?
Réponse

On calcule : y(Zmyur) = 2,16 m donc le ballon passe au-dessus du mur.

&

d — Le tir est-il cadré?
Réponse

On calcule : y(xpyt) & 1,68 m donc le tir est bien cadré. On constate que les frottements n’ont eu que peu
d’influence sur ce mouvement ; il n’est en effet pas trés rapide, donc la force de frottements est restée assez

faible.
O
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III. Etude d’une skieuse 13

‘ 111 | Etude d’une skieuse

On étudie le mouvement d’une skieuse descendant une piste selon la ligne de plus grande pente, faisant un angle «
avec I'horizontale. L’air exerce une force de frottements supposée de la forme F= —AU(t) avec A un coefficient positif
et U(t) le vecteur vitesse de la skieuse.

On note T et N les composantes tan%entlelle et normale de la force de frottements exercée par la neige, et f le
coefficient de frottements solides tel que |7l = f INI.

On choisit comme origine de I’axe (Ox) de la ligne le plus grande pente la position initiale de la skieuse, supposée
partir & linstant initiale avec une vitesse négligeable. On note (Oy) I’axe normal a la piste en O et dirigée vers le
haut.

Calculer T et N.

Réponse

<& Systéme : {skieuse} assimilée a son centre de gravité
<& Reéférentiel : Ry, supposé galiléen
<& Repeére : (0, u,,u,) (voir schéma)

—>

& Repérage : OM = () ug; U =2(t)uz; @ = 2(t)us.

<& Origine et instant initial : OM( )=10

O Vitesse initiale : 7(0) = 0

<& BDF :
Poids mg = mg(sin(a)u, — cos(a)iy,)
Réaction normale N=N Uy
Réaction tangentielle T = —Tu, = —fNu,
Frottements F=-\7 (t) = =& (t)u,

Comme la skieuse glisse sur la piste, avec les lois du frottement de COULOMB, on a

T=fN
N > > > mi(t) = mgsin(a) — fN — A& (t)
. t)=P+N+T+F
O PFD : ma(t) +N+T+ (:){my'(t):—mgcos(a)—FN

Ainsi, comme il n’y a pas de mouvement sur u,, § = 0 et

‘N:mgcos(a) ‘:>‘T: fN = fmgcos(a)‘

&

Calculer la vitesse U (t) et la position z(¢) de la skieuse a chaque instant t.

Réponse

n réutili remiére équation en y inj n Xpression ur avoir :
On réutilise la premiére équation e ectant 'expression de T' pour avo

(1) + (1) = glsin(a) ~ f cos(a)

Avec U (t) = (t)u,, on obtient une équation différentielle sur v(t) que I'on résout en posant 7 = m/\ avec la solution
homogene Ae—*/7 et la solution particuliére Up

b(t) + — = g(sin(a) — fcos(a)) = v(t) = Ae /™ + v,

et on trouve v, directement en remarquant que, par construction, ¥, = 0 donc v, = g7(sin(a) — f cos(e)). En
combinant on peut utiliser la condition initiale sur la vitesse :

v(t) = Ae™t™ 4 gr(sin(a) — f cos(a))
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14 Mécanique — chapitres 1 et 2. Correction du TD d’entrainement

v(0)=0
< 0= A+ gr(sin(a) — f cos(ar)) = |v(t) = g7(sin(a) — fcos(a)) (1 - e*t/T)
& A = —g7(sin(a) — f cos(e))

On trouve la position z(t) en intégrant v(t) :

Or,
z(0) =0
& 0= g7(sin(a) — fcos(a)) (04 7)+ B = |z(t) = g7(sin(a) — f cos(a)) (t +7 (e_t/T - 1))
& B = —g7?(sin(a) — fcos(a))

Montrer que la skieuse atteint une vitesse limite ¥ et exprimer U (t) et OM(¢) en fonction de ;.

Réponse
La vitesse limite est la solution particuliére v, :

‘ U = gr(sin(a) — f cos(a))u,

En effet, la présence de la force de frottements fluides dont la norme augmente avec la vitesse fait que la vitesse ne
peut pas augmenter indéfiniment. La skieuse atteint une vitesse limite lorsque les frottement compensent la force
motrice du mouvement. Ainsi,

T(t) =y (1 — e_t/T) uy | et |OM(t) = v (t +7 (e_t/T - 1)) Uy

Calculer v; = || U] pour A = 1kg-s™!, f =0,9, g = 10m-s~!, m = 65kg et o = 45°.

Réponse
m = 65kg
g=10m-s—?2
mg, . T
vy = —(sin(a) — fcos(a))| avec A=1kgs
A _ 4ro
o =45
£=09

On remarque que la vitesse limite est une fonction affine du poids. Ainsi, le manque de représentation des femmes
dans les sports d’hiver, souvent justifié par une moins bonne performance pure, est biaisé par la répartition moyenne
de leurs tailles (et donc de leurs poids) plus faible que la répartition moyenne des tailles (et donc poids) des hommes,
rendant pour certains leurs records moins impressionnants.

&

Calculer littéralement et numériquement la date ¢; ou la skieuse a une vitesse égale a v;/2.

Réponse

’l} I
o) = 5 |
»r_ —te/7 | m =65k
éiij}{(lie t) : = = — m g
@gmloen | AN : [i= 53]
@e‘tl/T:l 3
2 ‘

@ A la date t;, la skieuse chute. On néglige alors la résistance de Pair et on considére que le coefficient de frottements
sur le sol est multiplié par 10. Calculer la distance parcourue par la skieuse avant qu’elle ne s’arréte.
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15

Réponse

En tombant a ¢ = ¢, la skieuse a pour vitesse v;/2. L’équation du mouvement sur , ne change pas de forme, mais

on multiplie f par 10, donc T' = 10fmg. Ainsi, en posant t' =t — t1, en projection sur u, et en négligeant )\,
Z(t') = g(sin(a) — 10f cos(a)) = @(t") = gt'(sin(a) — 10f cos(r)) + v;/2

On trouve le temps d’arrét ¢, quand &(t),) = 0, soit

r —U;
fa = 2¢(sin(a) — 10f cos(a))

et la distance d’arrét depuis le point de chute en intégrant @(¢') puis en prenant x(t/,) :

1 t/
z(t') = §gt’2(sin(o¢) —10f cos(a)) + UZT
v = 46m-s~!
2 -1
v g=10m-s
) =—
12lt) = —g Em@ — 107 cos@) | ¢ ) a=45°
F=09

AN. :|z(t))=47Tm

&
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