
Mécanique – chapitres 1 et 2

Correction du TD d’application

I Collision entre deux voitures

Pendant le GP explorer organisé par Squeezie en octobre 2022, Pierre suit Xari de près en vue de le dépasser. On
considère ici que les deux voitures se suivent sur une ligne droite à la vitesse de v0 = 30m·s−1 à une distance d = 20m
l’une de l’autre. À la date t = 0, la première freine avec une accélération constante a1 = −20,0m·s−2. Celle qui suit
commence son freinage à t2 = 1 s plus tard (à cause du temps de réaction du conducteur), avec une accélération de
a2 = −10,0m·s−2.

1 En prenant pour origine du repère spatial la position de la seconde voiture à la date t = 0, établir les équations
horaires du mouvement des deux véhicules.

Réponse
Notons M1 et M2 les points matériels représentant chacun une des deux voitures. On se limite au mouvement
unidimensionnel selon l’axe x et on notera x1(t) et x2(t) les positions respectives de M1 et M2 selon cet axe.
Initialement, x1(t = 0) = d = 20m et x2(t = 0) = 0.

La voiture M1 de Xari subit l’accélération (qui est négative donc c’est une décélération) constante a1. Ainsi, par
intégration successive,

x1(t) =
1

2
a1t

2 + αt+ β

Avec α et β deux constantes d’intégration. En considérant par ailleurs une vitesse initiale v0 et une position initiale
d, on obtient :

x1(t) =
1

2
a1t

2 + v0t+ d

Pour le second véhicule, il faut décomposer le mouvement en deux étapes successives :

⋄ pour t ∈ [0 ; 1] s, a = 0. La position initiale étant par ailleurs nulle et la vitesse initiale étant égale à v0, il vient,
pour t ∈ [0 ; 1] s :

x2(t) = v0t

⋄ pour t > 1, l’accélération vaut a2 constante. Notons par ailleurs t2 = 1 s. On a par intégration :

v2(t) = a2t+ γ

Avec γ une constante à déterminer. Or, par continuité de la vitesse, v2(t = t2) = v0. Ainsi,

v2(t) = a2(t− t2) + v0

Intégrons une nouvelle fois, avec δ une nouvelle constante d’intégration :

x2(t) =
1

2
a2(t− t2)

2 + v0t+ δ

En utilisant le fait que x(t2) = v0t2, il vient finalement

x2(t) =
1

2
a2(t− t2)

2 + v0t

⋄
2 Déterminer la position xc et la date tc du contact. Pierre avait-il le temps d’esquiver Xari ?

Réponse
Il y a contact à l’instant tc tel que

x1(tc) = x2(tc)

Supposons d’abord le contact sur l’intervalle t ∈ [0 ; 1] s. Il faut alors résoudre :

1

2
a1tc

2 +��v0tc + d =��v0tc

⇔ tc =

√
−2d

a1
avec

{
d = 20m
a1 = −30,0m·s−2

A.N. : tc = 1,41 s > 1 s

Cette solution est donc exclue puisqu’elle n’est pas en accord avec notre hypothèse initiale t ∈ [0 ; 1] s.
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2 Mécanique – chapitres 1 et 2. Correction du TD d’application

Supposons maintenant tc > 1 s. Il faut résoudre :

1

2
a1tc

2 +��v0tc + d =
1

2
a2(tc − t2)

2 +��v0tc

⇔ 1

2
a1tc

2 + d =
1

2
a2

(
tc

2 − 2t2tc + t2
2
)

⇔ 1

2
(a1 − a2) tc

2 + a2t2tc + d− 1

2
a2t2

2 = 0

C’est un polynôme de degré 2 dont le discriminant ∆ est tel que

∆ = (a2t2)
2 − 2(a1 − a2)

(
d− 1

2
a2t2

2

)
avec


d = 20m
a1 = −30,0m·s−2

a2 = −20,0m·s−2

t2 = 1 s

A.N. : ∆ = 600m·s−2

D’où tc,± =
−a2t2 ±

√
∆

(a1 − a2)

⇔ tc,+ = −3,45 s ou tc,− = 1,45 s

La solution négative étant exclue, on trouve finalement

tc = 1,45 s et x1(tc) = 42,5m

Il était donc pratiquement impossible que Pierre esquive Xari, étant donné qu’en freinant au plus tôt il n’a eu que
0,45 s avant de rentrer en collision avec lui, laissant peu de marge à un autre temps de réaction et à une autre
manœuvre évasive.

⋄
II Masse attachée à 2 ressorts

On considère un point M de masse m attaché à deux ressorts identiques verticaux, de
constante de raideur k et de longueur à vide ℓ0. Les deux autres extrémités O et O’ des
ressorts sont fixes et espacées d’une distance L. On définit l’axe (Oz) vertical ascendant.

