
Mécanique – chapitre 3

TD application : mouvements courbes

I Projection de vecteurs

Outils M3.1 : Projection de vecteurs

å On peut projeter avec trois méthodes :

⋄ Produit scalaire : on trouve individuellement les composantes du vecteur en calculant son produit scalaire
avec chacun des vecteurs de la base donnée :

#»

V =
(

#»

V · # »ux

)
# »ux +

(
#»

V · # »uy

)
# »uy avec

#»

V · # »ux = V cos
( #̂»

V , # »ux

)
et

#»

V · # »uy = V cos
( #̂»

V , # »uy

)
Il s’agit alors de trouver les angles sur le schéma, et de remplacer les cos

(
π
2 − α

)
= sin(α) etc, en faisant

attention aux signes (cos
(
π
2 + α

)
= − sin(α) par exemple).

⋄ Trigonométrie : on peut aussi se baser sur le fait que les projections sont les côtés adjacents et opposés
d’un triangle rectangle, et utiliser les fonctions trigonométriques pour écrire les composantes en fonction
de la norme du vecteur et de l’angle. On trouve le signe en regardant l’orientation de la projection.

⋄ Vraisemblance : pour vérifier son résultat, il est de bonne pratique de vérifier que le résultat est cohérent
dans des cas limites, souvent α = 0 et α = π

2 , quand le vecteur cherché
#»

V est entièrement colinéaire à un
vecteur de base. On peut en fait également utiliser cette méthode pour trouver les décompositions en sin et
cos avec le bon signe directement. On procède ainsi :

▷ Imaginer α = 0 : le vecteur cherché est colinéaire soit à # »ux, soit à # »uy : étant donné que la décomposition
donne toujours ± cos(α) et ± sin(α), pour α = 0 il ne reste que le cosinus : c’est donc ce vecteur qui
porte le cosinus.

De plus, on trouve le signe en regardant l’orientation relative du vecteur cherché par rapport au
vecteur de base : même sens ⇒ signe +, sens opposé ⇒ signe −.

▷ Imaginer α = π
2 : par élimination, il ne reste que le sinus pour l’autre. On trouve le signe de la même

manière.

1 Exprimer chacun des 4 vecteurs suivants dans la bas dans la base ( # »ux,
# »uy).

O x

y

# »ux

# »uy
#»

A

α

O x

y

# »ux

# »uy

#»

Bα

O x

y

# »ux

# »uy

#»

C

α
O x

y

# »ux

# »uy

#»

D

α

2 Exprimer
#»

N et
#»

T dans la base ( # »ux,
# »uy) en fonction de N , T et α.

O x

y

# »ux

# »uy

#»

T
#»

N

α

3 Exprimer
#»

P et
#»

T en fonction de m, g, T et θ dans la base ( # »ur,
# »uθ) d’abord, puis dans la base ( # »ux,

# »uy).
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M

O

# »ux

# »uy

x

# »ur

# »uθ

#»

P

#»

T
θ

•

4 Équilibre plan incliné À l’équilibre des forces, on a
#»

N +
#»

T +
#»

P =
#»
0

Projeter le poids dans la base inclinée et exprimer les normes de
#»

T et
#»

N en fonction de m, g et α.

5 Équilibre hamac À l’équilibre des forces, on a
#»

F g +
#»

F d +
#»

P =
#»
0

Projeter les vecteurs
#»

F g et
#»

F d dans la base ( # »ux,
# »uy) avec # »ux parallèle au sol vers la droite et # »uy vertical ascendant.

En déduire la norme littérale de ces deux vecteurs. On prend m = 60 kg, α = 45◦ et β = 60◦. Faire l’application
numérique.

II Mouvement hélicoïdal

Un point matériel M a pour équations horaires en coordonnées cylindriques :
r(t) = R

θ(t) = ω0t

z(t) = αt

avec (α,ω0) des constantes

1 Exprimer le vecteur vitesse et le vecteur accélération dans la base cylindrique.

2 Dessiner l’allure de la trajectoire.

3 Déterminer h le pas de l’hélice, c’est-à-dire la distance selon l’axe (Oz) dont sont séparés deux points successifs de la
trajectoire correspondant à un même angle θ (modulo 2π).

