
Mécanique – chapitre 4

Approche énergétique du mouvement
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tive et l’énergie potentielle. Déterminer l’expression d’une
force à partir de l’énergie potentielle.

□ Énergie mécanique. Théorème de l’énergie mécanique. Mou-
vement conservatif.
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2 Mécanique – chapitre 4. Approche énergétique du mouvement

I Force et énergie cinétique

I/A Puissance d’une force et théorème de la puissance cinétique

L’énergie est un concept physique très puissant et présent dans tous les domaines de la physique mais qu’il est
difficile de définir simplement. En voici une première définition qualitative :

Définition M4.1 : Énergie

[ L’énergie d’un système est une grandeur scalaire caractérisant sa capacité
à agir sur lui-même ou d’autres systèmes. Unité le Joule (J)

Ainsi, le mouvement d’un corps, les échanges de chaleur, les courants électriques et tous les phénomènes physiques
résultent d’échanges d’énergie.

Important M4.1 : Conservation de l’énergie

L’énergie est une grandeur conservative. Elle ne peut être créée ou détruite. Elle ne peut que
changer de forme et/ou passer d’un système à un autre.

Une énergie totale peut varier différemment selon les conditions du système, et notamment varier plus ou moins
vite. On définit pour ça la puissance d’un système :

Rappel M4.1 : Puissance en terme d’énergie

] La puissance P d’un système traduit la variation
temporelle de son énergie E, et on a

P =
dE

dt

L’unité d’une puissance est donc homogène à des
J·s−1, et se compte couramment en Watts (W), avec :

1W = 1J·s−1

Pratique pour retrouver son unité, cette expression est cependant peu utilisée ; en effet, lors de l’étude mécanique
d’un corps, on connaît moins facilement son énergie que sa vitesse ou les forces qui s’y appliquent.

♥ Définition M4.2 : Énergie cinétique

[
Ec,M/R(t) =

1

2
mv2M/R(t)Pour M de masse m de vitesse vM/R(t) :

À quelle condition une force appliquée à un objet fait-elle varier son énergie cinétique ?

⋄ Quand un objet est jeté vers le haut, le poids le ralentit, donc fait diminuer son énergie cinétique.

⋄ Quand un objet tombe, le poids l’accélère et fait donc augmenter son énergie cinétique.

⋄ Lorsqu’un objet est posé sur un support, la réaction normale ne fait pas varier son énergie cinétique.

♥ Définition M4.3 : Puissance d’une force
[ P/R(

#»

F ) =
#»

F · #»vM/R(t)Pour
#»

F appliquée à M de vitesse #»v :

Implication M4.1 : Autour de la puissance

� ⋄ P/R(
#»

F ) > 0 ⇒ force motrice ; P/R(
#»

F ) < 0 ⇒ force résistante.

⋄ P/R(
#»

F ) = 0 ⇒ #»

F ⊥ #»v (ou
#»

F =
#»
0 , ou #»vM/R =

#»
0 ).

Figure M4.1

♥ Outils M4.1 : Calculer une puissance

å
#»

F = Fx
# »ux + Fy

# »uy + Fz
# »uy =



Fx

Fy

Fz


 et #»vM/R = vx

# »ux + vy
# »uy + vz

# »uz =



vx
vy
vz


⋄ On décompose :

#»

F · #»vM/R = vxFx + vyFx + vzFz = +
+



Fx

Fy

Fz



·
·
·



vx
vy
vz


On a alors
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I. Force et énergie cinétique 3

#»

F · #»vM/R = ∥ #»

F ∥ · ∥ #»vM/R∥ cos(α) avec α l’angle entre les vecteurs.⋄ ou directement :

Application M4.1 : Puissance du poids en pente

� Exprimer la puissance du poids lors d’une descente à vélo d’une pente d’angle α. Est-il moteur ou résistant ?

Figure M4.2 – Schéma

#»

P = mg(− cos(α) #  »uY + sin(α) #  »uX)Dans ( #  »uX , #  »uY )
#»v = v #  »uXet

P(
#»

P ) =
#»

P · #»v = mgv sin(α) = mgv cos
(π
2
− α

)
Ainsi

P(
#»

P ) > 0 soit poids moteurDonc

Dans le cas de la montée, #»v change de sens : le poids devient résistant.

