Mécanique — chapitre 2

Dynamique du point en coordonnées cartésiennes
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# Capacités exigibles

(O Premiére loi de NEwWTON : décrire le mouvement relatif

) . (O Force de gravitation. Modéle du champ de pesanteur
de deux référentiels galiléens.

uniforme au voisinage de la surface d’une planéte. Mou-
(O Deuxiéme loi de NEWTON : déterminer les équations du vement dans le champ de pesanteur uniforme.
mouvement d’un point matériel ou du centre de masse

; . (O Modeéles d’une force de frottement fluide. Influence de
d’un systéme fermé dans un référentiel galiléen.

la résistance de ’'air sur un mouvement de chute.

(O Etudier le mouvement d’un systéme modélisé par un

r un ém r plusieur: dmes en interaction : L .
sur un systéme ou sur plusieurs systémes en interactio point matériel dans un champ de pesanteur uniforme.

et en rendre compte sur un schéma.
(O Exploiter, sans la résoudre analytiquement, une équa-

tion différentielle : analyse en ordres de grandeur, déter-
mination de la vitesse limite, utilisation des résultats
obtenus par simulation numérique. Ecrire une équation
adimensionnée.

(O Exploiter la conservation de la masse pour un systéme
fermé.

(O Etablir 'expression de la quantité de mouvement pour
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(O Troisiéme loi de NEWTON : établir un bilan des forces |
|
|
|
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l
un systéme de deux points : Ps/x = mVa/x- 1

! v/ L’essentiel !
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Mécanique — chapitre 2. Dynamique du point en coordonnées cartésiennes

2
‘ I | Introduction

IVFW Inertie et forces

Mettre en mouvement un corps revient a en modifier la vitesse. Il est cependant plus facile de mettre en
mouvement (ou arréter le mouvement) certains corps par rapport a d’autres. Ce phénomeéne s’appelle 'inertie, et est
proportionnel a la masse d’un corps.

—| € Définition M2.1 : Inertie et quantité de mouvement

La résistance d’un corps matériel de masse m a varier de vitesse est appelée inertie, quantifié par la masse et
le vecteur quantité de mouvement du point matériel M du corps :

‘ Py (t) = mUnya(t) ‘

avec Uy (t) le vecteur vitesse du point M dans le référentiel R.

Il est en effet plus difficile de déplacer une voiture & I'arrét qu'un caddie & I’arrét, et inversement il est plus difficile
d’arréter une voiture qu’un caddie. Dans I'analogie électromécanique, c’est I'inductance L qui s’oppose & la variation
du courant quand m s’oppose a la variation de la vitesse.

— Définition M2.2 : Forces, forces fondamentales

Les forces caractérisent les actions mécaniques sur un point matériel M, et
causent son mouvement. Ce sont des vecteurs et elles sont indépendantes
du référentiel. Il existe quatre de ces forces que 'on caractérise de
« fondamentales » :

‘ IN = 1kgms2 ‘

TABLEAU M2.1 — Interactions fondamentales

Type . - s
Faible Forte Electromag. Gravitationnelle
Caract.

Intensité Faible Tres forte Forte Faible
Portée Extrémet courte Trés courte Lonete Tres lonete
(~ 10~ 18 m) (~ 10~ m) & &
Agit sur Fermions Quarks et gluons Particules chargées Particules massives
e . Cohésion des
Désintégration L. L . .
) . . . Cohésion des matériaux, Poids, organisation
Conséquences  radioactive, fusion ) s .
L. nucléons propriétés cosmique
nucléaire L.
mécaniques

— Rappel M2.1 : Interactions électrostatique et gravitationnelle

Interaction électrostatique |

Les particules de méme signe se repoussent, tandis que celles de signes opposées s’attirent. Elle est
responsable de la cohésion des matériaux et de leurs propriétés matérielles (dureté, viscosité. ..).

La force d’interaction électrostatique causée par une particule de charge

ga sur une charge gp est : 7 qfﬁ)i%_
A - AQB 7
-] (ls\q3<$q
A-B = u, avec U, = —
A—B T T -
c dmey AB?2 AB

FIGURE M2.1 —

Interaction électrostatique.

