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Mécanique — chapitre 3

Correction du TD d’application

‘ | |Pr0jection de vecteurs

— Outils M3.1 : Projection de vecteurs

On peut projeter avec trois méthodes :

< Produit scalaire : on trouve individuellement les composantes du vecteur en calculant son produit scalaire
avec chacun des vecteurs de la base donnée :

— —
— = =

V= (‘777;)175—1- (‘717;)17; avec Vg = Veos (Vyug) et V-@chos(V,zTy’)
Il s’agit alors de trouver les angles sur le schéma, et de remplacer les cos(g — a) = sin(«) ete, en faisant
attention aux signes (cos(% + o) = —sin(a) par exemple).

< Trigonométrie : on peut aussi se baser sur le fait que les projections sont les cotés adjacents et opposés
d’un triangle rectangle, et utiliser les fonctions trigonométriques pour écrire les composantes en fonction
de la norme du vecteur et de 'angle. On trouve le signe en regardant ’orientation de la projection.

< Vraisemblance : pour vérifier son résultat, il est de bonne pratique de Vg)riﬁer que le résultat est cohérent
dans des cas limites, souvent a = 0 et a = 7, quand le vecteur cherché V' est entiérement colinéaire a un
vecteur de base. On peut en fait également utiliser cette méthode pour trouver les décompositions en sin et
cos avec le bon signe directement. On procéde ainsi :

D> Imaginer o = 0 : le vecteur cherché est colinéaire soit a u,, soit & @, : étant donné que la décomposition
donne toujours =+ cos(a) et £sin(a), pour @ = 0 il ne reste que le cosinus : c’est donc ce vecteur qui
porte le cosinus.

De plus, on trouve le signe en regardant 1’orientation relative du vecteur cherché par rapport au
vecteur de base : méme sens = signe +, sens opposé = signe —.

us

D> Imaginer o = 7 : par élimination, il ne reste que le sinus pour I’autre. On trouve le signe de la méme
maniére.

Exprimer chacun des 4 vecteurs suivants dans la bas dans la base (uy,uy,).

Y
y} y}\ y}
—> —> —>
— e — « B uy N D —
Uy, A Uy K Uy
—>
T & .
« > e
> > O & x >
—> —>
@) Uy z O Uy z o @) x
Réponse
Y
Ya Y
— Uy 5 X D] 0o
Uy‘ % 1 (TS X
: N &
i B X N\
€z 1 —>
> T
0O of L. x A v 5
O N Oy
gl C-uy — O
- C

On trouve : A=
c

et
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2 Mécanique — chapitre 3. Correction du TD d’application

Exprimer N et T dans la base (uz, uy) en fonction de N, T et o

H
Y N T
>
Uy
!
0 Uz x
Réponse

On peut se reposer sur les résultats trouves a la premiére
question : T est équivalent au vecteur A de la premiére
question, et N au vecteur D. On trouve alors :

T = T (cos(a) uy + sin(a) uy)

—

et N= N(—sin(a) u, + cos(a) uy)

Exprimer P et T en fonction de m, g, T et 6 dans la base (u,,ug) d’abord, puis dans la base (u,,uy).

Réponse

Toujours méme réflexion. Par exemple, par vraisemblance :

=0 = ]_5-6::1 et 9:% = }_5.125:_1
Ainsi P = mgcos(0) u, —mgsin(f) ug | et TL _Tu

On trouve également dans la base (ug,uy) :

P=mgi,| e |T=T (—cos(0) uy — sin(0) uy)

&

Equilibre plan incliné A I’équilibre des forces, on a
N+T+P=0

Projeter le poids dans la base inclinée et exprimer les normes de T et N en fonction de m, g et a.
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II. Mouvement hélicoidal 3

Réponse
Ici aussi : a=0=P &y =1 et a=7r/2:>]_5~€}}':1
Ainsi D= mg(sin(a) ex — cos(a) ey )| et ‘J_\/t = Ne}?‘ et ‘ T = —TE;{‘
- = = 3 > mgsin(a) — T 0 T = mgsin(a)
D N+T+P=0<% = &
ou T T (—mg COS(O&) + N) (0 N = mg COS(Oé)