1 Déterminer la position d’équilibre zeq de M.
Réponse

On étudie ici le point matériel M de masse m, dans le référentiel du laboratoire supposé galiléen avec le repère (O, # »uz),
# »uz vertical ascendant. On repère le point M par son altitude OM = z(t). On effectue le bilan des forces :

#»

P = m #»g = −mg # »uzPoids
#»

F ressort 1 = −k(OM(t)− ℓ0)
# »uz = −k(z(t)− ℓ0)

# »uzRessort 1
#»

F ressort 2 = +k(O′M(t)− ℓ0)
# »uz = +k(L− z(t)− ℓ0)

# »uzRessort 2

avec le ressort 1 celui d’en-dessous, le ressort 2 celui d’au-dessus. On notera simplement
#»

F 1 et
#»

F 2 dans la suite. Avec
le PFD, on a

m #»a (t) =
#»

P +
#»

F 1 +
#»

F 2

⇔ mz̈(t) = −mg − k(z(t)−��ℓ0) + k(L− z(t)−��ℓ0)

⇔ z̈(t) +
2k

m
z(t) =

k

m
L− g
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III. Plan incliné et frottements solides 3

À l’équilibre, le ressort ne bouge plus ; on a donc ż = z̈ = 0, et on trouve ainsi zeq :

zeq =
L

2
− mg

2k

Sans la pesanteur, la masse sera à l’équilibre entre les deux ressorts, en toute logique. La gravité diminue cette
altitude. On remarque que cette association de ressort est équivalente à avoir un seul ressort de raideur 2k.

⋄
2 Déterminer l’équation différentielle à laquelle satisfait z(t). On écrira cette équation en fonction de ω0 à définir et de

zeq.
Réponse

On a commencé la détermination de l’équation différentielle dans la question 2. On peut simplifier son expression en
remarquant qu’à droite du signe égal, on doit trouver quelque chose homogène à ω0

2z. On commence par identifier
ω0 avec la forme canonique :

ω0 =

√
2k

m
donc

k

m
L− g = ω0

2zeq

z̈ + ω0
2z = ω0

2zeqet finalement,

⋄
3 On écarte M d’une hauteur a par rapport à sa position d’équilibre, et on le lâche sans vitesse. Déterminer z(t).

Réponse
La solution complète z(t) est la somme de la solution particulière constante zp et de la solution homogène zh. La
solution particulière est, par définition, zeq (on l’a montré question 1). La solution homogène est celle d’un oscillateur
harmonique, à savoir

zh = A cos(ω0t) +B sin(ω0t)

Ainsi,
z(t) = zeq +A cos(ω0t) +B sin(ω0t)

On trouve A et B avec les conditions initiales :

⋄ z(0) = zeq + a (masse lâchée d’une hauteur a par rapport à la position d’équilibre), or z(0) = A+ zeq, donc

A = a

⋄ ż(0) = 0 (masse lâchée sans vitesse initiale), or ż(0) = Bω0 donc

B = 0

Ainsi, z(t) = zeq + a cos(ω0t)

⋄
III Plan incliné et frottements solides

On considère un plan incliné d’un angle α = 20◦ par rapport à
l’horizontale. Une brique de masse m = 600 g est lancée depuis le
bas du plan vers le haut, avec une vitesse v0 = 2,4m·s−1. Pour
étudier le mouvement, on utilise le repère (O,x,y) avec O coïncidant
avec la position de départ de la brique. On note g l’accélération de
la pesanteur, avec g = 9,81m·s−2.

1 On suppose en premier lieu que le contact entre la brique et le plan incliné se fait sans frottements

a – Établir l’équation horaire du mouvement de la brique lors de sa montée.
Réponse

⋄ Système : {brique}
⋄ Référentiel : terrestre supposé galiléen
⋄ Repère : (O, # »ux,

# »uy) (voir schéma)
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4 Mécanique – chapitres 1 et 2. Correction du TD d’application

⋄ Repérage :
#     »

OM(t) = x(t) # »ux + y(t) # »uy, #»v (t) = ẋ(t) # »ux + ẏ(t) # »uy, #»a (t) = ẍ(t) # »ux + ÿ(t) # »uy

⋄ O et t initial : tels que
#     »

OM(0) =
#»
0

⋄ Vitesse initiale : #»v (0) = v0
# »ux

⋄ Bilan des forces :
#»

P = −mg cosα # »uy −mg sinα # »uxPoids
#»

R = R # »uyRéaction

⋄ PFD :

m #»a =
#»

P +
#»

