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Approche énergétique du mouvement
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2 Mécanique — chapitre 4. Approche énergétique du mouvement

‘ | |Force et énergie cinétique

IVF:N Puissance d’une force et théoréme de la puissance cinétique

L’énergie est un concept physique trés puissant et présent dans tous les domaines de la physique mais qu’il est
difficile de définir simplement. En voici une premiére définition qualitative :

Définition M4.1 : Energie

& agir sur lui-méme ou d’autres systémes.

E L’énergie d’un systéme est une grandeur scalaire caractérisant sa capacité |
i | Unité |le Joule (J)

Ainsi, le mouvement d’un corps, les échanges de chaleur, les courants électriques et tous les phénoménes physiques
résultent d’échanges d’énergie.

@ Important M4.1 : Conservation de I’énergie

L’énergie est une grandeur conservative. Elle ne peut étre créée ou détruite. Elle ne peut que
changer de forme et/ou passer d’un systéme a un autre.

Une énergie totale peut varier différemment selon les conditions du systéme, et notamment varier plus ou moins
vite. On définit pour ¢a la puissance d’un systéme :

— Rappel M4.1 : Puissance en terme d’énergie

m La puissance # d’un systéme traduit la variation

i . L’unité d’une puissance est donc homogéne a des
temporelle de son énergie &, et on a

J-s71 et se compte couramment en Watts (W), avec :
IW=1Js""!

Pratique pour retrouver son unité, cette expression est cependant peu utilisée ; en effet, lors de I’étude mécanique
d’un corps, on connait moins facilement son énergie que sa vitesse ou les forces qui s’y appliquent.

dé

=%

@ Définition M4.2 : Energie cinétique

= i

Pour M de masse m de vitesse vn/x(t) © | Ecniym(t) = imvfd/m (t)

A quelle condition une force appliquée a4 un objet fait-elle varier son énergie cinétique ?
< Quand un objet est jeté vers le haut, le poids le ralentit, donc fait diminuer son énergie cinétique.
< Quand un objet tombe, le poids I'accélére et fait donc augmenter son énergie cinétique.

<& Lorsqu’'un objet est posé sur un support, la réaction normale ne fait pas varier son énergie cinétique.

— € Définition M4.3 : Puissance d’une force
E Pour F appliquée & M de vitesse U : @/Q(F) =F. Uiy (t)

Implication M4.1 : Autour de la puissance

»

- o

< g)/gg(ﬁ) > 0 = force motrice; @/[R(F) < 0 = force résistante. i "}/\_,
O Pu(F)=0=|F LT |(ouF=0,0uTym=0) |

— @ Outils M4.1 : Calculer une puissance

F, Vg
<& On décompose :F' = Fyu, + Fyu, + F,u, = | Fy et Tnmyg = Vally + vyly + 002 = | vy
F. Uy
— F, Vg
On a alors F-Tyvg =voFp + vy Fy + 0. F, | =+ F, y
+ \ F, Uy
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I. Force et énergie cinétique

< ou directement :

F - Tyyg = IFl- | Triya | cos()

avec « l'angle entre les vecteurs.

Application M4.1 : Puissance du poids en pente

>
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FIGURE M4.2 — Schéma

Dans (ux,uy’)

Exprimer la puissance du poids lors d’une descente a vélo d’une pente d’angle «. Est-il moteur ou résistant 7

et v =vux
Ainsi @(]_5) =P 7= mgvsin(a) | = mgv cos(% - a)

Donc @(1.5) >0 soit

Dans le cas de la montée, ¥ change de

Preuve M4.1 : Théoréme de la puissance cinétique

Bilan de puissance |

poids moteur

sens : le poids devient résistant.

On peut alors relier 'effet d’une force a la variation d’énergie cinétique, de deux maniéres :

| Définition de &,

- 2 | dé
ma = F; | <
z; ! dt
@m@q}_zﬁ T | @dgc
N | dt
d /1 N l dé.
& —(-mv?) = Z@(FZ) ! A
de\ 2 , |
i ‘ 1 N décm/m
c,M/®R =2 \

@ Théoréme M4.1 : de la puissance cinétique

_dt va v

1 [/, d¢ dv .
:2m<”'dﬁdt'”)
_av
—mg'v

-(z7) v .

