Mécanique — chapitre 4

Correction du TD d’application

X . A . . .
Yo ‘ 1 |Interet des raisonnements énergétiques

On lance une balle avec une vitesse initiale vy vers le haut depuis laltitude z = 0. Déterminer la hauteur maximale
atteinte par la balle en négligeant tout frottement.

- Réponse
A t =0, la balle est lancée en z = 0 avec une vitesse .

U5 = vot,. Elle va monter en altitude en perdant de
I’énergie cinétique et en gagnant en énergie potentielle.

conservatif ; le systéme est donc conservatif et I’énergie

mécanique se conserve, soit :

|
I
|
|
| T
| v
Le systéme {masse} n’est soumis qu’au poids, qui est 2=0 =0 =0
|
|
l FIGURE M4.1 — Schéma de la situation
|

dé,,
=0 Em(0) = & (tmax
S0 6 80) = Enlle)
1 9 1 2 UO2
g 7%”0 +mgzo = 7mv(tmax) +Vfgh <~ h = Py u
2 T 2 2g

&

On considére un pendule simple (masse m ponctuelle, longueur £, pas de frottements). On fait partir ce pendule
de la verticale (§ = 0, en bas) en lui communiquant une vitesse initiale vg. Déterminer I'expression de 'amplitude
maximale 0, du mouvement.

z(0) = (1 — cos(0)) ; ainsi
FIGURE M4.2 — Schéma

Réponse
! z
Le systéme est conservatif puisque le poids est une force conservative et que le ! T
travail de la force de tension est nul (7' L 7). On peut donc utiliser le TEM en (
déterminant I’énergie potentielle en fonction de 6. : Vcosd I}
On prend la référence d’altitude z = 0 en bas du pendule. La longueur du pendule | t ~ M
étant ¢, on trouve l'altitude en projetant le point M sur l'axe z pour trouver (1 72?0:89 0 (m)

1 2 1 2
ApaBEnm =0 & —pg” + mgzog = —MUmax” + P9 Zmax
2 ITI 2
2 2

Vo Vo
. gmax =1-— n
% cos( ) 297

< (1 — cos(Omax)) =

Cette équation est valable si vg?/2gf < 2, sinon cos(fmax) < —1. Cette condition traduit le fait que le pendule ne fait
pas des tours, i.e. ne dépasse pas 6 = 7.
O

& | II | Curling

Le curling est un sport de précision pratiqué sur la glace avec des pierres en granite, taillées et polies selon un
gabarit international. Le but est de placer les pierres le plus prés possible d’une cible circulaire dessinée sur la glace,
appelée la maison.

N
Nous envisageons le lancer d’une pierre assimilée & un point M de masse 9 )

m = 20kg glissant selon I’axe Oz vers le point My visé (la maison). La 19 M M,
pierre est lancée de la position initiale O avec une vitesse vy = vous, la ° ° *— I

maison se trouvant a la distance D = OMy = 25m du point O.

D
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2 Mécanique — chapitre 4. Correction du TD d’application

Nous supposerons que la force de frottement solide F= —Fyu,, de la glace sur la pierre est constante pendant toute
la glissade et s’annule lorsque la vitesse de la pierre s’annule. Nous prendrons Fy = 3,0 N. Nous négligerons par ailleurs
toute force de frottement fluide.

Le lancer étudié est supposé gagnant : la pierre atteint la maison et s’y arréte.

Exprimer le travail des forces appliquées sur la pierre pendant la glissade.

Réponse
<& Systéme : {pierre} !
<& Référentiel : Rpigte, galiléen 3
<& Repére : (0,u,,u,) !
< Repérage : OM = zus et U =ius 3
<& Conditions particuliéres 3
.t . .t. 1 —> — —T) :
Vitesse initiale Yo = Yo tha | FicURE M4.3 — Schéma de la situation
Position finale OMgy = D u, ;
<& BDF et BDW
WOMO(]_D)> = _75 . OMO = —ng(’E: . E;:') =0
> . [
Poids P = —mgu, — - - ., =
Réaction N = Nu, =~ Wom,(N) =N -OMo = ND(,UZ ' u’”.) =0
ol — yie — o> > =0
Frottements F' = —Fju, Won, (F) = E-OMy = —FoD(@2 - @) = —FoD

&

Que valent les énergies cinétiques initiale &, 1 et finale &, p de la pierre 7 Appliquer alors le théoréme de ’énergie
cinétique a la pierre et en déduire la vitesse initiale vg.