R ⇔

 ��mẍ = −��mg sinα

��mÿ︸︷︷︸
=0

= −mg cosα+R

Il n’y a pas de mouvement sur # »uy étant donné que le mouvement se fait selon # »ux ; ainsi y = ẏ = ÿ = 0 , et la
seconde équation donne

R = mg cosα

On intègre la première pour avoir l’équation horaire sur x(t) :

ẋ(t) = −gt sinα+ v0 ⇒ x(t) = −1

2
gt2 sinα+ v0t

avec les conditions initiales ẋ(0) = v0 et x(0) = 0. ⋄
b – Déterminer la date à laquelle la brique s’arrête, ainsi que la distance qu’elle aura parcourue.

Réponse
On trouve le temps d’arrêt quand la vitesse est nulle. Soit ts ce temps d’arrêt :

ẋ(ts) = 0 ⇔ v0 = gts sinα ⇔ ts =
v0

g sinα

On remarque alors que si α = 0, ts → +∞, ce qui est logique puisque sans frottement la brique ne s’arrêterait
jamais. On obtient la distance d’arrêt en injectant ce temps dans x(t) :

x(ts) = −1

2�
g

v0
2

g �2 sinC2 α

XXXsinα+ v0
v0

g sinα
⇔ x(ts) =

1

2

v0
2

g sinα

⋄
2 On suppose ensuite qu’il existe des frottements solides, avec f le coefficient de frottements solides tel que f = 0,20.

a – Établir l’équation horaire du mouvement de la brique lors de sa montée.
Réponse

On reprend le même système, mais le bilan des forces change :

⋄ Bilan des forces :
#»

P = −mg cosα # »uy −mg sinα # »uxPoids
#»

R = RN
# »uy −RT

# »uxRéaction

En effet, sur la montée de la brique, sa vitesse est dirigée vers + # »ux, donc la force de frottement (qui est une
force de freinage et donc opposée à la vitesse) est dirigée vers − # »ux. De plus, avec les lois du frottement de
Coulomb, sur la montée la brique glisse sur le support, on a donc

RT = fRN

⋄ PFD :
m #»a =

#»

P +
#»

R ⇔

 mẍ = −mg sinα− fRN

��mÿ︸︷︷︸
=0

= −mg cosα+RN

Il n’y a pas de mouvement sur # »uy étant donné que le mouvement se fait selon # »ux ; ainsi y = ẏ = ÿ = 0 , et la
seconde équation donne

RN = mg cosα
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III. Plan incliné et frottements solides 5

Que l’on réinjecte dans la première :
ẍ(t) = −g sinα− fg cosα

On intègre cette dernière pour avoir l’équation horaire sur x(t) :

ẋ(t) = −gt(sinα+ f cosα) + v0 ⇒ x(t) = −1

2
gt2(sinα+ f cosα) + v0t

avec les conditions initiales ẋ(0) = v0 et x(0) = 0. On retrouve le résultat précédent en posant f = 0.⋄
b – Déterminer la date à laquelle la brique s’arrête, ainsi que la distance qu’elle aura parcourue.

Réponse
On trouve le temps d’arrêt quand la vitesse est nulle. Soit ts ce temps d’arrêt :

ẋ(ts) = 0 ⇔ v0 = gts(sinα+ f cosα) ⇔ ts =
v0

g(sinα+ f cosα)

Ce temps est plus court que sans frottements. On obtient la distance d’arrêt en injectant ce temps dans x(t) :

x(ts) = −1

2((((((((
g(sinα+ f cosα)

v0
2

(g(sinα+ f cosα))�
2
+ v0

v0
g(sinα+ f cosα)

⇔ x(ts) =
1

2

v0
2

g(sinα+ f cosα)

⋄
3 On suppose finalement que la brique est posée sur le plan avec α variable.

a – Quel doit être l’angle α pour que l’objet se mette en mouvement ?
Réponse

Cette fois, la brique est initialement à l’arrêt, soit #»a (0) =
#»
0 , et la brique ne glisse pas donc RT < fRN . On aura

mouvement quand il y aura glissement, c’est-à-dire quand RT = fRN . On reprend donc le système précédent
avec #»a =

#»
0 :

HHm #»a︸︷︷︸
=

#»
0

=
#»

P +
#»

R ⇔
{
0 = −mg sinα− fRN

0 = −mg cosα+RN
⇔

{
sinα = f cosα
RN = mg cosα

⇔ f = tanα ⇔ α = atan(f)

⋄
b – Si le plan est en bois et la brique en métal, donner la valeur de cet angle. Même question si la brique est en bois.