F’ 1 qdAqdB —» AB 3 - A ur
u, vecteur unitaire dirigé de A vers B. |

Interaction gravitationnelle

Avec l'interaction gravitationnelle, la masse étant une grandeur positive, toutes les massives s’attirent entre elles.
Elle prédomine a 1’échelle astronomique.
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I.

Introduction 3

La force d’interaction gravitationnelle causée par une masse m 4 sur une

masse mp est : FyasBmB ___----
Ao B
F G
A=B=—-"(G——u avec = —
o YoAB? T " AB FI1GUurRE M2.2 —

|

|

1

l

— R -~

mampg _, - AB | T

|

|

1

| Interaction gravitationnelle.

1

u, vecteur unitaire dirigé de A vers B.

Les trois lois de NEWTON (1687)

I/B)1| Principe d’inertie

pa—

@ Loi M2.1 : Principe d’inertie

Il existe des référentiels dits galiléens dans lesquels un point M soumis & aucune action mécanique est
< soit au repos; <& soit en translation rectiligne uniforme.

Ainsi, tout référentiel en translation rectiligne uniforme par rapport a un référentiel galiléen est galiléen.

—

Important M2.1 : Caractére galiléen des référentiels

Il n’existe rigoureusement aucun référentiel galiléen, mais on peut en considérer certains comme approximativement
galiléens lorsqu’on étudie le probléme sur une durée assez courte devant une durée typique du systéme, afin
que les effets de non-galiléeanité soient négligeables. Les référentiels fondamentaux sont alors supposés galiléens
si le mouvement est plus court que :

< Héliocentrique : un trajet significatif du Soleil dans la galaxie, soit plusieurs millions d’années ;

& Géocentrique : un trajet significatif de la Terre autour du Soleil, soit une année;

<& Terrestres : une rotation significative de la Terre, soit une journée.

I/B)2| Principe fondamental de la dynamique

C’est une des lois les plus importantes de la physique, permettant de relier le mouvement cinématique (vitesse

et associés) d’un corps en fonction de ses causes (les forces extérieures).

¥ Loi M2.2 : Principe fondamental de la dynamique

Dans un référentiel galiléen R, I’évolution du vecteur quantité de mouvement Py /x (t) est reliée aux forces
extérieures agissant sur le systéme :

d P/ -
Tt/ = Z Fext—>M

Lorsque le systéme est fermé et donc la masse est constante, on a V¢, m}&’{é Pumyz(t) = mUy x(t), ainsi

maya(t) =D Fextom

avec dyi/x(t) le vecteur accélération du point M.

Remarque M2.1 : Mouvements de systémes ouverts

Certains mouvements ne peuvent donc pas étre traités avec cette derniére formulation s’ils s’accompagnent d’une
variation de masse :

<& Le mouvement d’une fusée qui briile son carburant puis abandonne ses réservoirs ;
<& Le mouvement d’une goutte d’eau qui s’évapore lors de sa chute.

Dans ces cas-1a, on utilise la premiére formulation.
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4 Mécanique — chapitre 2. Dynamique du point en coordonnées cartésiennes

I/B) 3| Loi des actions réciproques

— @ Loi M2.3 : Loi des actions réciproques

Pour deux points M; et My en interaction, la force |
exercée par le point 1 sur le point 2 est égale & !
I'opposé de la force exercée par le point 2 sur le |

—> —
Fg15palte table—boite

— —
Fballoﬁﬁl Fboitc%tablc

FiGURE M2.3 — Actions réciproques

point 1 :

‘}_7)1%2:_?2—)1‘

II | Ensembles de points

IV Centre d’inertie

E r—| Définition M2.3 : Centre d’inertie i

Le centre d’inertie ou centre de gravité G d’'un
ensemble de points matériels M; de masses m; est
défini par :

M, o

— Mtot
1

mp = my mp > mo my > me

Il s’agit du barycentre des points du systéme, pon-

o F1GURE M2.4 — Centres de gravités.
déré par leur masse.

