
Mécanique – chapitre 3

Correction du TD d’application

I Projection de vecteurs

Outils M3.1 : Projection de vecteurs

å On peut projeter avec trois méthodes :

⋄ Produit scalaire : on trouve individuellement les composantes du vecteur en calculant son produit scalaire
avec chacun des vecteurs de la base donnée :

#»

V =
(

#»

V · # »ux

)
# »ux +

(
#»

V · # »uy

)
# »uy avec

#»

V · # »ux = V cos
( #̂»

V , # »ux

)
et

#»

V · # »uy = V cos
( #̂»

V , # »uy

)
Il s’agit alors de trouver les angles sur le schéma, et de remplacer les cos

(
π
2 − α

)
= sin(α) etc, en faisant

attention aux signes (cos
(
π
2 + α

)
= − sin(α) par exemple).

⋄ Trigonométrie : on peut aussi se baser sur le fait que les projections sont les côtés adjacents et opposés
d’un triangle rectangle, et utiliser les fonctions trigonométriques pour écrire les composantes en fonction
de la norme du vecteur et de l’angle. On trouve le signe en regardant l’orientation de la projection.

⋄ Vraisemblance : pour vérifier son résultat, il est de bonne pratique de vérifier que le résultat est cohérent
dans des cas limites, souvent α = 0 et α = π

2 , quand le vecteur cherché
#»

V est entièrement colinéaire à un
vecteur de base. On peut en fait également utiliser cette méthode pour trouver les décompositions en sin et
cos avec le bon signe directement. On procède ainsi :

▷ Imaginer α = 0 : le vecteur cherché est colinéaire soit à # »ux, soit à # »uy : étant donné que la décomposition
donne toujours ± cos(α) et ± sin(α), pour α = 0 il ne reste que le cosinus : c’est donc ce vecteur qui
porte le cosinus.

De plus, on trouve le signe en regardant l’orientation relative du vecteur cherché par rapport au
vecteur de base : même sens ⇒ signe +, sens opposé ⇒ signe −.

▷ Imaginer α = π
2 : par élimination, il ne reste que le sinus pour l’autre. On trouve le signe de la même

manière.

1 Exprimer chacun des 4 vecteurs suivants dans la bas dans la base ( # »ux,
# »uy).

O x

y

# »ux

# »uy
#»

A

α

O x

y

# »ux

# »uy

#»

Bα

O x

y

# »ux

# »uy

#»

C

α
O x

y

# »ux

# »uy

#»

D

α

Réponse

O x

y

# »ux

# »uy
#»

A

α
#»

A · # »uy

#»

A · # »ux

π
2
− α

O x

y

# »ux

# »uy

#»

Bα
#»

B · # »uy

#»

B · # »ux

π 2
−
α

O x

y

# »ux

# »uy

#»

C

α #»

C · # »uy#»

C · # »ux

π
2
+ α

O x

y

# »ux

# »uy

#»

D

α#»

D · # »uy

#»

D · # »ux

π
2
+ α

#»

A = A (cos(α) # »ux + sin(α) # »uy) ;
#»

B = B (sin(α) # »ux + cos(α) # »uy)On trouve :
#»

C = C (cos(α) # »ux − sin(α) # »uy) ;
#»

D = D (− sin(α) # »ux + cos(α) # »uy)et

⋄
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2 Mécanique – chapitre 3. Correction du TD d’application

2 Exprimer
#»

N et
#»

T dans la base ( # »ux,
# »uy) en fonction de N , T et α.

O x

y

# »ux

# »uy

#»

T
#»

N

α

Réponse

#»

T

#»

N

α
#»

T · # »uy

#»

T · # »ux

#»

N · # »uy

#»

N · # »ux

α

Figure M3.1 – Zoom sur les projections de
#»
N et

#»
T .