On donne
ffer/chêne = 0,26 et fchêne/chêne = 0,34

Réponse
On trouve αfer/chêne = 14◦ et αchêne/chêne = 19◦

⋄
4 Avec α = 0◦, on souhaite déplacer une armoire de 100 kg en tirant dessus avec la force

#»

F . On donne farmoire/sol = 0,25.

a – Déterminer la valeur de
#»

F pour mettre en mouvement l’armoire.
Réponse

⋄ Système : {armoire}
⋄ Référentiel : appartement supposé galiléen
⋄ Repère : (O, # »ux,

# »uy) avec # »uy vertical asendant ; on suppose la force de traction dirigée vers + # »ux, et donc la
vitesse de l’armoire selon + # »ux

⋄ Repérage :
#     »

OM = x(t) # »ux, #»v = ẋ(t) # »ux, #»a = ẍ(t) # »ux

⋄ Bilan des forces :
#»

P = m #»g = −mg # »uyPoids
#»

RN = RN
# »uyRéaction normale

#»

RT = −RT
# »uxRéaction tangentielle

#»

F = F # »uxTraction

À la limite du glissement, on a RT = fRN .
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6 Mécanique – chapitres 1 et 2. Correction du TD d’application

⋄ PDF : quand le mouvement est lancé, l’accélération est nulle.

HHm #»a︸︷︷︸
=0

=
#»

P +
#»

RN +
#»

RT +
#»

F ⇔
{
0 = −mg +RN

0 = F − fRN

⇔

{
RN = mg

F = fmg
avec

m = 100 kg
g = 10m·s−2

f = 0,25

A.N. : F = 250N ⇔ F

g
= 25 kg

Ainsi, il suffit de fournir une force égale à un quart du poids.⋄
b – En déduire à quoi sert de mettre des patins en téflon sur les pieds de l’armoire.

Réponse
Mettre des patins permet de diminuer le coefficient de frottement, et donc de diminuer la force de traction
nécessaire pour déplacer le meuble. ⋄

IV Charge soulevée par une grue

Une grue de chantier de hauteur h doit déplacer d’un point à un autre du chantier une charge M de masse m
supposée ponctuelle. On appelle A le point d’attache du câble sur le chariot de la grue.

Figure M2.1 – Mouvement vertical Figure M2.2 – Mouvement horizontal

1 Le point A est à la verticale de M posée sur le sol. Déterminer la tension du câble lorsque M décolle (figure M2.1).
Réponse

⋄ Système : {masse m} repérée par son centre d’inertie M .

⋄ Référentiel : relié au sol, galiléen.

⋄ Repère : cartésien, (O, # »ux,
# »uy,

# »uz) avec # »uz vertical ascendant, O au pied de la grue.

⋄ BDF : avant qu’elle ne décolle, il y a la réaction du sol ; on s’intéresse au décollage, donc au moment où elle
s’annule. On aura donc

#»

P = m #»g = −mg # »uzPoids
#»

T = T # »uzTension

⋄ PFD : au moment où la masse décolle, son accélération est positive et selon # »uz, soit #»a (t) = z̈(t) # »uz ; en supposant
un décollage en douceur, z̈ ≈ 0, soit

m #»a (t) =
#»

P +
#»

T ⇔ 0 = −mg + T ⇔ T = mg

On a donc la tension égale au poids.

⋄
2 L’enrouleur de câble de la grue remonte le câble avec une accélération av constante. Déterminer la tension du câble

et conclure.
Réponse

T = m(av + g)Dans ce cas, on a explicitement

La tension est supérieure au poids, et fonction affine de av : si l’accélération est trop forte, le câble peut rompre.

⋄
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IV. Charge soulevée par une grue 7

3 La montée de M est stoppée à mi-hauteur, puis le chariot A se met en mouvement vers la droite (figure M2.2) avec
une accélération ah constante.

a – Quelle est l’accélération de M sachant que M est alors immobile par rapport à A ?
Réponse

L’accélération de M est #»aM = d2 #    »
OM
dt2 . Or,

#     »

OM =
#    »

OA+
#     »

AM avec
#     »

AM constant : ainsi

#»aM =
d2

#     »

OM

dt2
=

d2
#    »

OA

dt2
= #»a h

⋄
b – Déterminer l’angle α (figure M2.2) que fait le câble avec la verticale en fonction de m, g, ah ainsi que la tension

du câble.
Réponse

On a alors le PFD :

m #»a h = m #»g +
#»

T ⇔ mah
# »ux = −mg # »uz + T cosα # »uz + T sinα # »ux

Ainsi,

{
mah = T sinα

mg = T cosα
⇔

tanα =
ah
g

T = m
√

ah2 + g2

⋄
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Correction du TD d’entraînement

I Étude d’un volant de badminton

Un volant de badminton a une masse m = 5,0 g. On veut vérifier expérimentalement l’information trouvée sur
internet qui précise qu’un volant lâché de très haut atteint une vitesse limite vl = 25 km·h−1. Pour tester cette
affirmation, on veut déterminer l’altitude h à laquelle il faut le lâcher (sans vitesse initiale) pour qu’il atteigne cette
vitesse limite.