Preuve M4.1 : Théorème de la puissance cinétique

� On peut alors relier l’effet d’une force à la variation d’énergie cinétique, de deux manières :
Bilan de puissance

m #»a =
∑

i

#»

F i

⇔ m
d #»v

dt
· #»v =

∑

i

#»

F i · #»v

⇔ d

dt

(
1

2
mv2

)
=
∑

i

P(
#»

F i)

⇔ dEc,M/R

dt
=
∑

i

P/R(
#»

F i) ■

Définition de Ec

dEc
dt

=
d

dt

(
1

2
m #»v · #»v

)

⇔ dEc
dt

=
1

2
m

(
#»v · d

#»v

dt
+

d #»v

dt
· #»v

)

⇔ dEc
dt

= m
d #»v

dt
· #»v

⇔ dEc,M/R

dt
=

(∑

i

#»

F i

)
· #»v ■

♥ Théorème M4.1 : de la puissance cinétique

� Les puissances des forces se somment pour modifier la dérivée de l’énergie cinétique d’un point M :

dEc,M/R

dt
=
∑

i

P/R(
#»

F i)

♥ Application M4.2 : Pendule simple par TPC

� Établir l’équation différentielle du pendule.

M

O

# »ux

# »uy

x
# »ur

# »uθ

#»

P

#»

T
θ

ℓ

•

Figure M4.3 –
Pendule

Le mouvement étant circulaire, #»v = ℓθ̇(t) # »uθ et on a

Ec(t) =
1

2
mℓ2θ̇2(t) ⇒ dEc

dt

∣∣∣∣
t

= mℓ2θ̇(t)θ̈(t)

P(
#»

T ) =
#»

T · #»v (t)
#»
T⊥ #»v

= 0 et (̂
#»

P , #»v ) = π/2 + θDe plus,

P(
#»

P ) =
#»

P · #»v (t) = mg · ℓθ̇ · cos
(π
2
+ θ
)
= −mgℓθ̇(t) sin(θ(t))⇒

����mℓ2θ̇(t)θ̈(t) = −��mg ��AℓZZθ̇(t) sin(θ(t))

��mℓ�C2θ̇(t)
⇔ θ̈(t) +

g

ℓ
sin(θ(t)) = 0 ■TPC :

Implication M4.2 : Conséquence des frottements

� Les frottements fluides conduisent à une baisse de l’énergie cinétique :
# »

Ff · #»v < 0 ⇒ P/R(
# »

Ff ) < 0 ⇒ dEc
dt

< 0

Mais les frottements solides peuvent être moteurs : ils permettent à un pneu d’avancer.
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4 Mécanique – chapitre 4. Approche énergétique du mouvement

♥ Outils M4.2 : Quand appliquer le TPC?

å ⋄ Si le mouvement est selon une seule coordonnée (x, y ou z en cartésiennes, θ en coordonnées cylindriques),
il sera pertinent d’utiliser le TPC.

⋄ Sinon (chute libre avec angle par exemple), on revient au PFD qui contient toute l’information.

I/B Travail d’une force et théorème de l’énergie cinétique

Sur un temps dt, l’effet total d’une force se traduit par une variation d’énergie totale :

♥ Définition M4.4 : Travail d’une force
[

Travail élémentaire

Le travail élémentaire δW d’une force
#»

F sur un point
M lors d’un déplacement élémentaire d

#     »

OM est :

δW =
#»

F · d #     »

OM = P/R(
#»

F ) · dt ⇔ P/R(
#»

F ) =
δW

dt

Travail total

Le travail WAB d’une force
#»

F sur un chemin C allant
du point A au point B est

WAB(
#»

F ) =

ˆ B

A

δW

C’est l’énergie fournie par la force
#»

F à M le long de la trajectoire Unité Joule (J)

Important M4.2 : Travail et chemin

De façon générale, le travail dépend du chemin suivi.

♥ Attention M4.1 : Notations δ vs. d
. δ ⇒ grandeur totale dépend a priori du chemin et de la vitesse. d ⇒ grandeur dépend uniquement du point de

départ et du point d’arrivée ; or W est défini sur une distance, pas (((((((hhhhhhhen un point :
ˆ B

A

dEc = Ec(tB)− Ec(tA) et
ˆ B

A

d
#     »

OM =
#   »

OB− #    »

OA =
#   »

ABOn peut faire

�����������XXXXXXXXXXX

ˆ B

A

δW = W(B)−W(A) ou (((((((((((hhhhhhhhhhh
dW = W(t+ dt)−W(t)mais pas

trajectoire

Figure M4.4

Implication M4.3 : Travail d’une force constante sur un segment

� WAB(
#»

F ) =
#»

F · #   »

ABSi
#»

F constante, sur
#   »

AB segment :

Application M4.3 : Travail des frottements fluides

� On considère une voiture allant d’un point A à un point B, éloignés de 100 km, avec une vitesse constante. La
force de frottement exercée par l’air est

#»

F = −1

2
ρScxv

#»v

Déterminer son travail, et faire l’application numérique pour v = 50 km·h−1 puis 80 km·h−1. On donne S =
3,07m2, cx = 0,33, ρ = 1,3 kg·m−3. Convertir en litres d’essence consommée, sachant que 1L = 3,15× 107 J.