Les puissances des forces se somment pour modifier la dérivée de 1’énergie cinétique d’un point M :

décvym
e

ZQM(E)

@ Application M4.2 : Pendule simple par TPC

Etablir I’équation différentielle du pendule.

1 : dé.
= =

W o o
. De plus PTY=T -Tt)=0 e (BB)=n/2+0
! —_
| TLw
AN ?(B)=B-B(t) = mg - 1§ cos(g n o) — —mglf(t) sin(0(t))
F1GURE M4.3 — | PighO) sin(0(t)) ! g .
Pendule o wedmin = OO0 T )~ .
| b0 (t)
Implication M4.2 : Conséquence des frottements
Les frottements fluides conduisent & une baisse de ’énergie cinétique :
— — dé.
Fp-7<0 = Pg(Fr)<0 = dt<0

Mais les frottements solides peuvent étre moteurs : ils permettent & un pneu d’avancer.
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Meécanique — chapitre 4. Approche énergétique du mouvement

¥ Outils M4.2 : Quand appliquer le TPC ?

<& Si le mouvement est selon une seule coordonnée (z, y ou z en cartésiennes, 6 en coordonnées cylindriques),
il sera pertinent d’utiliser le TPC.

< Sinon (chute libre avec angle par exemple), on revient au PFD qui contient toute l'information.

Travail d’une force et théoréme de 1’énergie cinétique

Sur un temps dt, ’effet total d’une force se traduit par une variation d’énergie totale :

¥ Définition M4.4 : Travail d’une force

Travail élémentaire

Travail total

Le travail #ap d’une force Iﬁ sur un chemin C allant
du point A au point B est

Le travail élémentaire 040’ d'une force F' _sur un point
M lors d’un déplacement élémentaire dOM est :

oW = F - dOM = 9y (F) - dt | | 9y (F) = Wap(F / W
C’est I’énergie fournie par la force FaMle long de la trajectoire Joule (J)

—

Important M4.2 : Travail et chemin

De fagon générale, le travail dépend du chemin suivi.

@ Attention M4.1 : Notations § vs. d

0 = grandeur totale dépend a priori du chemin et de la vitesse. d = grandeur dépend uniquement du point de

départ et du point d’arrivée; or ¥/ est défini sur une distance, pas enum-point : B
C W OW 4 W 4 W .. = Wap 1
B I .’
On peut falre dé. = &.( / dOM = OB — OA = AB ////vm Traject oire
10) i(l()\[‘

v Laon
mais pas M A
| FiGure M4.4

Implication M4.3 : Travail d’une force constante sur un segment

Si P constante, sur AB segment : WAB(?") =F.AB

Application M4.3 : Travail des frottements fluides

On considére une voiture allant d’un point A & un point B, éloignés de 100 km, avec une vitesse constante. La
force de frottement exercée par 'air est

- 1
F = —5/)5%1)7

Déterminer son travail, et faire ’application numeérique pour v = 50 km-h~! puis 80km-h~'. On donne S =
3,07m?2, ¢, = 0,33, p = 1,3kg-m—>. Convertir en litres d’essence consommeée, sachant que 1L = 3,15 x 107 J.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L s | WAB(F) —F.AB=F-AB- cos(m) = —F - AB < 0 = résistante
< — :
A 7 i ‘ ol 7 ; )
Fante O WaB s0kmn—1 (F) = —1,27 x 107 J, soit ~ 0,4 L d’essence;;
FIGURE M4.5 — Schéma F O WABﬂokm,hfl(ﬁ) = —3,25 x 107 J, soit ~ 1L d’essence.

Application M4.4 : Travail des frottements solides

Soit un objet de ¥ (0) = vou,, soumis & une force de frottements solides sur un support hgrizontal.
v®

1l subit la force T = — fmgu, sur la distance de freinage D = 5 f
g

Calculer le travail de la force de frottements sur cette distance. Est-il moteur ou résistant ?
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II. Energie mécanique 5

Que vaut &. o I'énergie cinétique initiale ? &, o, sont énergie cinétique finale ? Que peut-on en conclure ?