&

Equilibre hamac A P'équilibre des forces, on a

—

Fy+F4+P=0

Projeter les vecteurs I g €t F 4 dans la base (u,,u,) avec u, paralléle au sol vers la droite et u, vertical ascendant.
En déduire la norme littérale de ces deux vecteurs. On prend m = 60kg, a = 45° et 8 = 60°. Faire I’application

numérique.
Réponse
On projette : Fg = Fy(cos(a) u, —sin(a) uy) et Fy= Fy(cos(B) uy, + sin(fB) uy)
., sin(a)
Soit {0 — Fysin(8) — F, sin(a) F=tou)
_ sm(oz) _mg s1n( )
Fd Sln(ﬁ) Fd o Sln(Oé + 6)
< mgsin(f3) = Fy (cos(a) sin(f) + sin(a) cos(B)) < P ‘mgsin(3)
: —sin(a+5) ' ¢ sin(a+p)

AN. :

Fy=44x102N
F, =54 x 102N

&

& IT | Mouvement hélicoidal

Un point matériel M a pour équations horaires en coordonnées cylindriques :

r(t)=R
0(t) =wot avec (a,wp) des constantes
z(t) = at

Exprimer le vecteur vitesse et le vecteur accélération dans la base cylindrique.

Réponse
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4 Mécanique — chapitre 3. Correction du TD d’application

e

On a OM(t) = Ru, + atu,
. . dur
T(t) = %r +Rgm§+m?;+atz?tﬁ/
=0 =w —

=y
= Rwug + au,

@(t) =R g u — R, + 0
=0

= —Rw?u,

&

Dessiner l'allure de la trajectoire.

Réponse

&

Déterminer h le pas de I’hélice, c’est-a-dire la distance selon I'axe (Oz) dont sont séparés deux points successifs de la
trajectoire correspondant & un méme angle 6 (modulo 27).

Cf. ci-dessus.

Réponse
Soit tp un instant quelconque. Un point a ce temps-1a est tel que

T(to) = R
0(to) = woto
Z(to) = Oéto

Le premier point qui est au méme angle # mais avec 27 de plus se trouve donc a t; tel que

0(t1) = O(to) + 27
& wot1 = wolp + 27

21
Sty =t + —
wo
On a alors z(t1) — z(to) = h = at; — ato
S| h= 27rg
wo

&

Ce mouvement est-il uniforme ? A quelle condition est-il circulaire ?

Réponse

171 = v/R2wy? + a2 = cte, donc il est uniforme. Il est circulaire ssi .

Déterminer les coordonnées cartésiennes de ce mouvement.

Réponse
En regardant dans le plan polaire, on trouve z(t) et y(t) :

x(t) = R cos(wot)
y(t) = Rsin(wot)
2(t) = at

&

IIT | Masse du Soleil

La Terre subit de la part du Soleil la force d’attraction gravitationnelle :
= MTMS —
Fg = —QTHT

avec u, le vecteur unitaire allant du Soleil vers la Terre. La Terre tourne autour du Soleil en décrivant un cercle de
rayon R = 149,6 x 10%km.

ol ¢ =6,67x10""SI
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IV. Course de F1 5

W

Déterminer la masse du Soleil.

Réponse

On étudie le systéme {Terre} dans le référentiel héliocentrique. La Terre étant sur une orbite circulaire, on utilise un
repére polaire (S,u,.,ug) en appelant S le centre de gravité du Soleil et T le centre de gravité de la Terre. On a :
ST = Ra;

7 = Riug

étant donné que la distance Terre-Soleil est fixe, et que la vitesse angulaire de la Terre autour du Soleil est constante.
On a d’ailleurs, en appelant wo = 0(t) cette vitesse angulaire,

27

wo = —
To

avec Tp la période de révolution de la Terre autour du Soleil, telle que Ty = 365,26 x 24 x 3600s = 3,16 x 107 s. Ainsi,
la seule force s’exergant sur la Terre étant I'attraction gravitationnelle du Soleil, on a avec le PFD :

Sz M
Mr@ = Fy & —MrRw} :—QMZQ 2

R =1,496 x 10"' m
avec G = 6,67 x 10-11ST = | M = 1,99 x 10% kg
Ty = 3,16 x 107 s

&

_ R%W?  4An’R3

M —
i G GTy?