Figure M4.5 – Schéma

WAB(
#»

F ) =
#»

F · #   »

AB = F ·AB · cos(π) = −F ·AB < 0 ⇒ résistante

⋄ WAB,50 km·h−1(
#»

F ) = −1,27× 107 J, soit ≈ 0,4L d’essence ;

⋄ WAB,80 km·h−1(
#»

F ) = −3,25× 107 J, soit ≈ 1L d’essence.

Application M4.4 : Travail des frottements solides

� Soit un objet de #»v (0) = v0
# »ux, soumis à une force de frottements solides sur un support horizontal.

Il subit la force
#»

T = −fmg # »ux sur la distance de freinage D =
v0

2

2fg

1 Calculer le travail de la force de frottements sur cette distance. Est-il moteur ou résistant ?
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II. Énergie mécanique 5

2 Que vaut Ec,0 l’énergie cinétique initiale ? Ec,∞ sont énergie cinétique finale ? Que peut-on en conclure ?

1 WAB(
#»

F ) =
#»

F · #   »

AB = ∥ #»

F ∥ · ∥ #   »

AB∥ · cos(π) = fmg · v0
2

2fg
· (−1) ⇔ WAB(

#»

F ) = −1

2
mv0

2

Le travail étant négatif, on dit qu’il est (et que la force est) résistant(e).

2 Ec,0 =
1

2
mv0

2 et Ec,∞ = 0 ⇒ WAB = ∆ABEc

On observe que l’énergie initiale du système, son énergie cinétique, a été dissipée par la force de frottements
et est quantifiée par le travail de cette force sur le chemin suivi.

Preuve M4.2 : Théorème de l’énergie cinétique

� Si la puissance donne la dérivée de l’énergie cinétique, alors son intégrale, en donne la variation totale :

dEc,M/R

��dt
=
∑

i

P/R(
#»

F i) =
∑

i

δW(
#»

F i)

��dt

⇔
ˆ B

A

dEc = ∆ABEc =
∑

i

ˆ B

A

δWi =
∑

i

WAB(
#»

F i) ■

Séparation des variables´
(·) et

´ ∑
=

∑ ´

♥ Théorème M4.2 : de l’énergie cinétique

� Les travaux des forces se somment pour modifier l’énergie cinétique d’un point M :

∆ABEc/R = Ec(tB)− Ec(tA) =
∑

i

WAB(
#»

F i)

♥ Application M4.5 : TEC appliqué au ski

�

O

# »ux

# »uz

A•

B
•

L

h#»

P

#»

N Déterminer la vitesse d’une skieuse en bas d’une piste de h = 5m de dénivelé partant avec
une vitesse nulle, si on néglige les frottements.

⋄ Variation de Ec : Ec(tA) = 0 et Ec(tB) =
1
2mv2 ⇔ ∆ABEc =

1
2mv2

⋄ Travail de
#»

N : δW(
#»

N) =
#»

N · d #     »

OM = 0 ⇒ WAB(
#»

N) = 0

⋄ Travail de
#»

P : WAB(
#»

P ) =

ˆ B

A

#»

P · d #     »

OM =

ˆ B

A




0
0

−mg


 ·



dx
dy
dz


 = mg(zA − zB) = mgh

⋄ TEC : ∆ABEc = WAB(
#»

P ) ⇔ 1
2mv2 = mgh ⇒ v =

√
2gh = 10m·s−1

♥ Outils M4.3 : TEC ou PFD ?
å ⋄ Si l’on veut connaître seulement une vitesse/une distance à la fin d’un processus (chute, descente, freinage,

etc.), les méthodes énergétiques sont souvent plus simples et plus rapides.

⋄ Si on cherche les équations horaires/un temps/une trajectoire, il faut appliquer le PFD.