oG = Z i OM; avec O quelconque 3

# —|  Propriété M2.1 : Centre d’inertie | Démonstration M2.1 : Centre d’inertie | ° a—
0 ==—
< On peut réécrire cette relation sous la forme : oG = Z i OM; < myy OC = Z m;OM; o —
— Mot e
v =22 mi
; ‘ ' @Zml<OM1—OG):O<=> ZmiGMiZO
i i

Application M2.1 : Centres d’inertie

\J
E" Soient 2 masses placées en A et en B. Déterminer la position de G en calculant AC dans les deux cas suivants :

m m 3m m
— m 1
[1Jo=a= AG=-"AB+ 0 «|AG=-AB
2m 2
— m — — —— 11—
De méme, AG=-—AB+ 0 < |AG=-AB
4m 4

Remarque M2.2 : Solides continus

ﬁ Cette définition peut étre étendue aux solides qui peuvent étre vus comme un ensemble infini de points infiniment
proches. Dans ce cas, la somme discréte devient une intégrale.

IIFAEN Quantité de mouvement d’un ensemble de points

Définition M2.4 : 7 d’un ensemble de points

E Le vecteur quantité de mouvement d’un ensemble & de points matériels M; de masses m; s’exprime :

Dsx(t) = Z P, (t) = Z m; U, /()
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II. Ensembles de points 5

—| € Propriété M2.2 : P et centre d’inertie

La quantité de mouvement de cet ensemble & est celle d’'un point matériel placé en G et de masse myey :

‘ 1‘9’3/@ (t) = myot Ug/ge (t) ‘ autrement dit, tout se passe comme si la masse était concentrée en G

Démonstration M2.2 : pg et centre d’inertie

Pour que les choses soient simples, il faudrait donc que pg /& (t) soit relié¢ au centre d’inertie. Or,

R doG 1 dOM, — —
Ua/m(t) = | T Zmi T @*‘ Ps/r(t) = miot Vg a(t) ‘ u
R R
Ps/a(t)

IIVA®N Théoréme de la résultante cinétique

Sion peut étudier la cinématique d’un corps par 1’étude de son centre de gravité, comment les forces interviennent-elles
sur cet ensemble de points 7

Démonstration M2.3 : Théoréme de la résultante cinétique

Considérons pour simplifier un systéme de deux points M; et My de masses m, et ms en mouvement dans un
référentiel galiléen. On peut appliquer le principe fondamental de la dynamique & chacun d’entre eux :

dﬁM R = =1 dﬁM R > =
Tl/ = FM2—>M1 + Fext—>M1 et TZ/ - FM1—>M2 + Fext—>M2

avec deux types de forces : les forces intérieures du systéme, ici celles exercées par My sur My, et les forces
extérieures, c’est-a-dire toutes les autres. Ainsi, avec la définition de la quantité de mouvement d’un ensemble
de points,

d‘: dp dp - — — —
pdst’/fR = p:;/[tl/m + p(l\i/iz/(k = I-FM1~>M2 + FM2~>M1I+Fext~>M1 + Fext%Mz u

=0 d’aprés la 3éme loi

—| € Propriété M2.3 : Théoréme de la résultante cinétique

Le PFD pour un point se transpose & un ensemble de points en prenant pour point matériel le centre
d’inertie G affecté de la masse totale my; du systéme, en ne considérant que les forces extérieures s’appliquant
a 'ensemble :

dP s/ dv -
TRC : T;/(R = Mot d(z/m - Z Fext%cs’

— Important M2.2 : Conclusion ensemble de points

Le mouvement du centre de gravité n’est affecté que par les forces extérieures au systéme. Ainsi, dans la suite,
on étudiera le mouvement du centre de gravité, de masse myq;, Soumis aux forces extérieures au systéme.

—| © Outils M2.1 : Etapes de résolution

Systéme et référentiel : quel est 'objet en mouvement, dans quel référentiel ’étudie-t-on 7

Repére et repérage : donner le repére, détailler le repérage, si existantes les conditions initiales, et définir
les notations nécessaires.

Bilan des forces : faire le bilan projeté dans le repére choisi.
Schéma : faire un schéma du probléme dans une situation quelconque ', avec le systéme, repére, et forces.
Deuxiéme loi de NEWTON : appliquer le PFD/TRC au systéme.