IV | Course de F1

Lors des essais chronométrés d’'un grand prix, Fernando ALONSO (point A) et Jenson
BUTTON (point B) arrivent en ligne droite et coupent Paxe A au méme instant de B’
leur parcours. Ils prennent cependant le virage de deux fagons différentes :

<
<&

On cherche & déterminer quelle est la meilleure trajectoire, c’est-a-dire lequel des

ALONSO suit une trajectoire circulaire de rayon R4 = 90,0m;

BUTTON choisit une trajectoire de rayon Rp = 75,0 m.

deux pilote gagne du temps par rapport a I’autre a la sortie du virage. !

Déterminer les distances D4 et Dp parcourues par les deux pilotes entre leurs deux passages par 'axe A. Que
peut-on conclure ?

Réponse

La voiture A d’ALONSO entame son virage dés qu’elle passe par I'axe A, et parcourt un demi-cercle de longueur

| D4 =7Ra=283m|

En revanche, la voiture B de BUTTON continue en ligne droite sur une distance R4 — Rp avant d’entamer son virage,
et parcourt de nouveau la méme distance en ligne droite avant la sortie du virage. Ainsi,

| Dp = 2(Ry — Ry) + wRp = 266m |

La voiture B parcourt moins de distance que la voiture A, mais il est impossible d’en conclure quoi que ce
soit puisqu’on ne sait pas si les deux trajectoires sont parcourues & la méme vitesse.

&

Pour simplifier, on imagine que les deux voitures roulent & des vitesse v4 et vg constantes entre leurs deux passages
)

par 'axe A. Déterminer ces vitesses, sachant que 'accélération des voitures doit rester inférieur a 0,8 g sous risque de

dérapage. Les calculer numériquement.

Réponse
Lorsqu’elles sont sur la partie circulaire de leur trajectoire, parcourue a vitesse constante (en norme), 'accélération
(en norme) des voitures vaut

—— =08
o= =08
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6 Mécanique — chapitre 3. Correction du TD d’application

puisque les pilotes prennent tous les risques. Ainsi,

1

va =+vaR4 =26,6m-s™ et vg = \VaRp = 24,3 mes™?

&

Conclure quant & la meilleure trajectoire des deux.

Réponse
Calculons le temps mis par chacun des pilotes pour passer le virage :

D
At — - donc |Ats =10,6s| et |Atp=109s

Finalement, ALONSO va plus vite que BUTTON pour parcourir le virage : la meilleure trajectoire est la plus
courte des deux, soit ici celle la plus large. Ne pas tenter de vérifier en rentrant chez vous, mais de quoi briller
sur Mario Kart...?

v ‘ A% |Entrainement d’une spationaute

Une spationaute doit subir différents tests d’aptitude aux vols spatiaux, no-
tamment le test des accélérations. Pour cela, on l'installe dans une capsule de
centre O, fixée au bout d’un bras métallique horizontal dont I'autre extrémité
est rigidement liée a un arbre de rotation vertical A. La longueur du bras est
notée L. On assimilera la spationaute au point matériel S.

L’ensemble {capsule + bras + arbre} est mis en rotation avec une vitesse
angulaire croissante, selon la loi

w(t) = wp(l — exp_t/T)

avec wy la vitesse angulaire nominale du simulateur, et 7 un temps caractéris-
tique. On donne L = 10,0m et ¢ = 9,81 m-s~2.

Etablir proprement le systéme d’étude.
Réponse

<& Systéme : {spationaute}
<& Reéférentiel : référentiel du laboratoire, supposé galiléen
<& Repére : (0,u,,ug) avec Uy selon le sens de rotation

< Repérage :

0S(t) = Ly
Ts(t) = Lw(t)ug
@ s(t) = Los(t)ug — Lo (t)u,

&

A partir de quelle durée peut-on supposer que le mouvement est circulaire et uniforme ? Que deviennent les expressions
des vecteurs vitesse et accélération dans ce cas? Calculer alors la norme de l'accélération subie par la spationaute.