II Énergie mécanique

II/A Énergie potentielle

♥ Définition M4.5 : Forces conservatives ou non
[ Une force est dite conservative si son travail de A à B ne dépend pas du chemin suivi ou de la vitesse,

mais uniquement des positions A et B. Elle est non-conservative dans le cas contraire.
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6 Mécanique – chapitre 4. Approche énergétique du mouvement

♥ Propriété M4.1 : Travail du poids et de Hooke

� ⋄ Le poids est une force conservative, et pour # »uz un axe vertical, on a

#»

P = ±mg # »uz ⇔ δW(
#»

P ) = ±mg dz ⇔ WAB(
#»

P ) = ±mg∆ABz avec
{
+ axe descendant
− axe ascendant

⋄ La force de rappel d’un ressort est conservative, et pour # »ux dans le sens ressort–masse :

#»

F r = −k(x− ℓ0)
# »ux ⇔ δW(

#»

F r) = −k(x− ℓ0)dx ⇔ WAB(
#»

F r) = −1

2
k
(
(xB − ℓ0)

2 − (xA − ℓ0)
2
)

♥ Démonstration M4.1 : Travail du poids et de Hooke

�
Poids

#»

P = −mg # »uz et d
#     »

OM = dx # »ux + dy # »uy + dz # »uzOn a

δW(
#»

P ) = −mg dz ⇒ WAB(
#»

P ) = −mg

ˆ B

A

dz = −mg∆ABz ■D’où

Figure M4.6

Hooke
#»

F r = −k(x− ℓ0)
# »ux et d

#     »

OM = dx # »ux + dy # »uy + dz # »uzOn a

δW(
#»

F r) = −k(x− ℓ0)dx ⇒ WAB(
#»

F r) = −k

ˆ B

A

(x− ℓ0)dxD’où

⇔ WAB(
#»

F r) = −k

[
1

2
(x− ℓ0)

2

]B

A

⇔ WAB(
#»

F r) = −1

2
k
(
(xB − ℓ0)

2 − (xA − ℓ0)
2
)

■

Dans le cas d’une force conservative, on remarque qu’on peut donc légitimement écrire δW avec une forme
différentielle d plutôt qu’avec δ, définissant l’énergie potentielle liée à une force :

♥ Définition M4.6 : Travail d’une force conservative et énergie potentielle

[ À une force conservative
#»

F cons s’associe une énergie potentielle Ep(M) telle que :

δW(
#»

F cons) = − dEp

⇔ WAB(
#»

F cons) = −∆ABEp = −(Ep(B)− Ep(A))

Attention M4.2 : Énergie potentielle

. ⋄ Une énergie potentielle est définie à une constante près, donc peut être négative.

⋄ Une énergie potentielle est une fonction de l’espace (et du temps mais c’est secondaire) : Ep(M).

♥ Propriété M4.2 : Énergie potentielle de pesanteur et élastique

� ⋄ Le poids est une force conservative, donc dérive d’une énergie potentielle :

#»

P = ±mg # »uz ⇔ Ep,p(z) = ∓mgz + cte avec
{
+ axe ascendant
− axe descendant

⋄ La force de rappel d’un ressort est une force conservative, donc dérive d’une énergie potentielle :

#»

F r = −k(x− ℓ0)
# »ux ⇒ Ep,el(x) =

1

2
k (x− ℓ0)

2
+ cte

♥ Démonstration M4.2 : Énergie potentielle de pesanteur et élastique

�
δW(

#»

P ) = −mg dz = −d(mgz) = −dEp,p ■⋄ Avec Dm.M4.1, pour Ep,p :

δW(
#»

F r) = −k(x− ℓ0)dx = −d

(
1

2
k (x− ℓ0)

2

)
= −dEp,el ■⋄ et pour Ep,el :

On identifie ou on intègre ainsi les expressions de Ep,p et Ep,el (attention à la constante).
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II. Énergie mécanique 7

II/B Différentielle et gradient

♥ Définition M4.7 : Dérivée partielle, différentielle et gradient

[
Dérivée partielle

Soit f une fonction scalaire à plusieurs variables, x, y et z. On définit sa dérivée partielle par rapport à x
comme sa dérivée selon cette variable, les autres variables considérées comme constantes :

∂f

∂x
= lim

δx→0

f(x+ δx, y, z)− f(x, y, z)

δx
où « ∂ » se lit « d-rond ».

Elles décrivent l’évolution partielle de la fonction f lorsque l’on fait varier un seul paramètre.

Différentielle totale

À elles toutes, elles permettent de construire la variation infinitésimale totale de la fonction, selon toutes
ses dépendances ; il suffit de sommer les variations individuelles :

df

variation
totale

=
∂f

∂x
pente
en x

· dx

variation
en x

+
∂f

∂y
pente
en y

· dy

variation
en y

+
∂f

∂z
pente
en z

· dz

variation
en z

C’est l’extension de la dérivée à une variable, df = f ′(x) dx = df
dx dx. Cela revient à localement linéariser

la fonction pour en donner le taux de variation dans une direction.