@ Equations scalaires : donner les trois équations #(t), j(t) et 2(t).

Répondre aux questions : le plus souvent, obtenir les équations horaires x(t), y(t) et z(¢).
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6 Mécanique — chapitre 2. Dynamique du point en coordonnées cartésiennes

‘ 111 | Forces usuelles

IIIFVAN Poids et poussée d’ ARCHIMEDE

—| € Définition M2.5 : Poids et pesanteur

Dt a lattraction gravitationnelle de la Terre, un
corps de masse m & sa surface subit une force que

P'on appelle le poids, telle que : de la surface terrestre on a

avec ¢ le vecteur accélération de la pesanteur,
de norme g = || 7| = 9,81 m-s~2 et dirigé verticale-

ﬁ):m?f:fmg@’ 3 9 :7QRT2
ment vers le sol. 3

Par définition de I'interaction gravitationnelle, proche

avec mrp et Rp la masse et le rayon de la Terre, @ la
constante gravitationnelle, et u, vertical ascendant.

Définition M2.6 : Chute libre, fléche et portée

entre l'origine et le point d’impact, et fléche la hauteur maximale atteinte par le projectile.

Un systéme en chute libre pure ne subit que son poids. On appelle portée d'un tir la distance horizontale

—| € Propriété M2.4 : Tir en chute libre

faisant un angle («) avec le sol. Alors :
1) La masse du corps n’intervient pas dans I’expression de son accélération ;

2) La trajectoire qu’il forme est une parabole;

)

)

3) La portée maximale est atteinte pour () = w/4 rad;

4) La fleche maximale est atteinte pour () = 7/2 rad;
)

5) Le temps de vol est maximal pour (o) = 7/2 rad.

Soit un corps tiré a la surface de la Terre & altitude nulle, soumis uniquement & son poids, lancé & la vitesse vg

® Démonstration M2.4 : Tir en chute libre

1) Systéme et référentiel : {balle} dans Rjan, supposé
galiléen

Repére et repérage :

<& Repeére : (0,4, Uy, uz) (voir schéma)

o]
< Repérage : 3 Zﬁa

<& Conditions initiales : O—M)(O) =0 et T(0)=uwvpcos(a)iy + vo sin(a)uy,
Bilan des forces : Ici, seul le poids s’applique :
Poids P= mg = —mgu,
a7 > — —
(5] PFD. T —m@(t) =Y Fexe = P
@ Equations scalaires : on projette sur les axes :

mi(t) =0 a0
miy(t) = —myg = {x(t) =0

mZ(t) =0 ignoré dans la suite

1. On ne fait jamais de schéma a I’équilibre ou a des angles particuliers (45° par exemple)

OM(t) = a(t)iz + y(t)a, + 2(t)i2
T(t) = &)y + v(t)u, + ()l FIiGUrRE M2.5 — Schéma
() = B0 + (0T + 20
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III. Forces usuelles 7

On remarque donc bien que 'accélération ne dépend pas de la masse ; ainsi, sans frottements, tous les
corps chutent a4 la méme vitesse. Voir cette vidéo pour une expérience sous vide.

2) On commence par trouver les équations horaires. Pour cela, on intégre Iaccélération pour obtenir la vitesse :

y(t) = —gt + Ko 9(0) = vp sin(a) = Ko = Y(t) = —gt + vg sin(a)

{y‘c(t) = K, o {5;(0) = vy cos(a) = K, {a’s(t) = vy cos(a)

De méme pour les équations horaires du mouvement :

z(t) = voi cos(ar) + C4 2(0) =0=Cy x(t) = voi cos(a)
. or = .
y(t) = —§9t2 + vot sin(a) + Ca {y(O) =0=0C y(t) = —§gt2 + vt sin(a)
Si on cherche la trajectoire, il s’agit alors d’obtenir 3 Y lTJ’
la courbe y(x) décrite dans le plan zy, c’est-a-dire
éliminer le temps ¢. A partir de I’équation horaire !
SUr U, on a ! Yp e me oo
p— T | ' Fléche
v cos(a) : ! du tir
| z X
1 x? x ‘
N - g— i - : Tp x
y(x) 2g7.)02 COS2(O{) + Vo Sln(Oé) v COS(OC) : O Portxéz/(il —
g | S
sSlylr) = ——————— +ztan(a n
u(w) 2v9? cos? (ar)z? () | FIGURE M2.6 — Tir en chute libre.