Le travail étant négatif, on dit qu’il est (et que la force est) résistant(e).

1

On observe que I’énergie initiale du systéme, son énergie cinétique, a été dissipée par la force de frottements
et est quantifiée par le travail de cette force sur le chemin suivi.

Preuve M4.2 : Théoréme de I’énergie cinétique

© =mmm
o— Si la puissance donne la dérivée de I’énergie cinétique, alors son intégrale, en donne la variation totale :
dé M ® > sW(F;
T = Y amFo =
: éparation des variables
P S ion d iabl
B L0 e =%
<f,>/ d{’;c = AABgc = Z/ (51/%' = ZWAB(Fi)
A JA p
— € Théoréme M4.2 : de I’énergie cinétique
A Les travaux des forces se somment pour modifier I’énergie cinétique d’un point M :

AaByx = &c(lB) — ZWAB (F)

¥ Application M4.5 : TEC appliqué au ski

A = l
> N h i Déterminer la vitesse d’une skieuse en bas d’une piste de h = 5m de dénivelé partant avec
T:Efj | une vitesse nulle, si on néglige les frottements.
0 B
< Variation de 8. : E.(tA) =0 et &.(tg) = %mv2 < ApgSE. = %va
O Travail de N : 6W(N)=N-dOM=0 = Wxs(N)=0
— B — — B O dl‘
¢ Travail de D Wap(P) = / P-dOM = 0 | dy | = mg(za — zB) = mgh
A A\ —mg dz

& TEC : Aap8. = Wap(P )<:> va—mgh = |v=1+/2gh=10m=s"!

‘ — € Outils M4.3 : TEC ou PFD?

<& Silon veut connaitre seulement une vitesse/une distance a la fin d’un processus (chute, descente, freinage,
etc.), les méthodes énergétiques sont souvent plus simples et plus rapides.

< Si on cherche les équations horaires/un temps,/une trajectoire, il faut appliquer le PFD.

IT | Energie mécanique

IIFN Energie potentielle

E @ Définition M4.5 : Forces conservatives ou non

Une force est dite conservative si son travail de A & B ne dépend pas du chemin suivi ou de la vitesse,
mais uniquement des positions A et B. Elle est non-conservative dans le cas contraire.
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Mécanique — chapitre 4. Approche énergétique du mouvement

—

@ Propriété M4.1 : Travail du poids et de HOOKE

< Le poids est une force conservative, et pour u, un axe vertical, on a

+ axe descendant

P=+mgu; & M(P)=2mgdz & Wag(P)==1mgAspz avec {_ axe ascendant

<& La force de rappel d’un ressort est conservative, et pour u, dans le sens ressort-masse :

— — - - 1
F,=—k(z—l)us < OW(F,)=—k(z—Ll)dr <& Wap(F,)= —5k ((z — £o)* — (za — £o)?)

¥ Démonstration M4.1 : Travail du poids et de HOOKE

FIGURE M4.6

‘ dOoM
On a ﬁz—mgﬁ? et dﬁzdxﬂ}—i—dy@—l—dz@ 3 & 5
D’ou 0W(P) = —mgdz ‘ = [ Wap(P) = —mg/ dz = —mgAapz L P
A |

On a E, = —k(x —lo)uy et dOM = dzu; + dyuy, + dzu,
B
D’ou OW(F,) = —k(x —ly)dr = Wap(F,)= fk/ (x — £p)dx
A
F=l 1 2 " = 1 2 2
@WAB(FT)Z—IQ‘ 5(17—50) = WAB(FT'):_EI{ ((xB—fo) —(.TA—E()) ) |
A

Dans le cas d’une force conservative, on remarque qu’on peut donc légitimement écrire 4/ avec une forme

différentielle d plutét qu’avec §, définissant ’énergie potentielle liée a une force :

—

¥ Définition M4.6 : Travail d’une force conservative et énergie potentielle

A une force conservative F, cons S'associe une énergie potentielle §,(M) telle que :
50 (Foons) = — d8,
= WAB(Fcons) = _AAng = _(SP(B) - 8P(A))

Attention M4.2 : Energie potentielle

< Une énergie potentielle est définie & une constante prés, donc peut étre négative.