Figure M4.7 – Dérivée usuelle.

x0

y0

x0 + dx

y0 + dy

dx dy

d
x
+
d
y

df

dx

∂f
∂xdxdy

∂f
∂ydy

x

y

f(x, y)

pente en x
∂f

∂x

∣∣∣∣
x0,y0

pente en y
∂f

∂y

∣∣∣∣
x0,y0

(x0, y0)
(x0 + dx, y0)

(x0, y0 + dy)

Figure M4.8 – Dérivée partielle.

Gradient

Sous cette forme, la différentielle ressemble fortement à un produit scalaire entre le vecteur des dérivées
partielles et le déplacement élémentaire. On peut formaliser cela avec l’opérateur gradient, noté

#      »

grad ou
parfois

#»∇, appliqué à la fonction scalaire f(x,y,z), tel que :

df =
#      »

grad (f) · d #     »

OM soit en cartésiennes :
#      »

grad (f) =
∂f

∂x
# »ux +

∂f

∂y
# »uy +

∂f

∂z
# »uz =



∂xf
∂yf
∂zf




Figure M4.9 – Gradient de T

Sur cet exemple, le champ scalaire de température T (x,y) est en couleur,
et le gradient est représenté par les flèches noires. On remarque
que :

⋄ Sa direction indique comment suivre l’augmentation de T autour
d’un point ;

⋄ Sa norme indique la pente de T dans cette direction.

On peut en quelques sortes voir le gradient comme une généralisation
vectorielle de la dérivée à plusieurs variables :

«
#      »

grad (f) =
df

d
#     »

OM
»
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8 Mécanique – chapitre 4. Approche énergétique du mouvement

Attention M4.3 : Gradient et coordonnées
. L’opérateur gradient dépend des coordonnées, puisque d

#     »

OM dépend du repère. Notamment :

#      »

grad (f(r,θ,z)) =
∂f

∂r
# »ur +

1

r

∂f

∂θ
# »uθ +

∂f

∂z
# »uzEn cylindriques :

#      »

grad (f(r,θ,φ)) =
∂f

∂r
# »ur +

1

r

∂f

∂θ
# »uθ +

1

r sin(θ)

∂f

∂φ
# »uφEn sphériques :

Les formules de gradient ne sont pas à connaître, et seront extensivement revues et justifiées en deuxième année.

Application M4.6 : Calcul de dérivées partielles

�
Soit f(x,y,z) = xy2. Déterminer ses dérivées partielles.

∂f

∂x
= y2 ;

∂f

∂y
= 2xy ;

∂f

∂z
= 0

♥ Propriété M4.3 : Force conservative et énergie potentielle

� Une force conservative
#»

F cons dérive donc d’une énergie potentielle Ep selon la relation :

#»

F cons = − #      »

grad (Ep(M)) avec Ep(M) définie à une constante près.

Démonstration M4.3 : Force conservative et énergie potentielle

�
δW(

#»

F cons) = − dEp ⇔ #»

F cons · d
#     »

OM = − #      »

grad (Ep) · d
#     »

OM ⇔ #»

F cons = − #      »

grad (Ep(M)) ■

♥ Outils M4.4 : Déterminer une énergie potentielle

å On a donc deux méthodes équivalentes pour déterminer l’énergie potentielle associée à une force conservative.

Utilisation du travail

⋄ On utilise les Df.M4.6 et M4.4 :

dEp = −δW(
#»

F ) = − #»

F · d #     »

OM ;

⋄ On travaille l’expression pour se ramener à une
différentielle totale ;

⋄ On identifie avec le signe − pour obtenir Ep.

Utilisation du gradient

⋄ On utilise la Pt.M4.3 :
#»

F cons = − #      »

grad (Ep) ;

⋄ On exprime les dérivées partielles de Ep en fonction
des composantes de

#»

F cons ;

⋄ On intègre chaque dérivée partielle pour obtenir
Ep.