4 Ce mouvement est-il uniforme ? À quelle condition est-il circulaire ?

5 Déterminer les coordonnées cartésiennes de ce mouvement.
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III. Masse du Soleil 3

III Masse du Soleil

La Terre subit de la part du Soleil la force d’attraction gravitationnelle :

#»

F g = −G
MTMS

R2
# »ur où G = 6,67× 10−11 SI

avec # »ur le vecteur unitaire allant du Soleil vers la Terre. La Terre tourne autour du Soleil en décrivant un cercle de
rayon R = 149,6× 106 km.

1 Déterminer la masse du Soleil.

IV Course de F1

Lors des essais chronométrés d’un grand prix, Fernando Alonso (point A) et Jenson
Button (point B) arrivent en ligne droite et coupent l’axe ∆ au même instant de
leur parcours. Ils prennent cependant le virage de deux façons différentes :

⋄ Alonso suit une trajectoire circulaire de rayon RA = 90,0m ;

⋄ Button choisit une trajectoire de rayon RB = 75,0m.

On cherche à déterminer quelle est la meilleure trajectoire, c’est-à-dire lequel des
deux pilote gagne du temps par rapport à l’autre à la sortie du virage.

1 Déterminer les distances DA et DB parcourues par les deux pilotes entre leurs deux passages par l’axe ∆. Que
peut-on conclure ?

2 Pour simplifier, on imagine que les deux voitures roulent à des vitesse vA et vB constantes entre leurs deux passages
par l’axe ∆. Déterminer ces vitesses, sachant que l’accélération des voitures doit rester inférieur à 0,8 g sous risque de
dérapage. Les calculer numériquement.

3 Conclure quant à la meilleure trajectoire des deux.

V Entraînement d’une spationaute

Une spationaute doit subir différents tests d’aptitude aux vols spatiaux, no-
tamment le test des accélérations. Pour cela, on l’installe dans une capsule de
centre O, fixée au bout d’un bras métallique horizontal dont l’autre extrémité
est rigidement liée à un arbre de rotation vertical ∆. La longueur du bras est
notée L. On assimilera la spationaute au point matériel S.
L’ensemble {capsule + bras + arbre} est mis en rotation avec une vitesse
angulaire croissante, selon la loi

ω(t) = ω0(1− exp−t/τ )

avec ω0 la vitesse angulaire nominale du simulateur, et τ un temps caractéris-
tique. On donne L = 10,0m et g = 9,81m·s−2.

1 Établir proprement le système d’étude.

2 À partir de quelle durée peut-on supposer que le mouvement est circulaire et uniforme ? Que deviennent les expressions
des vecteurs vitesse et accélération dans ce cas ? Calculer alors la norme de l’accélération subie par la spationaute.

3 Quelle doit être la valeur de ω0 pour que l’accélération atteigne 10 g lors du régime de rotation uniforme ? On donnera
le résultat en tours par second.
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TD entraînement : mouvements courbes

I Glissade d’un pingouin sur un igloo

Un pingouin, assimilable à un point matériel M de masse m décide de faire
du toboggan. Il s’élance sans vitesse initiale du sommet A d’un igloo voisin,
assimilable à une demi sphère S de rayon R et de centre O, posée sur un plan
horizontal Π. On considère que le glissement s’effectue sans frottement dans le
plan vertical (xOz).

1 Appliquer le PFD au pingouin pour en déduire deux équations différentielles portant sur l’angle θ. Identifier l’équation
du mouvement qui permet de déterminer θ(t). Quelle information l’autre information contient-elle ?