On lâche le volant d’une fenêtre en hauteur et on filme sa chute verticale. On note O le point de départ de la
chute, et (Oz) l’axe vertical dirigé vers le bas. Au cours de la chute, on prend en compte une force de frottement due à
l’air de la forme

#»

F = −λv #»v où #»v est le vecteur vitesse du point M, v sa norme et λ un coefficient positif. On note g
l’accélération de la pesanteur et on rappelle que g = 9,81m·s−2.

1 Établir l’équation différentielle portant sur la norme du vecteur vitesse v(t).
Réponse

⋄ Système : {volant} assimilé à un point matériel M de masse m

⋄ Référentiel : terrestre supposé galiléen

⋄ Repère : (O, # »uz) avec O départ de chute, # »uz vertical descendant (voir schéma)

⋄ Repérage :
#     »

OM(t) = z(t) # »uz, #»v (t) = ż(t) # »uz, #»a (t) = z̈(t) # »uz

⋄ Origine et instant initial :
#     »

OM(0) = z(0) # »uz =
#»
0

⋄ BFD :
#»

P = m #»g = mg # »uzPoids
#»

F = −λv(t) #»v (t) = −λż2(t) # »uzFrottements

⋄ PFD :

m #»a (t) =
#»

P +
#»

F ⇔ mz̈(t) = mg − λż2(t) ⇔ z̈(t) +
λ

m
ż2(t) = g

dv

dt

∣∣∣∣
t

+
λ

m
v2(t) = gAinsi

⋄
2 Montrer l’existence d’une vitesse limite vl et l’exprimer en fonction de λ, m et g.

Réponse
Lorsqu’on lâche M sans vitesse initiale d’une hauteur h, la vitesse est faible au départ et la force principale est le
poids, accélérant le mobile vers le bas. Quand la vitesse augmente, les frottements s’intensifient jusqu’à ce qu’ils
compensent le poids, donnant #»a =

#»
0 : la vitesse n’évolue plus et reste à sa valeur avant compensation, la vitesse

limite vl. vl étant constante, v̇l = 0, donc l’équation différentielle donne

λ

m
vl

2 = g ⇔ vl =

√
mg

λ

⋄
On note t∗ = t/τ , z∗ = z/L et v∗ = v/vl, avec τ = vl/g et L = vlτ .

3 Montrer que t∗, z∗ et v∗ sont trois grandeurs sans dimension.
Réponse

v∗ est le rapport de deux vitesses, donc est forcément sans dimension. Ensuite,

[τ ] =

[
vl
g

]
=

m·s−1

m·s−2
= s

[L] = [vl][τ ] = m·s−1 × s = m

donc τ est bien un temps et L une longueur ; ce faisant, t∗ et z∗ sont évidemment adimensionnées.

⋄
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10 Mécanique – chapitres 1 et 2. Correction du TD d’entraînement

4 Montrer que l’équation différentielle portant sur la vitesse peut se mettre sous la forme :

dv∗

dt∗
+ (v∗)2 = 1

Réponse
On réécrit l’équation avec v = vlv

∗ et t = τt∗ :

dv

dt
+

λ

m
v = g ⇔ d(vlv

∗)

d(τt∗)
+

λ

m
(vlv

∗)
2
= g ⇔ vl

τ

dv∗

dt∗
+

λvl
2

m
(v∗)2 = g

vl
τ

= g et
λvl

2

m
= g ⇒ dv∗

dt∗
+ (v∗)2 = 1Or

⋄
La résolution de l’équation précédente conduit à des solutions dont on donne les représentations graphiques ci-dessous.

5 À l’aide des courbes, décrire les deux phases du mouvement.
Réponse

Ces courbes montrent que la vitesse augmente pendant 2 à 3τ , avant de se stabiliser à vl. Le mouvement est ensuite
rectiligne uniforme, et z est une fonction affine du temps.

⋄
6 Déterminer l’altitude minimale h à laquelle il faut lâcher le volant pour que sa vitesse au sol soit supérieure ou égale

à 95% de vl. On exprimera cette altitude en fonction de L. Déterminer également la durée ∆t de l’expérience en
fonction de τ .