On peut se reposer sur les résultats trouvés à la première
question :

#»

T est équivalent au vecteur
#»

A de la première
question, et

#»

N au vecteur
#»

D. On trouve alors :
#»

T = T (cos(α) # »ux + sin(α) # »uy)
#»

N = N(− sin(α) # »ux + cos(α) # »uy)et

⋄
3 Exprimer

#»

P et
#»

T en fonction de m, g, T et θ dans la base ( # »ur,
# »uθ) d’abord, puis dans la base ( # »ux,

# »uy).

M

O

# »ux

# »uy

x

# »ur

# »uθ

#»

P

#»

T
θ

•

Réponse
Toujours même réflexion. Par exemple, par vraisemblance :

θ = 0 ⇒ #»

P · # »ur = 1 et θ =
π

2
⇒ #»

P · # »uθ = −1

#»

P = mg cos(θ) # »ur −mg sin(θ) # »uθ et
#»

T ≜ −T # »urAinsi

On trouve également dans la base ( # »ux,
# »uy) :

#»

P = mg # »ux et
#»

T = T (− cos(θ) # »ux − sin(θ) # »uy)

⋄
4 Équilibre plan incliné À l’équilibre des forces, on a

#»

N +
#»

T +
#»

P =
#»
0

Projeter le poids dans la base inclinée et exprimer les normes de
#»

T et
#»

N en fonction de m, g et α.
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II. Mouvement hélicoïdal 3

Réponse

α = 0 ⇒ #»

P · # »eY = −1 et α = π/2 ⇒ #»

P · #  »eX = 1Ici aussi :
#»

P = mg(sin(α) #  »eX − cos(α) # »eY ) et
#»

N = N # »eY et
#»

T = −T #  »eXAinsi

#»

N +
#»

T +
#»

P =
#»
0 ⇔

(
mg sin(α)− T

−mg cos(α) +N

)
=

(
0
0

)
⇔

{
T = mg sin(α)

N = mg cos(α)
D’où

⋄
5 Équilibre hamac À l’équilibre des forces, on a

#»

F g +
#»

F d +
#»

P =
#»
0

Projeter les vecteurs
#»

F g et
#»

F d dans la base ( # »ux,
# »uy) avec # »ux parallèle au sol vers la droite et # »uy vertical ascendant.

En déduire la norme littérale de ces deux vecteurs. On prend m = 60 kg, α = 45◦ et β = 60◦. Faire l’application
numérique.

Réponse
#»

F g = Fg(cos(α)
# »uy − sin(α) # »ux) et

#»

F d = Fd(cos(β)
# »uy + sin(β) # »ux)On projette : {

0 = Fd sin(β)− Fg sin(α)

0 = −mg + Fg cos(α) + Fd cos(β)
⇔


Fd = Fg

sin(α)

sin(β)

mg = Fg cos(α) + Fg
sin(α)

sin(β)
cos(β)

Soit

⇔


Fd = Fg

sin(α)

sin(β)

mg sin(β) = Fg (cos(α) sin(β) + sin(α) cos(β))

=sin(α+β)

⇔


Fd =

mg sin(α)

sin(α+ β)

Fg =
mg sin(β)

sin(α+ β)

A.N. :

{
Fd = 4,4× 102 N
Fg = 5,4× 102 N

⋄
II Mouvement hélicoïdal

Un point matériel M a pour équations horaires en coordonnées cylindriques :
r(t) = R

θ(t) = ω0t

z(t) = αt

avec (α,ω0) des constantes

1 Exprimer le vecteur vitesse et le vecteur accélération dans la base cylindrique.
Réponse
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4 Mécanique – chapitre 3. Correction du TD d’application

#     »

OM(t) = R # »ur + αt # »uzOn a

#»v (t) =�
�Ṙ # »ur

=0

+R θ̇
=ω

# »uθ + α # »uz + αt
�
��d # »uz

dt
=0

= Rω # »uθ + α # »uz

#»a (t) = R �̇ω
=0

# »uθ −Rω2 # »ur +
#»
0

= −Rω2 # »ur

O
h

y

x

z

⋄
2 Dessiner l’allure de la trajectoire.