2 En multipliant l’équation du mouvement par θ̇ et en intégrant sur t, montrer que

θ̇2(t) =
2g

R
(1− cos(θ(t)))

3 En déduire la norme de la force de réaction de l’igloo.

4 Le pingouin décolle-t-il du toit de l’igloo avant d’atteindre le sol ? Si oui, pour quel angle ?

II Oscillations d’un anneau sur un cerceau

Un cerceau de centre O et de rayon R est maintenu dans un plan vertical, et un anneau
de masse m assimilé à un point matériel M peut glisser sans frottements le long de ce
cerceau.

1 Qu’est-ce que l’hypothèse « sans frottements » implique pour la réaction du cerceau
sur l’anneau ?

2 Écrire le PFD appliqué à l’anneau et le projeter dans une base adaptée.

3 En déduire l’équation différentielle régissant le mouvement.

On se place dans l’approximation des petits angles (|θ| < θ0 = 20◦). Initialement, l’anneau est situé à la verticale
en-dessous de O et il est lancé vers la droite, avec une vitesse initiale de norme v0.

4 En déduire l’équation horaire du mouvement.

5 À quelle condition sur v0 l’approximation des petits angles est-elle vérifiée ?
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III Anneau sur une tige en rotation

On considère un petit anneau M de masse m considéré comme ponctuel, soumis
à la pesanteur et susceptible de se déplacer sans frottement le long d’une tige
OA horizontale dans le plan (xOy), de longueur ℓ, effectuant des mouvements
de rotation caractérisés par une vitesse angulaire ω constante autour d’un axe
fixe vertical ∆ passant par son extrémité O. Le référentiel lié au laboratoire
est considéré comme galiléen. On considère la base cylindrique locale ( #»er,

#»eθ,
#»ez)

associée au point M.
L’anneau est libéré sans vitesse initiale par rapport à la tige, à une distance r0
du point O (avec r0 < ℓ). On repère la position de l’anneau sur la tige par la
distance r(t) = OM(t) entre le point O et l’anneau M.

O

x
y

z

ω

θ(t) = ωt
A

#»er

#»eθ

#»ez•M

1 Faire un bilan des forces agissant sur l’anneau en les projetant dans la base ( #»er,
#»eθ,

#»ez). En appliquant le principe
fondamental de la dynamique, établir l’équation différentielle vérifiée par r(t).

2 Intégrer cette équation différentielle en prenant en compte les conditions initiales définies précédemment, et déterminer
la solution r(t) en fonction de r0, ω et t.

3 Exprimer les composantes de la réaction
#»

R de la tige sur M dans la base ( #»er,
#»eθ,

#»ez) en fonction de m, g, ṙ et ω.

4 Déduire de la question 2 le temps τ que va mettre l’anneau pour quitter la tige. On exprimera τ en fonction de r0, ℓ
et ω.

IV Pendule conique

Dans un champ uniforme de pesanteur #»g vertical et vers le bas, un point matériel M de
masse m tourne à la vitesse angulaire ω constante autour de l’axe (Oz) dirigé vers le haut
en décrivant un cercle de centre O et de rayon R. M est suspendu à un fil inextensible de
longueur L et de masse négligeable, fixé en un point A de (Oz). L’angle α de (Oz) avec
AM est constant.

1 Quel système de coordonnées utiliser ? O

z

ω

R

A

L
α

•
M

2 Effectuer un bilan des forces s’appliquant à la masse et les écrire dans la base choisie, en fonction de L, ω et α.

3 Appliquer le PFD puis exprimer cos(α) en fonction de g, L et ω. En déduire que la vitesse angulaire doit forcément
être supérieure à une vitesse angulaire limite ωlim pour qu’un tel mouvement puisse être possible.

4 Que dire du cas où ω devient très grande ? Application numérique : calculer α pour L = 20 cm et ω = 3 tours·s−1.

Lycée Pothier 6/6 MPSI3 – 2025/2026


	TD application : mouvements courbes
	Projection de vecteurs
	Mouvement hélicoïdal
	Masse du Soleil
	Course de F1
	Entraînement d'une spationaute

	TD entraînement : mouvements courbes
	Glissade d'un pingouin sur un igloo
	Oscillations d'un anneau sur un cerceau
	Anneau sur une tige en rotation
	Pendule conique