Réponse
Le courbe représentant v∗(t∗) montre que v∗ = 0,95 pour t∗ = 1,8. La durée de l’expérience pour arriver à cette
valeur est donc 1,8 τ , et la hauteur z∗ à ce temps est z∗ = 1,2, ce qui correspond à z = 1,2L ; ainsi

∆t = 1,8 τ et h = 1,2L

⋄
7 En admettant que la vitesse limite est proche de la valeur trouvée sur internet, calculer numériquement L et τ puis h

et ∆t.
Réponse

En supposant vl connue, on a

τ =
vl
g

et L = vlτ avec
{
vl = 25 km·h−1 = 7,0m·s−1

g = 9,81m·s−2

A.N. : τ = 7,1× 10−1 s et L = 4,9m

Ainsi, ∆t = 1,8 τ et h = 1,2L

⇒ ∆t = 1,3 s et h = 5,9m

⋄
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II Coup franc et frottements fluides

On étudie dans le référentiel terrestre galiléen de re-
père fixe (O,x,y), un coup franc de football tiré à
20 m, face au but de hauteur 2,44 m et dans son plan
médian vertical (xOy). L’axe (Oy) est choisi suivant
la verticale ascendante.

Le ballon, de masse m = 430 g, est assimilé à un point matériel M initialement au sol en O. Le mur, de hauteur 1,90 m,
est situé à 9,15 m du ballon. Le ballon est lancé à l’instant t = 0 avec une vitesse initiale v0 de norme 20 m·s−1 et formant
un angle α de 20° avec l’horizontale. On note g l’accélération de la pesanteur et on rappelle que g = 9,81m·s−2.

1 Dans un premier temps, on néglige totalement les frottements de l’air.

a – Établir les équations horaires du mouvement du ballon ainsi que l’équation de la trajectoire.
Réponse

⋄ Système : {ballon}
⋄ Référentiel : terrestre galiléen
⋄ Repère : cartésien (O, # »ux,

# »uy), # »uy vertical ascendant, # »ux vers le but

⋄ Repérage :
#     »

OM(t) = x(t) # »ux + y(t) # »uy, #»v (t) = ẋ(t) # »ux + ẏ(t) # »uy, #»a (t) = ẍ(t) # »ux + ÿ(t) # »uy

⋄ Origine et instant initial :
#     »

OM(0) =
#»
0

⋄ Vitesse initiale : #»v (0) = v0 cos(α)
# »ux + v0 sin(α)

# »uy

⋄ BDF : #»

P = m #»g = −mg # »uy

⋄ PFD :
��m

#»a (t) = −��mg # »uy ⇔
{
ẍ(t) = 0
ÿ(t) = −g

(M2.1)

(M2.1)⇒
{
ẋ(t) = v0 cos(α)
ẏ(t) = −gt+ v0 sin(α)

⇒


x(t) = v0t cos(α)

y(t) = −1

2
gt2 + v0t sin(α)

(M2.2)Ainsi,

étant donné les conditions initiales. On trouve la trajectoire en isolant t(x) pour avoir y(x) :

(M2.2)⇒


t(x) =

x

v0 cos(α)

y(x) = − g

2v02 cos2(α)
x2 + x tan(α)

⋄
b – Le ballon passe-t-il au-dessus du mur ?

Réponse
Le ballon passe au-dessus du mur si y(xmur) ≥ hmur avec hmur la hauteur du mur et xmur sa position horizontale.
Avec une application numérique, on obtient

y(xmur) = 2,17m > hmur = 1,90m

donc le ballon passe bien au-dessus du mur.

⋄
c – Le tir est-il cadré ?

Réponse
Le tir est cadré si y(xbut) ≤ hbut. Or, y(xbut) = 1,73m donc le tir est bien cadré.⋄

2 Il y a en réalité des frottements, modélisés par une force
# »

Ff = −α #»v (t) avec α = 5,00× 10−3 kg·s−1.

a – Déterminer les équations horaires en introduisant la constante τ = m
α .

Réponse
Avec le même système, seul le bilan des forces est modifié (et donc le PFD) :
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12 Mécanique – chapitres 1 et 2. Correction du TD d’entraînement

⋄ BDF :
#»

P = −mg # »uyPoids
#»

F = −α #»v (t) = −αẋ(t) # »ux − αẏ(t) # »uyFrottements

⋄ PFD m #»a (t) = −mg # »uy − αẋ(t) # »ux − αẏ(t) # »uy

⇔

{
mẍ(t) = −αẋ

mÿ(t) = −mg − αẏ
⇔

ẍ(t) +
α

m
ẋ(t) = 0

ÿ(t) +
α

m
ẏ(t) = −g

⇔


v̇x(t) +

vx(t)

τ
= 0

v̇y(t) +
vy(t)