<& Une énergie potentielle est une fonction de I’espace (et du temps mais c’est secondaire) : &,(M).

—

@ Propriété M4.2 : Energie potentielle de pesanteur et élastique

< Le poids est une force conservative, donc dérive d'une énergie potentielle :

+ axe ascendant
— axe descendant

P =tmgu; <« ’é’p,p(z) = Fmgz + cte‘ avec {

<& La force de rappel d’un ressort est une force conservative, donc dérive d’une énergie potentielle :

N 1
F.=—k(x —l)u, = |&E.alz)= 5743 (- 50)2 + cte

@ Démonstration M4.2 : Energie potentielle de pesanteur et élastique

<& Avec Dm.M4.1, pour &, ,, : 5W(].5) = —mgdz = —d(mgz) = —dé&, |
< et pour €01 - SW(F,) = —k(z — lo)dz = —d <;k (z — 60)2> = —d& ]

On identifie ou on intégre ainsi les expressions de &, ,, et €, ¢ (attention a la constante).
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II. Energie mécanique 7

Différentielle et gradient

— € Définition M4.7 : Dérivée partielle, différentielle et gradient

| Dérivée partielle |

Soit f une fonction scalaire & plusieurs variables, z, y et z. On définit sa dérivée partielle par rapport a z
comme sa dérivée selon cette variable, les autres variables considérées comme constantes :

af - ] f(m+5x,y,z)—f(m,y,z)
— = lim
Or  sz—0 ox

oll « 0 » se lit « d-rond ».

Elles décrivent ’évolution partielle de la fonction f lorsque 'on fait varier un seul parameétre.

| Différentielle totale

A elles toutes, elles permettent de construire la variation infinitésimale totale de la fonction, selon toutes
ses dépendances; il suffit de sommer les variations individuelles :

of of of
df =22 . dv + 2= dy + =~ - dz
ox dy 0z
—_— | M- L 1 — —_—
variation pente variation pente variation pente variation
totale en en x en y en y en z en z

C’est I’extension de la dérivée a une variable, df = f'(z)dz = % dz. Cela revient a localement linéariser
la fonction pour en donner le taux de variation dans une direction.

FIGURE M4.7 — Dérivée usuelle. FIGURE M4.8 — Dérivée partielle.

|
f(x) | f(,y)
pente en z ! pente en y
df l f‘
dz|, [ 9, pente en x
f(20) dfl / ? : %y Z0,Y0 al
f(zo) +df N e AL h or .

dz | 4 0,90

: Al T
= 7
| Py e .®
: o + dz ‘ I gl
: A X Yo +dy
: R : \I\I :_ -7 B Yo
| S S| _--"
T | (w0, Yo ﬂly)‘:\ ' ‘:)L,——" Y
! N x dx,
To To + dT ! (0 30) (wo + d, o)

|
|
|
|
|

Sous cette forme, la différentielle ressemble fortement a un produit scalaire entre le vecteur des dérivées
partiell_gs et le déplacement élémentaire. On peut formaliser cela avec 'opérateur gradient, noté grad ou
parfois V, appliqué a la fonction scalaire f(x,y,z), tel que :

“of . of . of| (%
= %uz—i—a—yuy—&—&uz = gyf

Zf
Sur cet exemple, le champ scalaire de température T'(z,y) est en couleur,
et le gradient est représenté par les fléches noires. On remarque
que :

df = grad (f) - dOM | soit en cartésiennes : grad (f)

T

¢ Sa direction indique comment suivre ’augmentation de T' autour
d’un point;

< Sa norme indique la pente de T' dans cette direction.

On peut en quelques sortes voir le gradient comme une généralisation
vectorielle de la dérivée a plusieurs variables :

FIGURE M4.9 — Gradient de T « grad (f) = —_—,df »
dOM
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Mécanique — chapitre 4. Approche énergétique du mouvement

—| Attention M4.3 : Gradient et coordonnées |

L’opérateur gradient dépend des coordonnées, puisque dOM dépend du repére. Notamment :

En cylindriques : grad (f(r,0,2)) = ?m’ 4 1%%+ ?@’
r T 2
: — af ., 10f_, 1 of _,
En sphériques : grad (f(r,0,p)) = F{UT + ;8—£u9 + 7’5111@0)89];1%

Les formules de gradient ne sont pas & connaitre, et seront extensivement revues et justifies en deuzriéme année.