Réponse
Au bout de quelques 7, w(t) = wp et le mouvement sera circulaire uniforme. Les vecteurs vitesse et accélération
deviennent :
Vg (t) = Lwoug
Ts(t) = —Lwo’u;
La norme de ’accélération subie est alors | | @ g|| = Lwo? |

&

Quelle doit étre la valeur de wg pour que I’accélération atteigne 10 g lors du régime de rotation uniforme ? On donnera
le résultat en tours par second.
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V. Entrainement d’une spationaute 7

Réponse
_ _ [10g g=19.81m=s2
as =109 = |wo = 4/ | avec {L ~10.0m (M3.1)
AN. : wg = 313rads ™! & 0,50 tour-s ™! | (M3.2)

— Ordre de grandeur M3.1 :

<& Accélération dans un ascenseur : [0,9 ; 1,1] g;
<& Accélération latérale en F1: |5 ; 6] g;
& Accélération latérale en avion de chasse : [9 ; 12] ¢ pendant quelques secondes max ;

<& Accélération verticale, éjection d’un avion de chasse : & 20 g (interdiction de vol aprés 2 utilisation du siége
éjectable a cause — notamment — du tassement des vertébres) ;

<& Accélération négative frontale en accident de voiture : [40 ; 60] g! Méme sans choc physique, une telle
décélération cause des hémorragies internes a cause des organes internes percutant les os. Soyez prudent-es.

&
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Mécanique — chapitre 3

Correction du TD d’entrainement

e ‘ I |G1issade d’un pingouin sur un igloo

Un pingouin, assimilable & un point matériel M de masse m décide de faire
du toboggan. Il s’élance sans vitesse initiale du sommet A d’un igloo voisin,
assimilable & une demi sphére S de rayon R et de centre O, posée sur un plan
horizontal II. On considére que le glissement s’effectue sans frottement dans le
plan vertical (zOy).

Appliquer le PFD au pingouin pour en déduire deux équations différentielles portant sur I’angle . Identifier ’équation
du mouvement qui permet de déterminer 6(t). Quelle information ’autre information contient-elle ?

Réponse

<& Systéme : {pingouin}

< Reéférentiel : Ry, supposé galiléen

<& Repére : (0O, 14,,uq) avec ug dans le sens de 6
<& Repérage :

OM(t) = Ru, ; T(t)=ROt)us ; a(t)= RO(t)ug — RO*(t)u,

<& Origine et instant initial : W(O) —0A = 0(0)=0 et T(0)=

<& BDF :
Poids P = mg(— cos(8(t)) u, + sin(6(t)) ug)
Réaction R = Ry
] - BB —mRO%(t)\ _ (—mgcos(8(t)) + R
o PFD : ma(t) =P+ R e ( i) ) _ ( gmgsm(e(t)) N)
Ry = mgcos(A(t)) — mRO*(t) (M3.1)
=4 ..
f(t) = %sin(&(t)) (M3.2)

L’équation du mouvement est celle qui donne 1’équation d’oscillateur harmonique aux petits angles, et qu’on a déja
utilisée en cours sur le pendule, et linéaire en 6 : ’équation (M3.2). L’équation (M3.1) contient 'information sur le
contact a l'igloo.

En multipliant I’équation du mouvement par 0 et en intégrant sur ¢, montrer que

() = 221~ cos(0(1)))
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Mécanique — chapitre 3. Correction du TD d’entrainement

En prenant (M3.2)x6, on a

Réponse
Bd(E) = %0(t)sin(8(1)) >fﬁ _aqpe
d /1 d deos(0(1) — _@(¢) sin(@
N dt<292(t)> = & 2 (= cos(0(1)) at (1) sin(6(2))
. [E()dt
Lt de? g " (=cos(6(1))) > °
- 2 Ji=0 dfd{i R Ji=o at “ >On intégre
1751t
& 3 [92 = % [— cos(@(t))]izo >O »
ol 62 = %9(1 _ cos(0(1))) -
&

En déduire la norme de la force de réaction de l'igloo, ainsi que la vitesse du pinguouin en fonction de I'angle 6.

Réponse

On remplace 62 dans (M3.1) :

De plus,

u(t

Ry = mgcos(0(t)) — mE-2(1 - cos(0(t))

R

& Ry = mg(3cos(6(t)) - 2) |

) = |RO(t)| = \/ R262(t)

sl v(t) = /2gR(1 — cos(6(t)))
&

Le pingouin décolle-t-il du toit de I'igloo avant d’atteindre le sol ? Si oui, pour quel angle, et & quelle vitesse ?