τ
= −g

⇔

{
vx(t) = Ae−t/τ

vy(t) = −gτ +Be−t/τ

Or,

{
vx(0) = v0 cos(α)

vy(0) = v0 sin(α)
⇒

{
A = v0 cos(α)

B = v0 sin(α) + gτ

donc

{
vx(t) = v0 cos(α)e

−t/τ

vy(t) = (v0 sin(α) + gτ) e−t/τ − gτ
⇒

{
x(t) = −v0τ cos(α)e

−t/τ + C

y(t) = −
(
v0τ sin(α) + gτ2

)
e−t/τ − gτt+D

or

{
x(0) = 0

y(0) = 0
⇒

{
C = v0τ cos(α)

D = +
(
v0τ sin(α) + gτ2

)
Finalement, 

x(t) = v0τ cos(α)
(
1− e−t/τ

)
y(t) =

(
v0τ sin(α) + gτ2

) (
1− e−t/τ

)
− gτt

(M2.3)

(M2.4)

⋄
b – Donner l’équation de la trajectoire.

Réponse
On isole t(x) de (M2.3) pour l’injecter dans (M2.4) :

(M2.4)⇒
(
1− e−t/τ

)
=

x

v0τ cos(α)
(M2.5)

⇔ e−t/τ = 1− x

v0τ cos(α)
⇔ − t

τ
= ln

(
1− x

v0τ cos(α)

)
⇔ t(x) = −τ ln

(
1− x

v0τ cos(α)

)
(M2.6)

Soit, en injectant (M2.5) et (M2.6) dans (M2.4) :

y(x) =

(
tan(α) +

gτ

v0 cos(α)

)
x+ gτ2 ln

(
1− x

v0τ cos(α)

)
(M2.7)

⋄
c – Le ballon passe-t-il au-dessus du mur ?

Réponse
On calcule : y(xmur) = 2,16m donc le ballon passe au-dessus du mur.

⋄
d – Le tir est-il cadré ?

Réponse
On calcule : y(xbut) ≈ 1,68m donc le tir est bien cadré. On constate que les frottements n’ont eu que peu
d’influence sur ce mouvement ; il n’est en effet pas très rapide, donc la force de frottements est restée assez
faible. ⋄
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III Étude d’une skieuse

On étudie le mouvement d’une skieuse descendant une piste selon la ligne de plus grande pente, faisant un angle α
avec l’horizontale. L’air exerce une force de frottements supposée de la forme

#»

F = −λ #»v (t) avec λ un coefficient positif
et #»v (t) le vecteur vitesse de la skieuse.

On note
#»

T et
#»

N les composantes tangentielle et normale de la force de frottements exercée par la neige, et f le
coefficient de frottements solides tel que ∥ #»

T ∥ = f∥ #»

N∥.

On choisit comme origine de l’axe (Ox) de la ligne le plus grande pente la position initiale de la skieuse, supposée
partir à l’instant initiale avec une vitesse négligeable. On note (Oy) l’axe normal à la piste en O et dirigée vers le
haut.

1 Calculer
#»

T et
#»

N .
Réponse

⋄ Système : {skieuse} assimilée à son centre de gravité

⋄ Référentiel : Rsol supposé galiléen

⋄ Repère : (O, # »ux,
# »uy) (voir schéma)

⋄ Repérage :
#     »

OM = x(t) # »ux ; #»v = ẋ(t) # »ux ; #»a = ẍ(t) # »ux.

⋄ Origine et instant initial :
#     »

OM(0) =
#»
0

⋄ Vitesse initiale : #»v (0) =
#»
0

⋄ BDF :

m #»g = mg(sin(α) # »ux − cos(α) # »uy)Poids
#»

N = N # »uyRéaction normale
#»

T = −T # »ux = −fN # »uxRéaction tangentielle
#»

F = −λ #»v (t) = −λẋ(t) # »uxFrottements

Comme la skieuse glisse sur la piste, avec les lois du frottement de Coulomb, on a

T = fN

⋄ PFD : m #»a (t) =
#»

P +
#»

N +
#»

T +
#»

F ⇔

{
mẍ(t) = mg sin(α)− fN − λẋ(t)

mÿ(t) = −mg cos(α) +N

Ainsi, comme il n’y a pas de mouvement sur # »uy, ÿ = 0 et

N = mg cos(α) ⇒ T = fN = fmg cos(α)

⋄
2 Calculer la vitesse #»v (t) et la position x(t) de la skieuse à chaque instant t.