Application M4.7 : Ep,p et Ep,el par le gradient

�
Ep,p avec z descendant

#»

P = − #      »

grad (Ep,p) ⇔





−∂xEp,p = 0
−∂yEp,p = 0
−∂zEp,p = mg

⇔ Ep,p = −mgz + cte

Ep,el avec # »ux ressort–masse

#»

F r = − #      »

grad (Ep,el) ⇔





−∂xEp,el = −k (x− ℓ0)
−∂yEp,el = 0
−∂zEp,el = 0

⇔ Ep,el =
1

2
k (x− ℓ0)

2
+ cte

II/C Énergie mécanique et théorèmes associés

Définition M4.8 : Énergie mécanique

[ L’énergie mécanique Em d’un point matériel en mouvement dans un référentiel R est la somme de son énergie
cinétique et des énergies potentielles des forces conservatives s’appliquant sur ce point :

Em(M,t) = Ec(t) + Ep,tot(M)

Les énergies potentielles étant définies à une constante près, l’énergie mécanique l’est également.
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II. Énergie mécanique 9

Preuve M4.3 : Théorème de l’énergie mécanique

� On sépare les forces conservatives
#»

F cons et non-conservatives
#»

FNC dans le TEC :

TEC : ∆ABEc =
∑

n

WAB(
#»

F n)

⇔ ∆ABEc =
∑

j

WAB(
#»

F cons,j)

=−∆ABEp,j

+
∑

i

WAB(
#»

FNC,i)

⇔ ∆ABEc +∆ABEp,tot

∆ABEm

=
∑

i

WAB(
#»

FNC,i) ■

#»
F n =

#»
F cons,j +

#»
FNC,i

∑
j ∆Ep,j = ∆Ep,tot

♥ Théorème M4.3 : de l’énergie mécanique

� Les travaux des forces non-conservatives se somment pour modifier l’énergie mécanique d’un point M :

∆ABEm/R = Em(B)− Em(A) =
∑

i

WAB(
#»

FNC,i)

♥ Application M4.8 : TEM appliqué au ski

� Retrouver la vitesse d’une skieuse au bas d’une pente de hauteur h. On ignore les frottements.

⋄ Variation de Em : avec
#»

P force conservative prise comme énergie potentielle :

▷ En A : Em(A) = 1
2mvA

2 +mgzA = 0 +mgh

▷ En B : Em(B) = 1
2mv2 + 0

⋄ Travail de
#»

N : δW(
#»

N) =
#»

N · d #     »

OM = 0 ⇒ WAB(
#»

N) = 0

⋄ TEM : ∆ABEm = WAB(
#»

N) = 0 ⇔ 1
2mv2 = mgh ⇔ v =

√
2gh

♥ Outils M4.5 : Système conservatif et TEM

å Ainsi, pour traiter un problème où l’énergie mécanique se conserve (dEmdt = 0 ou ∆ABEm = 0) :

1) Calculer l’énergie mécanique initiale puis à un instant quelconque en fonction de sa vitesse et/ou de sa position ;

2) Comme l’énergie mécanique se conserve,
∑

i WAB(
#»

FNC,i) = 0, et on conclut donc en utilisant Em(A) = Em(B).

♥ Théorème M4.4 : de la puissance mécanique

� Les puissances des forces non-conservatives se somment pour modifier la dérivée de Em :

dEm
dt

=
∑

i

P(
#»

FNC,i)

Preuve M4.4 : Théorème de la puissance mécanique

� Différentes démonstrations sont ici aussi possibles ; par exemple avec un bilan de puissance :

PFD : m #»a =
∑

j

#»

F cons,j +
∑

i

#»

FNC,i

⇔ m
d #»v

dt
· #»v =

∑

j

#»

F cons,j · #»v +
∑

i

#»

FNC,i · #»v

⇔ d

dt

(
1

2
mv2

)
=
∑

j

δW(
#»

F cons,j)

dt
+
∑

i

P(
#»

FNC,i)

⇔ dEc
dt

+
∑

j

dEp,j
dt

=
∑

i

P(
#»

FNC,i)

⇔ d(Ec + Ep,tot)

dt
=
∑

i

P(
#»

FNC,i) ■

PFD · #»v

Définition
et

#»
F cons · #»v =

δW

dt

Ec =
1

2
mv2

et δW(
#»
F cons,j) = −dEp,j∑

j Ep,j = Ep,tot
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10 Mécanique – chapitre 4. Approche énergétique du mouvement

♥ Application M4.9 : Pendule simple par TPM

� Établir l’équation différentielle du pendule simple par le TPM.