Application M4.6 : Calcul de dérivées partielles

Soit f(z,y,2) = xy?. Déterminer ses dérivées partielles. % = ; % = 2xy ; % =0
— € Propriété M4.3 : Force conservative et énergie potentielle
Une force conservative ]_7) cons dérive donc d’une énergie potentielle &, selon la relation :
Fleons = —M (8,(M)) avec §,(M) définie & une constante prés.
Démonstration M4.3 : Force conservative et énergie potentielle
OW(Foons) = — €, & Feons -dOM = —grad (8,) - dOM & | Feons = —grad (8,(M)) u

@ Outils M4.4 : Déterminer une énergie potentielle

On a donc deux méthodes équivalentes pour déterminer ’énergie potentielle associée a une force conservative.

| Utilisation du travail Utilisation du gradient |

< On utilise les DfM4.6 et M4.4 :
8, = —0W(F) = —F - dOM;

< On utilise la Pt.M4.3 : Fcons = —grad (&) ;
<& On exprime les dérivées partielles de &, en fonction

—_>
< On travaille I’expression pour se ramener a une des composantes de Feons ;
iffé iell le; N e . .
différentielle totale < On intégre chaque dérivée partielle pour obtenir

& ‘ &pp = —mgz + cte ‘

<& On identifie avec le signe — pour obtenir §&,,. &p.
Application M4.7 : §, ), et &, par le gradient
&pp avec z descendantl | &p,el avec U, ressort-masse
06, =0 T 0,850 = —k (@ — to)
P = —grad (6,,) < § —0ypp =0 | Fr = —grad (&) & | —0y€pa =0
—0:6pp =myg | —0:8p.e1 =0

1
& |Epa = k(v - o) + cte

IIVAGN Energie mécanique et théorémes associés

—

Définition M4.8 : Energie mécanique

L’énergie mécanique &,, d’'un point matériel en mouvement dans un référentiel (R est la somme de son énergie
cinétique et des énergies potentielles des forces conservatives s’appliquant sur ce point :

‘Sm (M,t) = E.(t) + &p 1ot (M) \

Les énergies potentielles étant définies & une constante prés, I’énergie mécanique 'est également.
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II. Energie mécanique

Preuve M4.3 : Théoréme de I’énergie mécanique

— —
On sépare les forces conservatives F'.ons €t non-conservatives F'yc dans le TEC :

TEC : Appée =Y Wan(Fn) o N
n Fp = Feons,j + F'Noyi
& Axpée = ZWAB(Fcons,j)+ZWAB(FNC,2')
[y yer > 5 Ay = Ao
& AABg + AABE), tot = Z Wan( FNC i)
Anném

— @ Théoréme M4.3 : de I’énergie mécanique

AnBEm/x = Em(B) = Em(A) = > Wan(Fnc.)

i

Les travaux des forces non-conservatives se somment pour modifier I’énergie mécanique d’un point M :

@ Application M4.8 : TEM appliqué au ski

Retrouver la vitesse d’une skieuse au bas d’une pente de hauteur h. On ignore les frottements.

N
< Variation de §,, : avec P force conservative prise comme énergie potentielle :

D> En A : &, (A) = $mua® 4+ mgza = 0+ mgh
> En B: §,(B) = imv? 40

O Travail de N : 6W(N)=N-dOM=0 = Wxs(N)=0

O TEM : Appé,, = Wap(N) =0 <  Lme?=mgh & |v=+/2gh

—| @ Outils M4.5 : Systéme conservatif et TEM

Ainsi, pour traiter un probléme ot I’énergie mécanique se conserve (d%" =0 ou Aapé,=0):

1) Calculer I’énergie mécanique initiale puis & un instant quelconque en fonction de sa vitesse et/ou de sa position ;

2) Comme I’énergie mécanique se conserve, » . WAB(FNc,i) =0, et on conclut donc en utilisant &,,(A) = &,,(B).