Réponse
Cf. ci-dessus. ⋄

3 Déterminer h le pas de l’hélice, c’est-à-dire la distance selon l’axe (Oz) dont sont séparés deux points successifs de la
trajectoire correspondant à un même angle θ (modulo 2π).

Réponse
Soit t0 un instant quelconque. Un point à ce temps-là est tel que

r(t0) = R

θ(t0) = ω0t0

z(t0) = αt0

Le premier point qui est au même angle θ mais avec 2π de plus se trouve donc à t1 tel que

θ(t1) = θ(t0) + 2π

⇔ ω0t1 = ω0t0 + 2π

⇔ t1 = t0 +
2π

ω0

On a alors z(t1)− z(t0) = h = αt1 − αt0

⇔ h = 2π
α

ω0

⋄
4 Ce mouvement est-il uniforme ? À quelle condition est-il circulaire ?

Réponse
∥ #»v ∥ =

√
R2ω0

2 + α2 = cte, donc il est uniforme. Il est circulaire ssi α = 0 .

⋄
5 Déterminer les coordonnées cartésiennes de ce mouvement.

Réponse
En regardant dans le plan polaire, on trouve x(t) et y(t) :

x(t) = R cos(ω0t)

y(t) = R sin(ω0t)

z(t) = αt

⋄
III Masse du Soleil

La Terre subit de la part du Soleil la force d’attraction gravitationnelle :

#»

F g = −G
MTMS

R2
# »ur où G = 6,67× 10−11 SI

avec # »ur le vecteur unitaire allant du Soleil vers la Terre. La Terre tourne autour du Soleil en décrivant un cercle de
rayon R = 149,6× 106 km.
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IV. Course de F1 5

1 Déterminer la masse du Soleil.
Réponse

On étudie le système {Terre} dans le référentiel héliocentrique. La Terre étant sur une orbite circulaire, on utilise un
repère polaire (S, # »ur,

# »uθ) en appelant S le centre de gravité du Soleil et T le centre de gravité de la Terre. On a :
#  »

ST = R # »ur

#»v = Rθ̇ # »uθ

#»a =�
��Rθ̈ # »uθ︸ ︷︷ ︸

θ̈=0

−Rθ̇2 # »ur

étant donné que la distance Terre-Soleil est fixe, et que la vitesse angulaire de la Terre autour du Soleil est constante.
On a d’ailleurs, en appelant ω0 = θ̇(t) cette vitesse angulaire,

ω0 =
2π

T0

avec T0 la période de révolution de la Terre autour du Soleil, telle que T0 = 365,26× 24× 3600s = 3,16× 107 s. Ainsi,
la seule force s’exerçant sur la Terre étant l’attraction gravitationnelle du Soleil, on a avec le PFD :

MT
#»a =

#»

F g ⇔ −��MTRω2
0 = −G

��MTMS

R2

⇔ MS =
R3ω2

0

G
=

4π2R3

GT0
2

avec

 R = 1,496× 1011 m
G = 6,67× 10−11 SI
T0 = 3,16× 107 s

⇒ MS = 1,99× 1030 kg

⋄
IV Course de F1

Lors des essais chronométrés d’un grand prix, Fernando Alonso (point A) et Jenson
Button (point B) arrivent en ligne droite et coupent l’axe ∆ au même instant de
leur parcours. Ils prennent cependant le virage de deux façons différentes :

⋄ Alonso suit une trajectoire circulaire de rayon RA = 90,0m ;

⋄ Button choisit une trajectoire de rayon RB = 75,0m.

On cherche à déterminer quelle est la meilleure trajectoire, c’est-à-dire lequel des
deux pilote gagne du temps par rapport à l’autre à la sortie du virage.

1 Déterminer les distances DA et DB parcourues par les deux pilotes entre leurs deux passages par l’axe ∆. Que
peut-on conclure ?