M

O

# »uz

# »uy

z

zref •
# »ur

# »uθ

#»

P

#»

T
θ

ℓ

z(t)•

ℓ
co
s(
θ)

•

Figure M4.10

#»v (t) = ℓθ̇(t) # »uθ ⇒ Ec(t) =
1

2
mℓ2θ̇2(t)

{
z(t) = ℓ cos(θ(t))
zref = ℓ

⇒ Ep,p(z) = −mg (z(t)− zref) = mgℓ (1− cos(θ(t)))

P(
#»

T ) =
#»

T · #»v (t) = 0 car
#»

T ⊥ #»vDe plus,

dEm
dt

= 0 ⇔ mℓ2θ̇(t)θ̈(t) +
mgℓθ̇(t) sin(θ(t))

mℓ2θ̇(t)
= 0TPM :

⇔ θ̈(t) +
g

ℓ
sin(θ(t)) = 0 ■

III Utilisation de l’énergie potentielle

III/A Énergie potentielle et équilibres

III/A) 1 Notion d’équilibre

Définition M4.9 : Hypothèses étude équilibre

[ ⋄ On suppose le système conservatif, avec Ep l’énergie potentielle totale et
#»

F =
∑

i

#»

F cons,i la somme des forces ;

⋄ On considère un mouvement à 1 degré de liberté, noté x (x peut être une longueur mais aussi un angle).

♥ Définition M4.10 : Point à l’équilibre

[ #»a eq =
#»
0 ⇔ #»

F (x = xeq) =
#»
0L’équilibre veut dire immobile, donc

Démonstration M4.4 : Équilibre et énergie potentielle

�
#»

F (x) = − #      »

grad (Ep(x)) = − dEp
dx

∣∣∣∣
x

# »uxOr,
#»

F conservative donc

#»

F (x = xeq) =
#»
0 ⇔ dEp

dx

∣∣∣∣
xeq

= 0D’où

♥ Propriété M4.4 : Équilibre et énergie potentielle

�
Les points d’équilibres d’un système correspondent aux extrema

de l’énergie potentielle :

∂Ep
∂x

∣∣∣∣
xeq

= 0 x

Figure M4.11

III/A) 2 Équilibres stables et instables

Définition M4.11 : Équilibres stables et instables

[ Soit un point matériel sur une position d’équilibre. En l’écartant un peu de cette position :

⋄ s’il revient vers sa position d’équilibre, on dit que l’équilibre est stable ;

⋄ s’il s’écarte définitivement de cette position, on dit qu’il est instable.
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III. Utilisation de l’énergie potentielle 11

♥ Propriété M4.5 : Stabilité des positions d’équilibre

�
instable

stable

x

Figure M4.12

⋄ xeq stable ⇔ Ep(xeq) minimale ⇔ ∂2Ep

∂x2

∣∣∣∣
xeq

> 0

⋄ xeq instable ⇔ Ep(xeq) maximale ⇔ ∂2Ep

∂x2

∣∣∣∣
xeq

< 0

♥ Outils M4.6 : Formule de Taylor-Young
å La tangente de f en un point permet de passer d’une coordonnée x0 à la coordonnée x un peu plus loin en

suivant la fonction affine de pente égale à la tangente. Ce résultat se généralise avec toutes ses dérivées :

f(x) = f(x0) +
(x− x0)

1!
f ′(x0) +

(x− x0)
2

2!
f (2)(x0) + · · ·+ (x− x0)

n

n!
f (n)(x0) + o(xn)

reste
négligeable

∀f ∈ Cn

⇔ f(x) = f(x0) +

n∑

k=1

(x− x0)
k

k!

dkf

dxk

∣∣∣∣
x0

+ o(xn)

Démonstration M4.5 : Stabilité des positions d’équilibre

�
Pour étudier ces situations mathématiquement, on peut
développer l’expression de la somme

#»

F au voisinage
d’un point d’équilibre xeq quelconque :

F (x) = F (xeq) + (x− xeq) ·
dF

dx

∣∣∣∣
xeq

⇔ F (x) = − dEp
dx

∣∣∣∣
xeq

− (x− xeq) ·
d2Ep
dx2

∣∣∣∣
xeq

⇔ F (x) = −(x− xeq)
d2Ep
dx2

∣∣∣∣
xeq

F = −dEp
dx

dEp
dx

∣∣∣
xeq
= 0

Et on s’intéresse au signe de F autour de xeq.

En analysant la Figure M4.12 :

⋄ F (x>xstab
eq ) < 0 ⇔ −

>0

(x− xeq)

<0

· d
2Ep

dx2

∣∣∣∣
xstab
eq

< 0

⇔ d2Ep
dx2

∣∣∣∣
xstab
eq

> 0

⋄ F (x>xinst
eq ) > 0 ⇔ −

>0

(x− xeq)

<0

· d
2Ep

dx2

∣∣∣∣
xinst
eq

> 0

⇔ d2Ep
dx2

∣∣∣∣
xinst
eq

< 0

Application M4.10 : Équilibre d’un pendule

� Trouver les positions d’équilibre du pendule simple à tige rigide. Sont-elles stables ou instables ?