Réponse

La condition de support d’un solide est Ry > 0 : le pingouin décolle du support si la force de réaction est nulle, soit
pour 0, tel que Ry = 0. Or,

2
Ry=0 < 3cos(y)—2=0 & |04= arccos(3> AN. : §=482°
2 2gR
De méme, v(ts) = \/2gR(1 — cos(0q)) < |v(ts) = 4 [29R (1 - 3) = gT
&
* . . )
xr | II | Oscillations d’un anneau sur un cerceau
Un cerceau de centre O et de rayon R est maintenu dans un plan vertical, et un anneau z
de masse m assimilé & un point matériel M peut glisser sans frottements le long de ce ?
cerceau.
Qu’est-ce que ’hypothése « sans frottements » implique pour la réaction du cerceau R
sur I’anneau ? x

Réponse

L’hypothése « sans frottements » signifie que la réaction du cerceau est uniquement
normale : il n’y a pas de composante tangentielle.

&

Ecrire le PFD appliqué a ’anneau et le projeter dans une base adaptée.

Réponse

<& Systéme : {anneau}

< Reéférentiel : Ry, supposé galiléen

& Repére : (0,u,,uq) avec ug dans le sens de 0

< Repérage :

Ru; ; T{t)=RO(t)u, ; Q(t)=RO(t)ug— RO>(t)u,
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III. Anneau sur une tige en rotation 11

<& BDF :
Poids P = mg(cos(0(t)) u — sin(0(t)) ug)
Reéaction R=—-Ryu
_ B3 —mRO*(t)\ _ [mgcos(8(t)) — Ry
<& PFD: ma(t)P+R¢>< mRi(t) >( “mgsin(0(¢))

o Jme cos(0(t)) + mRO? = Ry
mRE + mgsin(6(t)) = 0 (M3.3)

&

En déduire I’équation différentielle régissant le mouvement.

Réponse
Avec (M3.3), en la mettant sous forme canonique :

(M3.4)

0(t) + %sin(@(t)) —0& |0+ w?sin(0t) =0| avec |wy=

&

On se place dans approximation des petits angles (161 < 6y = 20°). Initialement, ’anneau est situé a la verticale
en-dessous de O et il est lancé vers la droite, avec une vitesse initiale de norme vy.

o=

En déduire ’équation horaire du mouvement.

Réponse
On a donc 0(0)=0] et T(0) = vouz = RO0)ag < | 6(0) = ZRO
(M3.4) petits angles : O(t) +wo?0(t) = 0| soit  B(t) = Acos(wot) + Bsin(wot)
: [ U, . U .
Avecles CI: 60(0)=0< et 0(0)= EO & |B= R—zo soit |0(t) = R—S}O sin(wot)

&

A quelle condition sur vy I'approximation des petits angles est-elle vérifiée ?

Réponse

Vo
RUJO ?

La valeur maximale de |0(t)| est quand le sinus vaut +1. Pour avoir des petits angles, il faut que I’angle maximal

ne dépasse pas 0, soit

Vo g

— < by & bR\ 5 & 0oV R

Rw0< 0 Vo < Up R Vo < Ug g
O

# | III | Anneau sur une tige en rotation

On considére un petit anneau M de masse m considéré comme ponctuel, soumis
a la pesanteur et susceptible de se déplacer sans frottement le long d’une tige :
OA horizontale dans le plan (xOy), de longueur ¢, effectuant des mouvements 3
de rotation caractérisés par une vitesse angulaire w constante autour d’un axe
fixe vertical A passant par son extrémité O. Le référentiel lié au laboratoire !
est considéré comme galiléen. On considére la base cylindrique locale (€, ,eg,e5) |

associée au point M.

L’anneau est libéré sans vitesse initiale par rapport a la tige, & une distance rq
du point O (avec rg < £). On repére la position de ’anneau sur la tige par la
distance r(t) = OM(t) entre le point O et Panneau M.
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Mécanique — chapitre 3. Correction du TD d’entrainement

Faire un bilan des forces agissant sur ’anneau en les projetant dans la base (

— —> —>
e (&

~€9,¢,). En appliquant le principe

fondamental de la dynamique, établir ’équation différentielle vérifiée par r(t).