Réponse
La voiture A d’Alonso entame son virage dès qu’elle passe par l’axe ∆, et parcourt un demi-cercle de longueur

DA = πRA = 283m

En revanche, la voiture B de Button continue en ligne droite sur une distance RA −RB avant d’entamer son virage,
et parcourt de nouveau la même distance en ligne droite avant la sortie du virage. Ainsi,

DB = 2(R1 −R2) + πRB = 266m

La voiture B parcourt moins de distance que la voiture A, mais il est impossible d’en conclure quoi que ce
soit puisqu’on ne sait pas si les deux trajectoires sont parcourues à la même vitesse.⋄

2 Pour simplifier, on imagine que les deux voitures roulent à des vitesse vA et vB constantes entre leurs deux passages
par l’axe ∆. Déterminer ces vitesses, sachant que l’accélération des voitures doit rester inférieur à 0,8 g sous risque de
dérapage. Les calculer numériquement.

Réponse
Lorsqu’elles sont sur la partie circulaire de leur trajectoire, parcourue à vitesse constante (en norme), l’accélération
(en norme) des voitures vaut

a =
v2

R
= 0,8g
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6 Mécanique – chapitre 3. Correction du TD d’application

puisque les pilotes prennent tous les risques. Ainsi,

vA =
√
aRA = 26,6m·s−1 et vB =

√
aRB = 24,3m·s−1

⋄
3 Conclure quant à la meilleure trajectoire des deux.

Réponse
Calculons le temps mis par chacun des pilotes pour passer le virage :

∆t =
D

v
donc ∆tA = 10,6 s et ∆tB = 10,9 s

Finalement, Alonso va plus vite que Button pour parcourir le virage : la meilleure trajectoire est la plus
courte des deux, soit ici celle la plus large. Ne pas tenter de vérifier en rentrant chez vous, mais de quoi briller
sur Mario Kart. . . ? ⋄
V Entraînement d’une spationaute

Une spationaute doit subir différents tests d’aptitude aux vols spatiaux, no-
tamment le test des accélérations. Pour cela, on l’installe dans une capsule de
centre O, fixée au bout d’un bras métallique horizontal dont l’autre extrémité
est rigidement liée à un arbre de rotation vertical ∆. La longueur du bras est
notée L. On assimilera la spationaute au point matériel S.
L’ensemble {capsule + bras + arbre} est mis en rotation avec une vitesse
angulaire croissante, selon la loi

ω(t) = ω0(1− exp−t/τ )

avec ω0 la vitesse angulaire nominale du simulateur, et τ un temps caractéris-
tique. On donne L = 10,0m et g = 9,81m·s−2.

1 Établir proprement le système d’étude.
Réponse

⋄ Système : {spationaute}

⋄ Référentiel : référentiel du laboratoire, supposé galiléen

⋄ Repère : (O, # »ur,
# »uθ) avec # »uθ selon le sens de rotation

⋄ Repérage :
#   »

OS(t) = L # »ur

#»v S(t) = Lω(t) # »uθ

#»a S(t) = Lω̇(t) # »uθ − Lω2(t) # »ur

⋄
2 À partir de quelle durée peut-on supposer que le mouvement est circulaire et uniforme ? Que deviennent les expressions

des vecteurs vitesse et accélération dans ce cas ? Calculer alors la norme de l’accélération subie par la spationaute.
Réponse

Au bout de quelques τ , ω(t) = ω0 et le mouvement sera circulaire uniforme. Les vecteurs vitesse et accélération
deviennent : {

#»v S(t) = Lω0
# »uθ

#»a S(t) = −Lω0
2 # »ur

La norme de l’accélération subie est alors ∥ #»a S∥ = Lω0
2 .