3) On trouve zp tel que :

ylzp) =0 xp (—
—_
20

9

— t =0
2002 cos?(a) v+ tan(a)

¢ Y| DU —
et an(a)) 2002 cos?(a)

20n2 cos2 2002 cos? : 2
S rp = 2vo” cos(a) tan(a) = vo” cosf(a) sin(a) =0« 2sin(«) cos(a)
g

g g cos{a]

vo? . . T
& |xp = —sin(2a) et Tpmax pour  sSin(2omax) =1 < | Amax = 1 rad [ |

4) On trouve yr quand la vitesse verticale s’annule, y(tp) =0 :

. . Vo sin(a
y(tp) = —gtp +vosin(a) =0 & tp = Og()
. 2 .

1 Vo sin(o . Vo sin(a

=y(tr) =—=yg (0 ( )> + v sin(a) x Yo sin(@)
2 g g

U02 2 2 s
S|yp = 2% sin“(a) | et  Ypmax DPOUr SN (Qmax) = 1 < | Qmax = 5 rad |

5) Le temps de vol est le temps pour lequel le projectile retombe au sol, c’est-a-dire t(xp) :
# x 2 sin(o)costa).
pecosta).

S| tlxp) = 2U—0 sin(«) et trpmax pour  sin(@max) =1 < | max = grad |

=4 t(l‘p) =

— € Définition M2.7 : Poussée d’ARCHIMEDE

Lorsqu’un objet est dans un fluide, il subit une forgs: nommeée poussée d’ ARCHIMEDE et égale a 'opposé du
poids du fluide déplacé. Elle est parfois notée Il ou F'4, et on a :

=1 —
Fa= _pﬂuideV;mmergég

avec pPAuide la masse volumique du fluide et Vimmerge le volume de 'objet qui est dans le fluide.
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8 Mécanique — chapitre 2. Dynamique du point en coordonnées cartésiennes

Application M2.2 : Glagon immergé

On suppose un glacon immobile, donc d’accélération nulle. Il subit son poids et la
poussée d’ARCHIMEDE :

0C=T+P

Or P = mﬁ = pglaceVglaqon? et = _pea‘lVvimmel"gé§>

—> V & p 1
= _peauV}mmergéZ'i_ pglacevala(;on,z)< = ( & | —moree _ Tea _ 91’7%
Vglagon Peau

IIFAER Frottements fluides
Défuition

uelle est la proportion immergée d'un glacon ? On donne peay = 1,00 X 103 kg-m ™3 et pglace = 9,17 x 102 kg-m 3.
P Pg

P

FIGURE M2.7

— € Définition M2.8 : Forces de frottements fluide

donc opposée a la vitesse U. Selon la norme de la vitesse, on a :

Un objet en mouvement dans un fluide subit une force de frottements dite fluide I*T)'f qui est une force de freinage,

Faibles vitesses |

| Vitesses élevées |

< pruide la masse volumique du fluide ;
<& S la surface frontale (« Pombre » que fait Pobjet sur un flux);

<& ¢, un coefficient sans dimension dépendant surtout de la forme de 'objet.

IT1I/B) 2 | Chute avec frottements linéaires

— @ Propriété M2.5 : Chute frottements linéaires

Ffocw: Fy = —aT(t) linéaire Frocv? Ff = —Bu(t)T(t) quadratique
Remarque M2.3 : Coefficient frottements fluides
1
En pratique, on verra parfois 8= ipﬂuideSca: avec

L’expression de sa vitesse est alors

v(t) = g7 (e_t/T — 1) avec |1 =

2|3

Soit une bille chutant dans une éprouvette d’huile, lachée sans vitesse initiale & son entrée dans le fluide.