M

O

# »uz

# »uy

z

zref •
# »ur

# »uθ

#»

P

#»

T
θ

ℓ

z(t)•

ℓ
co
s(
θ)

•

Figure M4.13

Ep,p(θ) = mgℓ(1− cos(θ)) ⇒ dEp,p
dθ

= mgℓ sin(θ)On a

dEp,p
dθ

∣∣∣∣
θeq

= 0 ⇔ mgℓ sin(θeq) = 0 ⇔
{
θeq,1 = 0
θeq,2 = π

Soit

d2Ep,p
dθ2

= mgℓ cos(θ) soit





d2Ep,p
dθ2

∣∣∣∣
0

= mgℓ > 0 stable

d2Ep,p
dθ2

∣∣∣∣
0

= −mgℓ < 0 instable
Stabilité :

III/A) 3 Étude générale au voisinage d’un point d’équilibre stable

♥ Propriété M4.6 : Mouvement autour d’un équilibre stable

� Tout système conservatif au voisinage d’un point d’équilibre stable est un oscillateur harmonique.
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12 Mécanique – chapitre 4. Approche énergétique du mouvement

Démonstration M4.6 : Mouvement autour d’un équilibre stable

� On effectue un développement limité de l’énergie potentielle autour d’une position d’équilibre stable :

Em(M,t) = Ec(t) + Ep(x) =
1

2
mẋ2(t) + Ep(x)

Ep(x) = Ep(xeq) + (x− xeq)
∂Ep
∂x

∣∣∣∣
xeq

=0,équilibre

+
(x− xeq)

2

2

∂2Ep

∂x2

∣∣∣∣
xeq

on pose k

Or

⇒ Em(M,t) =
1

2
mẋ2 +

1

2
k(x− xeq)

2 + Ep(xeq)

dEm
dt

= 0 ⇔ 1

2
m(2ẍẋ) +

1

2
k2ẋ(x− xeq) = 0Or

⇔ ẍ+
k

m
(x− xeq) = 0ẋ ̸= 0 ∀ t donc

On retrouve l’équation de l’oscillateur harmonique ! Le
mobile oscille autour de la position d’équilibre à la pulsation

ω0 =

√
k

m
avec k =

∂2Ep

∂x2

∣∣∣∣
xeq

.

x

courbure faible
oscillations lentes

courbure élevée
oscillations rapides

Figure M4.14

Ce qui est phénoménal, c’est que la seule
supposition est que le système soit
conservatif. Ceci explique l’abondance
des systèmes harmoniques dans la nature.

Remarque M4.1 : Étude mouvement équilibre instable

¬
k =

∂2Ep

∂x2

∣∣∣∣
xeq

< 0 ⇒ ẍ(t)− k

m
(x− xeq) = 0Si instable :

x(t)− xeq = Aeω0t +B−ω0t ⇔ x− xeq = x0 ch(ω0t) avec
{
x(0) = x0

v(0) = 0
de solution

donc proche d’un point d’équilibre instable, le mobile s’écarte exponentiellement de cette position.

III/B Énergie potentielle et trajectoire

Démonstration M4.7 : Trajectoire et énergie potentielle

� Pour un point matériel soumis seulement à des forces conservatives (ou ne travaillant pas), il est possible de
prévoir les zones accessibles au mobile ainsi que l’aspect de la trajectoire en étudiant l’énergie potentielle :

Em(M,t) = Ec(t)

≥0

+Ep(M) ≥ Ep(M)

♥ Propriété M4.7 : Trajectoire et énergie potentielle

� ⋄ Seules les régions où Ep ≤ Em sont accessibles ;

⋄ Lorsque Ep = Em, Ec = 0 donc la vitesse est nulle ;

⋄ Lorsque Ep est minimale, Ec est maximale donc la vitesse est maximale.

État lié

Le système reste en zone bornée, vers l’équilibre.

x

Ep(x)

Elié
m

• •

Ec = 0 Ec = 0

Emax
p Emax

p

Emax
c

Emin
p

Figure M4.15 – État lié

État de diffusion

Le système peut s’éloigner indéfiniment de l’équilibre.

x

Ep(x)

Ediff
m

Ec = 0

Emax
p

Emax
c

Emin
p

Ec

Ep

Figure M4.16 – État de diffusion
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