⋄
3 Quelle doit être la valeur de ω0 pour que l’accélération atteigne 10 g lors du régime de rotation uniforme ? On donnera

le résultat en tours par second.
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V. Entraînement d’une spationaute 7

Réponse

aS = 10g ⇒ ω0 =

√
10g

L
avec

{
g = 9,81m·s−2

L = 10,0m
(M3.1)

A.N. : ω0 = 3,13 rad·s−1 ≈ 0,50 tour·s−1 (M3.2)

Ordre de grandeur M3.1 :

y ⋄ Accélération dans un ascenseur : [0,9 ; 1,1] g ;

⋄ Accélération latérale en F1 : [5 ; 6] g ;

⋄ Accélération latérale en avion de chasse : [9 ; 12] g pendant quelques secondes max ;

⋄ Accélération verticale, éjection d’un avion de chasse : ≈ 20 g (interdiction de vol après 2 utilisation du siège
éjectable à cause – notamment – du tassement des vertèbres) ;

⋄ Accélération négative frontale en accident de voiture : [40 ; 60] g ! Même sans choc physique, une telle
décélération cause des hémorragies internes à cause des organes internes percutant les os. Soyez prudent-es.

⋄
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Mécanique – chapitre 3

Correction du TD d’entraînement

I Glissade d’un pingouin sur un igloo

Un pingouin, assimilable à un point matériel M de masse m décide de faire
du toboggan. Il s’élance sans vitesse initiale du sommet A d’un igloo voisin,
assimilable à une demi sphère S de rayon R et de centre O, posée sur un plan
horizontal Π. On considère que le glissement s’effectue sans frottement dans le
plan vertical (xOy).

1 Appliquer le PFD au pingouin pour en déduire deux équations différentielles portant sur l’angle θ. Identifier l’équation
du mouvement qui permet de déterminer θ(t). Quelle information l’autre information contient-elle ?

Réponse

⋄ Système : {pingouin}

⋄ Référentiel : Rsol supposé galiléen

⋄ Repère : (O, # »ur,
# »uθ) avec # »uθ dans le sens de θ

⋄ Repérage :
#     »

OM(t) = R # »ur ; #»v (t) = Rθ̇(t) # »uθ ; #»a (t) = Rθ̈(t) # »uθ −Rθ̇2(t) # »ur

⋄ Origine et instant initial :
#     »

OM(0) =
#    »

OA ⇒ θ(0) = 0 et #»v (0) =
#»
0 ⇒ θ̇(0) = 0

⋄ BDF :
#»

P = mg(− cos(θ(t)) # »ur + sin(θ(t)) # »uθ)Poids
#»

R = RN
# »urRéaction

⋄ PFD : m #»a (t) =
#»

P +
#»

R ⇔
(
−mRθ̇2(t)

mRθ̈(t)

)
=

(
−mg cos(θ(t)) +RN

mg sin(θ(t))

)

⇔

RN = mg cos(θ(t))−mRθ̇2(t)

θ̈(t) =
g

R
sin(θ(t))

(M3.1)

(M3.2)

L’équation du mouvement est celle qui donne l’équation d’oscillateur harmonique aux petits angles, et qu’on a déjà
utilisée en cours sur le pendule, et linéaire en θ : l’équation (M3.2). L’équation (M3.1) contient l’information sur le
contact à l’igloo. ⋄

2 En multipliant l’équation du mouvement par θ̇ et en intégrant sur t, montrer que

θ̇2(t) =
2g

R
(1− cos(θ(t)))
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10 Mécanique – chapitre 3. Correction du TD d’entraînement

Réponse
En prenant (M3.2)×θ̇, on a

θ̈(t)θ̇(t) =
g

R
θ̇(t) sin(θ(t))

⇔ d

dt

(
1

2
θ̇2(t)

)
=

g

R

d

dt
(− cos(θ(t)))

⇔ 1

2

ˆ t

t=0

dθ̇2

��dt
��dt =

g

R

ˆ t

t=0

(− cos(θ(t)))

��dt
��dt

⇔ 1

2

[
θ̇2
]t
t=0

=
g

R
[− cos(θ(t))]

t
t=0

⇔ θ̇2(t) =
2g

R
(1− cos(θ(t))) ■

f df
dt

= d
dt

(
1
2
f2

)
d cos(θ(t))

dt
= −θ̇(t) sin(θ(t))

´ t

0
(·)dt

On intègre

On isole

⋄
3 En déduire la norme de la force de réaction de l’igloo, ainsi que la vitesse du pinguouin en fonction de l’angle θ.