Réponse

Ici, Aom,éc = Z Wonty (F) n

1
=0-— 5mvoz =_—FyD

Fy=3,0N
[2FyD ’
Sy = 0 avec D=25m |
m m = 20kg

&

III | Piégeage d’un électron

Considérons le mouvement selon un axe (Oz) d’un électron de masse m = 9,1 x 10731 kg et de charge —e =
—1,6 x 10719 C dans un dispositif de piégeage. Il est soumis uniquement & des forces conservatives, d’énergie potentielle

totale &,(z) telle que :
eV ,
&p(2) = 22 ”

avec Vo =5,0V et d = 6,0 mm.

Tracer l'allure de &,(z). Identifier la position d’équilibre et donner sa stabilité.

Réponse
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III. Piégeage d’un électron 3

On trace 'énergie potentielle, qui est évidemment une parabole
convexe. On trouve le point d’équilibre en calculant sa dérivée et en trou-

FIGURE M4.4 — &,(z2)

Epy 3 vant quand elle s’annule ; visuellement, la dérivée s’annule en z.q = 0,

! mathématiquement
1 dé eV
3 On trouve sa stabilité en évaluant sa dérivée seconde en ce point, et il
' sera stable si elle est positive. En tant que fonction convexe en ce point,
' il est visiblement stable. On calcule :

A S :

: | e, _
3 dz? req d?

Il est donc bien stable.

&

Calculer la fréquence des oscillations de ’électron dans le piége.

Réponse

Tout systéme conservatif autour de son point d’équilibre stable est régit par une équation d’oscillateur harmonique,
faisant donc apparaitre la pulsation propre wg. Il suffit pour démontrer cela d’utiliser la caractéristique principale
d’un systéme conservatif : le fait que son énergie mécanique se conserve, i.e. % = 0. En effet, le TPC nous indique

dé,, -

= > P(Fnci) =0
i L
=0 car conservatif

On nous donne &,(z), donc pour avoir &,, il faut trouver la vitesse de la particule. Rien n’est indiqué dans 1’énonce,
mais le probléme n’indique qu’un potentiel selon @, ; on peut supposer que la vitesse ne se fait que selon wu, également,
et qu’on a donc ¥ = Zu,. Ainsi,

dé,,
=om o

dt
oY +8)=0
VAN

d 1 .2 GV() 2 o

. Vi
@mzz+2—20z/é=0

. 2 €V0
Sl Z4+we“z=0 avec wo —s
md

Etant donné que wy = 27 fp, on obtient finalement

e=16x10"1C

f - i €V0 V() = 5,0V .
0= o Va2 | m=9,1x10"3 kg

d=6,0x10"3m
AN. : | fo =25MHz

&

-
Exprimer la résultante des forces F' sur ’électron. On rappelle qu’en coordonnées cartésiennes, on a

— af _, Of ., Of_,
gradf(x,y,z) = %ur + %Uy + %uz

Réponse
Une force conservative dérive d’une énergie potentielle selon

F= —grad &,
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4 Mécanique — chapitre 4. Correction du TD d’application

08,
8$ 0
= 08 0
dy eVo
08, P
0z
IR Vo _,
S| F = —ed—QOzuZ

& IV | Balle dans un tonneau

Une balle, assimilée & un point matériel M de masse m, est lachée sur
une rampe sans vitesse initiale depuis le point A d’une hauteur h par
rapport au point O le bout de la rampe. Elle achéve sa course dans un
tonneau circulaire de rayon R lui permettant éventuellement de faire
des loopings. On néglige les frottements.