Réponse
On réutilise la première équation en y injectant l’expression de T pour avoir :

ẍ(t) +
λ

m
ẋ(t) = g(sin(α)− f cos(α))

Avec #»v (t) = ẋ(t) # »ux, on obtient une équation différentielle sur v(t) que l’on résout en posant τ = m/λ avec la solution
homogène Ae−t/τ et la solution particulière vp :

v̇(t) +
v(t)

τ
= g(sin(α)− f cos(α)) ⇒ v(t) = Ae−t/τ + vp

et on trouve vp directement en remarquant que, par construction, v̇p = 0 donc vp = gτ(sin(α) − f cos(α)). En
combinant on peut utiliser la condition initiale sur la vitesse :

v(t) = Ae−t/τ + gτ(sin(α)− f cos(α))
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Or,
v(0) = 0

⇔ 0 = A+ gτ(sin(α)− f cos(α))

⇔ A = −gτ(sin(α)− f cos(α))

 ⇒ v(t) = gτ(sin(α)− f cos(α))
(
1− e−t/τ

)

On trouve la position x(t) en intégrant v(t) :

x(t) = gτ(sin(α)− f cos(α))
(
t+ τe−t/τ

)
+B

Or,
x(0) = 0

⇔ 0 = gτ(sin(α)− f cos(α)) (0 + τ) +B

⇔ B = −gτ2(sin(α)− f cos(α))

 ⇒ x(t) = gτ(sin(α)− f cos(α))
(
t+ τ

(
e−t/τ − 1

))

⋄
3 Montrer que la skieuse atteint une vitesse limite #»v l et exprimer #»v (t) et

#     »

OM(t) en fonction de #»v l.
Réponse

La vitesse limite est la solution particulière vp :

#»v l = gτ(sin(α)− f cos(α)) # »ux

En effet, la présence de la force de frottements fluides dont la norme augmente avec la vitesse fait que la vitesse ne
peut pas augmenter indéfiniment. La skieuse atteint une vitesse limite lorsque les frottement compensent la force
motrice du mouvement. Ainsi,

#»v (t) = vl

(
1− e−t/τ

)
# »ux et

#     »

OM(t) = vl

(
t+ τ

(
e−t/τ − 1

))
# »ux

⋄
4 Calculer vl = ∥ #»v l∥ pour λ = 1kg·s−1, f = 0,9, g = 10m·s−1, m = 65 kg et α = 45◦.

Réponse

vl =
mg

λ
(sin(α)− f cos(α)) avec


m = 65 kg
g = 10m·s−2

λ = 1kg·s−1

α = 45◦

f = 0,9

A.N. : vl = 46m·s−1

On remarque que la vitesse limite est une fonction affine du poids. Ainsi, le manque de représentation des femmes
dans les sports d’hiver, souvent justifié par une moins bonne performance pure, est biaisé par la répartition moyenne
de leurs tailles (et donc de leurs poids) plus faible que la répartition moyenne des tailles (et donc poids) des hommes,
rendant pour certains leurs records moins impressionnants.

⋄
5 Calculer littéralement et numériquement la date t1 où la skieuse a une vitesse égale à vl/2.

Réponse

v(t1) =
vl
2

⇔ �vl
2

=�vl(1− e−tt/τ )

⇔ 1

2
= 1− e−t1/τ

⇔ e−t1/τ =
1

2

⇔ t1 = τ ln 2 avec τ =
m

λ
et

{
m = 65 kg
λ = 1kg·s−1

A.N. : t1 = 45 s

⋄
6 À la date t1, la skieuse chute. On néglige alors la résistance de l’air et on considère que le coefficient de frottements

sur le sol est multiplié par 10. Calculer la distance parcourue par la skieuse avant qu’elle ne s’arrête.
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Réponse
En tombant à t = t1, la skieuse a pour vitesse vl/2. L’équation du mouvement sur # »uy ne change pas de forme, mais
on multiplie f par 10, donc T = 10fmg. Ainsi, en posant t′ = t− t1, en projection sur # »ux et en négligeant λ,

ẍ(t′) = g(sin(α)− 10f cos(α)) ⇒ ẋ(t′) = gt′(sin(α)− 10f cos(α)) + vl/2

On trouve le temps d’arrêt t′a quand ẋ(t′a) = 0, soit

t′a =
−vl

2g(sin(α)− 10f cos(α))

et la distance d’arrêt depuis le point de chute en intégrant ẋ(t′) puis en prenant x(t′a) :

x(t′) =
1

2
gt′2(sin(α)− 10f cos(α)) +

vlt
′

2

⇔ x(t′a) = − vl
2

8g(sin(α)− 10f cos(α))
avec


vl = 46m·s−1

g = 10m·s−1

α = 45◦

f = 0,9

A.N. : x(t′a) = 4,7m

⋄
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