@ Démonstration M2.5 : Chute frottements linéaires

Systéme et référentiel : {bille} dans Rj.1, supposé galiléen

<> Repeére : (O, u,,u,,u;) avec u, verticale ascendante.

O Repérage : OM(t) = y()i, ot T(t) =gy(t)iu; et a@(t) =ij(t)i,

Bilan des forces.

—

Poids P =m7gq = —mgu,
Frottements fluides ZF; = —a¥(t) = —ay(t)u,
Poussée d’ARCHIMEDE FA négligée

PFD. ma(t)= P+ Ff

<& Conditions initiales : O—M)(O) =0 et T(0)=wvpcos(a)iy + vo sin(a)uy,

7
™
Uy
#
MO

FIGURE M2.8 —
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III. Forces usuelles 9

@ Equations scalaires. On obtient ici trois équations différentielles sur la vitesse, mais en absence de vitesse
initiale sur = et z, il n’y aura pas de mouvement sur ces coordonnées : on s’intéresse donc a 1’équation
différentielle sur v, (t) que 'on appelle simplement v(¢) :

o dv
;. m dt

m Y
at |,

Résolution :

t
—v( ) =—g| avec T=
e

=-—mg—ay(t) & —

°3

t

vy = —gr et w(t)=Ke VT
= ot)=wv,(t) + v, =v(t) = Ke /7 —gr

Or, v(0) =0« donc |v(t) = g7 (e*t/T - 1) [ |

Nous avons déja établi que, par analyse des équations différentielles, il est aisé de trouver des grandeurs typiques du
systéme : la solution particuliére donne la solution limite, et on trouve le temps typique par analyse dimensionnelle. On
systématise cette démarche pour trouver des informations sans résolution : c’est 'adimensionnement.

@ — Important M2.3 : Adimensionnement d’équations différentielles

=g(t)

. e dy
Soit une équation différentielle linéaire Z fi(®) T
2

Il est possible d’adimensionner cette équation en définissant

L.t ey y(0) diy*|

auquel cas, Y et T sont des grandeurs caractéristique du systéme physique.

| Ceci fonctionne également pour des ED non-linéaires. |

@ Application M2.3 : Adimensionnement frottements linéaires

\J
El' Adimensionner ’équation précédente pour retrouver le temps caractéristique et la vitesse en régime permanent.
V dv* a ;
— — Vo (t*) = — !
T dt*|,. + m v (t) g |
do* oT gl |
& + vt (t") = -2 !
dt* |,. m (#) \%4 l
dv* 1
= ’U* t* =-1 I
G|, ) |
m am }
Avec T=—| et |V=gT'="~ | FIGURE M2.9

O —| Interprétation M2.1 : Equations adimensionnées

- L’écriture sous forme adimensionnée permet de ramener la résolution de 1’équation & un probléme uniquement
mathématique, débarrassé des constantes physiques et permettant de voir rapidement le fonctionnement d’un
systéme méme quand on ne sait pas résoudre ’équation.

ITI/B) 3| Chute avec frottements quadratiques

— Propriété M2.6 : Chute frottements quadratiques

A Soit un corps chutant dans ’air, laché sans vitesse initiale depuis 'origine. En prenant en compte les frottements,
on trouve les grandeurs typiques
m m
V=2 et |T=, /2
B By
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Mécanique — chapitre 2. Dynamique du point en coordonnées cartésiennes

¥ Démonstration M2.6 : Chute frottements quadratiques

La résolution analytique exacte de cette équation sort du cadre du programme ; on
peut en revanche I’adimensionner pour trouver ses grandeurs typiques. On
définit donc t* = t/T, v*(tx) = v(t)/V, avec T et V des constantes & définir :

ol

FIiGUuRE M2.10

Pour une chute dans I'air, la vitesse d’un corps est presque toujours suffisamment 3 77;
élevée pour que les frottements soient quadratiques en la vitesse. ! qTZ’
On choisit ‘ici u, vers le bas ‘, tel que v(t) = g(t) > 0. On reprend ’établissement 3 _
précédente du systéme, on obtient alors l Uy
‘ F
— - dv I} |
Fy = —By*(t)u, et P =mgu, soit |—| +—v3(t)= o M(t
= -8y (t)a, gity a|, T W =9 | ()E’(t)

—

O T tangentielle (||) au support, opposée a .