— @ Théoréme M4.4 : de la puissance mécanique

Les puissances des forces non-conservatives se somment pour modifier la dérivée de §,,

dé,, —
— = Z@(FNc,i)

Preuve M4.4 : Théoréme de la puissance mécanique

Différentes démonstrations sont ici aussi possibles; par exemple avec un bilan de puissance :
PFD: md = Z Feonsj + Z Fnca
J g > PFD ¥
- oW

d?}’ — —
= TrLE'T;:E:-Fcons,j'6>"f'z:}?NC,i'T)>
J ( >
ethons’Uzi

d 1 2 _ 6W( cons,j dt
< dt<2mv>Zdt+ZQFNC’)> 1

Définition

on

c = —muv

2

dé 7 N — _ .
3 Y o >ﬁwmm» i

(e g Zj (gp,j = 5p,tot
7( * Optot Z@ Froy)
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10 Meécanique — chapitre 4. Approche énergétique du mouvement

@ Application M4.9 : Pendule simple par TPM

»
E" Etablir ’équation différentielle du pendule simple par le TPM.
5555555(5)55555%%% 171/) : 1
! T(t)=L0(t)ug = E.(t) = 3 262 (t)
/ITZ) 1 E :
< ! z(t) = L cos(O(t
SN\ Lo {0 = —ma (a0~ ) = mat (1 = con(9(0)
(1)8---- =21, | De plus, PT)=T -Tt)=0 car T LT
Zref® - -~ | . .
; P TPM: B _ o o mezi(yic + MO snO®)
p ’ ‘ dt me26(t)
FIGURE M4.10 | o0t + %sin(&(t)) =0 n

IIT | Utilisation de 1’énergie potentielle

IIIWV'N Energie potentielle et équilibres

III/A)1 | Notion d’équilibre

Définition M4.9 : Hypothéses étude équilibre

E <& On suppose le systéme conservatif, avec &, 'énergie potentielle totale et F= > F cons,i 1a somme des forces ;

< On considére un mouvement & 1 degré de liberté, noté = (z peut étre une longueur mais aussi un angle).

@ Définition M4.10 : Point a 1’équilibre

E L’équilibre veut dire immobile, donc @eq = 0 < F (@ = Teq) = (]

Démonstration M4.4 : Equilibre et énergie potentielle

O ==
= R , R . i€
Or, F' conservative donc F(z) = —grad (é’p(m)) = _ T u
€L xT
= - dé
D’ov F(z = = P —
ol (x=2eq) =0 <« i |,,. 0

—| O Propriété M4.4 : Equilibre et énergie potentielle

Les points d’équilibres d’un systéme correspondent aux extrema
de I’énergie potentielle :

%,
Ox

=0

Teq

Ficure M4.11

III/A) 2| Equilibres stables et instables

Définition M4.11 : Equilibres stables et instables

E Soit un point matériel sur une position d’équilibre. En ’écartant un peu de cette position :
<& ¢l revient vers sa position d’équilibre, on dit que I’équilibre est stable;

<O ¢'il s’écarte définitivement de cette position, on dit qu’il est instable.
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FIGURE M4.12

III. Utilisation de I’énergie potentielle 11
—| @ Propriété M4.5 : Stabilité des positions d’équilibre
4 (gp 3
| — 028,
O xeq stable < ‘ &p(eq) minimale ‘ | 52 >0
1 o . - 02§,
. ' © Zeq instable < ‘ &p(req) maximale ‘ <\ 52 <0
| Teq

@ Outils M4.6 : Formule de TAYLOR-YOUNG

La tangente de f en un point permet de passer d’'une coordonnée z( a la coordonnée x un peu plus loin en
suivant la fonction affine de pente égale a la tangente. Ce résultat se généralise avec toutes ses dérivées :

_ _ 2 o n
vieen @)= fleo) + ) pag) + C I g gy g BI040
. . n. IE'
n B & dk négligeable
o | fla) = fan) + 3 T ,, o)