Réponse

RN = mg cos(θ(t))−m�R
2g

�R
(1− cos(θ(t)))On remplace θ̇2 dans (M3.1) :

⇔ RN = mg(3 cos(θ(t))− 2)

v(t) = |Rθ̇(t)| =
√

R2θ̇2(t)De plus,

⇔ v(t) =
√

2gR(1− cos(θ(t)))

⋄
4 Le pingouin décolle-t-il du toit de l’igloo avant d’atteindre le sol ? Si oui, pour quel angle, et à quelle vitesse ?

Réponse
La condition de support d’un solide est RN > 0 : le pingouin décolle du support si la force de réaction est nulle, soit
pour θd tel que RN = 0. Or,

RN = 0 ⇔ 3 cos(θd)− 2 = 0 ⇔ θd = arccos

(
2

3

)
A.N. : θ = 48,2◦

v(tf ) =
√
2gR(1− cos(θd)) ⇔ v(tf ) =

√
2gR

(
1− 2

3

)
=

√
2gR

3
De même,

⋄
II Oscillations d’un anneau sur un cerceau

Un cerceau de centre O et de rayon R est maintenu dans un plan vertical, et un anneau
de masse m assimilé à un point matériel M peut glisser sans frottements le long de ce
cerceau.

1 Qu’est-ce que l’hypothèse « sans frottements » implique pour la réaction du cerceau
sur l’anneau ?

Réponse
L’hypothèse « sans frottements » signifie que la réaction du cerceau est uniquement
normale : il n’y a pas de composante tangentielle.⋄

2 Écrire le PFD appliqué à l’anneau et le projeter dans une base adaptée.
Réponse

⋄ Système : {anneau}

⋄ Référentiel : Rsol supposé galiléen

⋄ Repère : (O, # »ur,
# »uθ) avec # »uθ dans le sens de θ

⋄ Repérage :
#     »

OM(t) = R # »ur ; #»v (t) = Rθ̇(t) # »uθ ; #»a (t) = Rθ̈(t) # »uθ −Rθ̇2(t) # »ur
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III. Anneau sur une tige en rotation 11

⋄ BDF :
#»

P = mg(cos(θ(t)) # »ur − sin(θ(t)) # »uθ)Poids
#»

R = −RN
# »urRéaction

⋄ PFD : m #»a (t) =
#»

P +
#»

R ⇔
(
−mRθ̇2(t)

mRθ̈(t)

)
=

(
mg cos(θ(t))−RN

−mg sin(θ(t))

)

⇔
{
mg cos(θ(t)) +mRθ̇2 = RN

mRθ̈ +mg sin(θ(t)) = 0 (M3.3)

⋄
3 En déduire l’équation différentielle régissant le mouvement.

Réponse
Avec (M3.3), en la mettant sous forme canonique :

θ̈(t) +
g

R
sin(θ(t)) = 0 ⇔ θ̈ + ω0

2 sin(θ(t)) = 0 avec ω0 =

√
g

R
(M3.4)

⋄
On se place dans l’approximation des petits angles (|θ| < θ0 = 20◦). Initialement, l’anneau est situé à la verticale

en-dessous de O et il est lancé vers la droite, avec une vitesse initiale de norme v0.

4 En déduire l’équation horaire du mouvement.
Réponse

θ(0) = 0 et #»v (0) = v0
# »uθ = Rθ̇(0) # »uθ ⇔ θ̇(0) =

v0
R

On a donc

θ̈(t) + ω0
2θ(t) = 0 soit θ(t) = A cos(ω0t) +B sin(ω0t)(M3.4) petits angles :

θ(0) = 0 ⇔ A = 0 et θ̇(0) =
v0
R

⇔ B =
v0
Rω0

soit θ(t) =
v0
Rω0

sin(ω0t)Avec les CI :

⋄
5 À quelle condition sur v0 l’approximation des petits angles est-elle vérifiée ?