<& Systéme : {anneau} point matériel M de masse m

< Reéférentiel : terrestre supposé galiléen

<& Repére : cylindrique (O,e,,¢5,¢5)
< Repérage :(ﬁ/{'(t)
(t)

v 6
@(t) =i(t)er +r(t)weg

r(t)e,

<& Conditions initiales : 7(0) =7y et

r(t)e, + r(t)0es =

+

P(t

Réponse

<& BDF : pas de frottements donc pas de composante sur e, :

Poids

Réaction support

<O PFD :

—

P =mg = —mge;
R = Roe; + R.¢2
m(#(t) — rw?) =0

P+Re 2mi(t)w = Ry
0=-mg+ R,
’f(t) —wr(t) = o\ (M3.5)
= Ry = 2m7(t)w (M3.6)
R, =mg (M3.7)

&

Intégrer cette équation différentielle en prenant en compte les conditions initiales définies précédemment, et déterminer

la solution 7(t) en fonction de 7¢, w et ¢.

On résout (M3.5) en injectant r(t) = e

#(t) —w?r(t) =0
=52 —w?=0

@szzwz

fr==0]

Donc ‘ r(t) = Ae*t + Be ! ‘

st .

Réponse
o 0-nenard]
et #0) =0
! < 0= Aw — Bw
1 elA=D
" Soit A=-p="1"
| 2
' Donc r(t) = %O(e“’t +e %" = ry ch(wt)

Exprimer les composantes de la réaction R de la tige sur M dans la base (

— —> —>
(& (&

~€0,6,) en fonction de m, g, 7 et w.

Réponse

On reprend (M3.6) et (M3.7) : 7(t) = wrg sh(wt) =

R = 2mrow? sh(wt) eg +mge,

&

Déduire de la question 2 le temps 7 que va mettre ’anneau pour quitter la tige. On exprimera 7 en fonction de rg, ¢

et w.

11 quitte la tige pour r(7) = ¢, soit

roch(wr) =0 &

Réponse

1 14
T = — argch ()
w To

&
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IV. Pendule conique 13

IV | Pendule conique

Dans un champ uniforme de pesanteur g vertical et vers le bas, un point matériel M de
masse m tourne a la vitesse angulaire w constante autour de axe (Oz) dirigé vers le haut
en décrivant un cercle de centre O et de rayon R. M est suspendu & un fil inextensible de
longueur L et de masse négligeable, fixé en un point A de (Oz). L’angle o de (Oz) avec
AM est constant.

Réponse

Pour une vitesse angulaire donnée, le mouvement est circulaire donc les coordonnées
polaires semblent suffire, mais le poids s’applique verticalement et la hauteur du mobile
va changer avec la vitesse angulaire. On utilisera donc un repére cylindrique pour
étudier la rotation.

Quel systéme de coordonnées utiliser 7 l

&

Effectuer un bilan des forces s’appliquant & la masse et les écrire dans la base choisie, en fonction de L, w et a.

Réponse

<& Systéme : {M} masse m

<& Reéférentiel : Ry, supposé galiléen
& Repére : (0,¢€,,¢€5,¢,) (voir schéma)
< Repérage :

OM(t) = Re; = Lsin(a)e;  avec {R =cte=R=0

0 =w=ctes =0

D’out Tm(t) = Lwsin(a)eg et @n(t) = —Lw?sin(a)e,
<& BDF : N

Poids P =mgqg = —mge,

Tension T = T(—sin(a)é, + cos(a)e?)

&

Appliquer le PFD puis exprimer cos(«) en fonction de g, L et w. En déduire que la vitesse angulaire doit forcément
étre supérieure a une vitesse angulaire limite wy;, pour qu’un tel mouvement puisse étre possible.

Réponse
. . T = mLw?
— — *mez = *T
PFD : m@=B+T o sia) = —Tsinta) mg
0 =T cos(a) —mg T =
cos(a)
. 2 myg g
Soit mLw” = cos(a) < | cos(a) = T2
Pour que ce mouvement soit possible, il faut que cos(a) < 1, soit
g g
m<1<:> w > Zzwlim

Que dire du cas oil w devient trés grande ? Application numérique : calculer a pour L = 20cm et w = 3 tours-s ™.

Réponse

Si w > wiim, alors cos(a) —— 0 donc |« — 7/2|: le mouvement devient simplement circulaire, et se fait
W>Wlim W>>Wlim

dans le plan horizontal contenant A.

On trouve cos(a) = 0,138 & a = 82°

&
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