Démonstration M4.5 : Stabilité des positions d’équilibre

En analysant la Figure M4.12 :
>

Pour étudier ces situations mathématiqu_c;ment, on peut 3 o stab — {2 &
développer I'expression de la somme F' au voisinage F(m>xeq ) <0 & = (2= eq) - dz? | <0
d’un point d’équilibre z., quelconque : ! <0 Ted
| 428
dF ‘ & L >0
F(z) = F(Teq) + (T — Teq) * —— | da? | cean
dz |, > g, | Ted
a F=-%|
dé d2¢ o
@F(.T)Z—TP —(x—$eq)~d2p I . |>_O| d28
T | geq N P | _g 1 C Fla>z') > 06 — (2 —2eq) @; >0
d28p da Toq : ITI wicrcnlst
& F(r) = ~(2 — eq) T ‘
dz Teq | d2(€p
. . | < dx? | e <0
Et on s’intéresse au signe de F' autour de zcq. ! Ty

Application M4.10 : Equilibre d’un pendule

Trouver les positions d’équilibre du pendule simple & tige rigide. Sont-elles stables ou instables ?

dé,

i On a &pp(0) = mgl(l —cos(d)) = W - mglsin(6)

: . dgp,p _ . _ Heq’l = 0

3 Soit W oo =0 = mg£ Sln(gcq) =0 < {66%2 -

! 2

} 2¢ dd(zg’p =mgl >0 stable

. Stabilité d@g’p =mglcos(f) soit 126

i T’;’p . = —mg{ < 0 instable

II1/A) 3 Etude générale au voisinage d’un point d’équilibre stable

@ Propriété M4.6 : Mouvement autour d’un équilibre stable

)

Tout systéme conservatif au voisinage d’un point d’équilibre stable est un oscillateur harmonique.
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Démonstration M4.6 : Mouvement autour d’un équilibre stable

En(M.f) = Eelt) + &,(x) = gmi(1) + 6,()
08, n ( — Teq)? 0?6,

Oy () = Ep(Teq) + (T — Teq)

Or - 2 0x? |,
eq eq
=0,équilibre on pose k
1 5 1 2
= &, (M) = omd + ik(x — Teq)” + Ep(eq)
dé 1 .. 1 .
Or d—;n =0 < §m(2x33) + 5/{:23:(33 — Zeq) =0

Z# 0Vt donc @éj—kg(x—meq):O

On retrouve 1’équation de l’oscillateur harmonique! Le
mobile oscille autour de la position d’équilibre a la pulsation

[k 28
wo = oo avec k = %xzp

Teq

Remarque M4.1 : Etude mouvement équilibre instable

On effectue un développement limité de I’énergie potentielle autour d’une position d’équilibre stable :

gp courbure faible  d*8,,

oscillations lentes ],.2 -
Teq

courbure élevée

oscillations rapides
Teq,2

Teq,1 Leq,2

FIGURE M4.14

Ce qui est phénoménal, c’est que la seule
supposition est que le systéme soit
conservatif. Ceci explique ’abondance
des systémes harmoniques dans la nature.

09?8 k
Si instable : k= aﬁp » <0 = @) - E(x — Teq) =0
. wot —wot (E(O) = %o
de solution T(t) — Teq = A" + BT & ‘ T = Teq = o ch(wot) ‘ avec v(0) =0

IlIWAEE Energie potentielle et trajectoire

donc proche d’un point d’équilibre instable, le mobile s’écarte exponentiellement de cette position.

Démonstration M4.7 : Trajectoire et énergie potentielle

| M|
>0

—| € Propriété M4.7 : Trajectoire et énergie potentielle

Pour un point matériel soumis seulement & des forces conservatives (ou ne travaillant pas), il est possible de
prévoir les zones accessibles au mobile ainsi que 'aspect de la trajectoire en étudiant I’énergie potentielle :

En(Mit) = E.(t) +8,(M) > &,(M)

<& Seules les régions ot &p < &y, sont accessibles ;

<& Lorsque 8, = &,,, 8. = 0 donc la vitesse est nulle;

Le systéme reste en zone bornée, vers 1’équilibre.

8p(2)

éll(‘,

m

gmax gmax
((\‘miu P o
p T

FIGURE M4.15 — Etat lié

<& Lorsque 8, est minimale, 8. est maximale donc la vitesse est maximale.

Le systéme peut s’éloigner indéfiniment de ’équilibre.

&p(x)
(grlif‘f

m

Etat de diffusion

omax
G,

F1GURE M4.16 — Etat de diffusion
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