Réponse
La valeur maximale de |θ(t)| est v0

Rω0
, quand le sinus vaut ±1. Pour avoir des petits angles, il faut que l’angle maximal

ne dépasse pas θ0, soit

v0
Rω0

< θ0 ⇔ v0 < θ0R

√
g

R
⇔ v0 < θ0

√
Rg

⋄
III Anneau sur une tige en rotation

On considère un petit anneau M de masse m considéré comme ponctuel, soumis
à la pesanteur et susceptible de se déplacer sans frottement le long d’une tige
OA horizontale dans le plan (xOy), de longueur ℓ, effectuant des mouvements
de rotation caractérisés par une vitesse angulaire ω constante autour d’un axe
fixe vertical ∆ passant par son extrémité O. Le référentiel lié au laboratoire
est considéré comme galiléen. On considère la base cylindrique locale ( #»er,

#»eθ,
#»ez)

associée au point M.
L’anneau est libéré sans vitesse initiale par rapport à la tige, à une distance r0
du point O (avec r0 < ℓ). On repère la position de l’anneau sur la tige par la
distance r(t) = OM(t) entre le point O et l’anneau M.

O

x
y

z

ω

θ(t) = ωt
A

#»er

#»eθ

#»ez•M
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12 Mécanique – chapitre 3. Correction du TD d’entraînement

1 Faire un bilan des forces agissant sur l’anneau en les projetant dans la base ( #»er,
#»eθ,

#»ez). En appliquant le principe
fondamental de la dynamique, établir l’équation différentielle vérifiée par r(t).

Réponse

⋄ Système : {anneau} point matériel M de masse m

⋄ Référentiel : terrestre supposé galiléen

⋄ Repère : cylindrique (O, #»er,
#»eθ,

#»ez)

⋄ Repérage : #     »

OM(t) = r(t) #»er
#»v (t) = ṙ(t) #»er + r(t)θ̇ #»eθ = ṙ(t) #»er + r(t)ω #»eθ
#»a (t) = r̈(t) #»er + ṙ(t)ω #»eθ + ṙ(t)ω #»eθ − r(t)ω2 #»er +

#»
0

ω̇=0

⇔ #»a (t) = (r̈(t)− r(t)ω2) #»er + 2r(t)ω #»eθ

⋄ Conditions initiales : r(0) = r0 et #»v (0) =
#»
0 ⇒ ṙ(0) = 0

O

x
y

z

ω

θ(t) = ωt

A
#»er

#»eθ

#»ez

#»

P

#»

R

Rθ

Rz

•M

⋄ BDF : pas de frottements donc pas de composante sur #»er :
#»

P = m #»g = −mg #»ezPoids
#»

R = Rθ
#»eθ +Rz

#»ezRéaction support

m #»a (t) =
#»

P +
#»

R ⇔


m(r̈(t)− rω2) = 0

2mṙ(t)ω = Rθ

0 = −mg +Rz

⋄ PFD :

⇔


r̈(t)− ωr(t) = 0

Rθ = 2mṙ(t)ω

Rz = mg

(M3.5)

(M3.6)
(M3.7)

⋄
2 Intégrer cette équation différentielle en prenant en compte les conditions initiales définies précédemment, et déterminer

la solution r(t) en fonction de r0, ω et t.
Réponse

On résout (M3.5) en injectant r(t) = est :

r̈(t)− ω2r(t) = 0

⇒ s2 − ω2 = 0

⇔ s2 = ω2

⇔ s = ±ω

r(t) = Aeωt +Be−ωtDonc

r(0) = r0 ⇔ r0 = A+BOr :