1 1%
Vdv™ B, 2 1 Avec vr="" o L=
z Zv2p*)? = ‘ g
T dt* + m ") g ! B 7/;/
dv* 5 g7 ‘ V. mg T m
& + —=VT(*) = =— ! SV —=—2 o —=—
a T T =T | x B YT  Bg
dov* . |
S Wy @ =1 | slv— M |ro | w
| B By
Dans ces conditions, I’équation différentielle adimen- | I ——
sionnée donne T grandeur typique du temps d’évo- | (] M — .
lution de la vitesse, et V est la vitesse atteinte en | i
régime permanent. Pour un-e humain-e chutant de- | i
puis un avion sans parachute, avec m = 60kg et ! |
B ~0,25kg:m™!, on a | i
l T I3
‘V:E)Om's’lz 175km'h*1‘ et |T=b5s | -
! ey €0 1
; FiGure M2.11 — v (t ):W
IIIVA®R Force de frottements solides
Définition M2.9 : Réaction d’un support
La force exercée par un support sur un objet posé & sa surface |
est appelée réaction et est notée R. Elle se décompose en deux !
R=N+T ou R=Ry+Rr ; > T
& N normale (L) au support ; 3

FIGURE M2.12 — Réaction support.

@ Implication M2.1 : Condition de support

La condition de support est INI > o.

@ Propriété M2.7 : Lois du frottement de COULOMB

Les réactions normales et tangentielles sont reliées par les lois de COULOMB, telles que :

Solide non-glissant /statique

T < fsN

avec fq le coefficient de frottements dynamiques (glissement) et f; le coefficient de frottement statique (non-

glissement), avec fq < fs; souvent, fs = fq = f.

Solide glissant /dynamique

T = fuN

Lycée POTHIER 10/12
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Exemple M2.1 : Frottements solides

H?”Al Adhérence 9 Glissement

>
> < >

Statique 1+ Dynamique
> T=fN<F

b

Au repos Adhérence/statique Glissement /dynamique
N R N
A —, \
| N
tv 7 N tz-3
T=-F

/QL/Qx
(g/

A

FIGURE M2.14 — Lien entre T et F

| Attention M2.1 : Absence de frottements solides |

IIIFABN Force de rappel d’un ressort

—| € Rappel M2.2 : Force de rappel d’un ressort

fsN nall

L’absence de frottements solides implique f = 0, donc T' = 0, mais N n’est pas nulle.

On définit la force de rappel du ressort par :

L(t) > Lo

NV

F, = —k(U(t) — L)

N}
n—

<& k > 0 la constante de raideur en N-m—';

NN
:%ég
-

N}
7

& {y sa longueur a vide en m

<& uy, unitaire dirigé du support au point d’application.

¥ Démonstration M2.7 : Ressort vertical

Systéme et référentiel : {masse} point M masse m, Rj,po supposé galiléen.

Repére et repérage :
& Repére : (0, uy) vertical ascendant.

O Repérage : OM(t) = z(t)a; ; T(t) =202 ; @) =)

[3] BAF :

Poids
Force HOOKE r = —k(l(t) — Lo)up = k(L(t) — Lo)uw,

PFD a I’équilibre :

0= —mg + k(leq — lo) & k(leq — Lo) = mg

mg

& bleg =mg + klo & | beq = bo + =

O ur
d
4y o
G r
Eeq (e
0t} _|
o M
—
P

FIGURE M2.16 —
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Mécanique — chapitre 2. Dynamique du point en coordonnées cartésiennes

PFD général :

=

mz(t) = —mg+ k(¢
< mi(t) + kz(t) = —(mg + MO
3(t) + wo?2(t) = —woleq

—| € Propriété M2.8 : Ressort vertical

Qe

> kloq = mg + klo

| Longueur d’équilibre |

m
loq = Lo+ 24

k

Equation différentielle

3(t) + wo?2(t) = —woleq
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