ṙ(0) = 0et
⇔ 0 = Aω −Bω

⇔ A = B

A = B =
r0
2

Soit

r(t) =
r0
2
(eωt + e−ωt) = r0 ch(ωt)Donc

⋄
3 Exprimer les composantes de la réaction

#»

R de la tige sur M dans la base ( #»er,
#»eθ,

#»ez) en fonction de m, g, ṙ et ω.
Réponse

ṙ(t) = ωr0 sh(ωt) ⇒
#»

R = 2mr0ω
2 sh(ωt) #»eθ +mg #»ezOn reprend (M3.6) et (M3.7) :

⋄
4 Déduire de la question 2 le temps τ que va mettre l’anneau pour quitter la tige. On exprimera τ en fonction de r0, ℓ

et ω.
Réponse

r0 ch(ωτ) = ℓ ⇔ τ =
1

ω
argch

(
ℓ

r0

)
Il quitte la tige pour r(τ) = ℓ, soit

⋄
Lycée Pothier 12/13 MPSI3 – 2025/2026



IV. Pendule conique 13

IV Pendule conique

Dans un champ uniforme de pesanteur #»g vertical et vers le bas, un point matériel M de
masse m tourne à la vitesse angulaire ω constante autour de l’axe (Oz) dirigé vers le haut
en décrivant un cercle de centre O et de rayon R. M est suspendu à un fil inextensible de
longueur L et de masse négligeable, fixé en un point A de (Oz). L’angle α de (Oz) avec
AM est constant.

1 Quel système de coordonnées utiliser ?
Réponse

Pour une vitesse angulaire donnée, le mouvement est circulaire donc les coordonnées
polaires semblent suffire, mais le poids s’applique verticalement et la hauteur du mobile
va changer avec la vitesse angulaire. On utilisera donc un repère cylindrique pour
étudier la rotation. ⋄

O

z

ω

R

A

L
α

•
M

2 Effectuer un bilan des forces s’appliquant à la masse et les écrire dans la base choisie, en fonction de L, ω et α.
Réponse

⋄ Système : {M} masse m

⋄ Référentiel : Rlabo supposé galiléen

⋄ Repère : (O, #»er,
#»eθ,

#»ez) (voir schéma)

⋄ Repérage :
#     »

OM(t) = R #»er = L sin(α) #»er avec
{
R = cte ⇒ Ṙ = 0

θ̇ = ω = cte ⇔ ω̇ = 0
#»vM(t) = Lω sin(α) #»eθ et #»aM(t) = −Lω2 sin(α) #»erD’où

⋄ BDF :
#»

P = m #»g = −mg #»ezPoids
#»

T = T (− sin(α) #»er + cos(α) #»ez)Tension

O

z

ω

R

A

L
α

θ(t) #»er

#»eθ

#»ez

#»

P

#»

T

Tz

Tr
•

M

⋄
3 Appliquer le PFD puis exprimer cos(α) en fonction de g, L et ω. En déduire que la vitesse angulaire doit forcément

être supérieure à une vitesse angulaire limite ωlim pour qu’un tel mouvement puisse être possible.
Réponse

m #»a =
#»

P +
#»

T ⇔
{
−mLω2

���sin(α) = −T���sin(α)

0 = T cos(α)−mg
⇔


T = mLω2

T =
mg

cos(α)

PFD :

mLω2 =
mg

cos(α)
⇔ cos(α) =

g

Lω2
Soit

Pour que ce mouvement soit possible, il faut que cos(α) < 1, soit

g

Lω2
< 1 ⇔ ω ≥

√
g

L
= ωlim

⋄
4 Que dire du cas où ω devient très grande ? Application numérique : calculer α pour L = 20 cm et ω = 3 tours·s−1.

Réponse
Si ω ≫ ωlim, alors cos(α) −−−−−→

ω≫ωlim

0 donc α −−−−−→
ω≫ωlim

π/2 : le mouvement devient simplement circulaire, et se fait

dans le plan horizontal contenant A.

cos(α) = 0,138 ⇔ α = 82◦On trouve

⋄
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