Exprimer la norme vg de la vitesse en O, puis vy en un point M quelconque du tonneau repéré par 'angle 0, en

fonction de g, h, a et 8. Donner la relation entre vy et G(t)

Réponse
<& Systéme : {balle}

<& Reéférentiel : Ry, supposé galiléen

<& Repére : cartésien pour la chute sur la rampe, avec u, vertical ascendant,

et (C,u,,ug) quand la balle est dans le tonneau ; voir schéma

< Repérage : dans le tonneau,

CM = Ru
Tm = RO(t)ug
@y = RO(t)ug — RO,

< BDF : dans le tonneau,

Poids P= mg(cos(0)u, — sin(0)uy)
Réaction N=-N Uy
< BDW :
Pconservatif
Wam(N) =0 (N L dOM)

Le systéme est donc conservatif. On peut appliquer le TEM :

O EnA:vy=0,24=h

<O En O : vo = vo, < référence pour toute I’étude

<& En M : z(0) = R(1 — cos(6))

FIGURE M4.5 — Schéma de la
situation

<& TEM :
1
Apr08,=0 <& wpigh= 5}%1)02 & |vo =/ 2gh
& (M) &p,p(M) 8.(0)  &,(0)
1 1
puis Aomém =0 & §MUM2 +p1gR(1 — cos(9)) = 5%002 + mgzo

—_
=0
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V. Choc de deux chariots 5

& om = Vvo? + 2gR(cos(6) — 1)

olom = /29v/h + R(cos(0) — 1) | = RI(t) [ ]

&

Déterminer la réaction du tonneau en un point du cercle en fonction de g, h, a et 6.

Réponse

On sort de l'analyse énergétique, puisqu’on veut une valeur de force en un point du mouvement. On applique donc
le PFD :

mad=P+N

—mRO(t)? = mgcos(h) — N B o
& { mRH(E) = —mg sin(8) = N = mgcos(d) + mRO(t)

Or, vy = RI(t) < vm? = R20(t)? & RI(t)? = vm2/R donc

N=m (g cos(f) + % (h + R(cos(f) — 1)))

& N=m (g cos(0) + 2g cos(0) — 2g + QgZ)

< N =mg <3cos(9)2+2]};) [ |

&

Déterminer la hauteur minimale h,;, pour que la bille fasse le tour complet du tonneau sans tomber.

Réponse
La condition de contact entre deux solides est que la réaction normale ne soit pas nulle. Autrement dit, si la réaction
normale est nulle, il n’y a plus contact : on cherche donc ici & voir si N > 0 & chaque instant. On pourrait tracer la
fonction N(6), mais on remarque facilement que ’endroit ot N est la plus susceptible de s’annuler est quand 6 = T,
quand la belle est « la téte a I’envers ». On résout donc

N(m) >0
@mg(—3—2+2%) >0
h
& 2= >5
R
5
S h > §R = RAmin ]
&
X .
% | V |Choc de deux chariots
Deux masses m; et my sont montées sur un banc
horizontal & coussins d’air, de sorte qu’on peut négliger my R My
tout frottements. On les projette I'une contre I'autre U1

Sl

e
avec des vitesses initiales U1 = viu, et Uy = 0 (mq ._> z

initialement & l’arrét).

Dans cette partie, on suppose qu’aprés le choc les masses restent solidaires.

a — Quelle est la vitesse commune des deux masses aprés le choc ?
Réponse

<& Systéme : {2 chariots} considérés chacun comme un point matériel
<& Reéférentiel : terrestre supposé galiléen

<& Base : (u,,u,) avec u, vertical ascendant

< BdF :
> P, = —mqgu, et Niu, pour le premier
> ]_52 = —mogu, et ]_\fQTTZ) pour le second
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6 Mécanique — chapitre 4. Correction du TD d’application

D> Aucune force de frottements, donc systéme pseudo-isolé (. F; = 6)

N. N.
1 . 2 my+my -
1 2 v
U1 R f o
um -: um
mlg m2g
. . s =g . —> . .
Ainsi, % = 0 soit Pior = cte. Ainsi,
— — — — mi —
miT1 +meUs = (m1+m2)7y & |Uf= 1Uz
my + mo

&

b — Quel est le travail des actions intérieures lors du choc ? Commenter le signe du résultat.
Réponse

On utilise le TEC :

1 1
A& = Wing + ﬂie;(t & Wi =8 —6& = §(m1 + ma)vg? — §m1v12

mimes

2
—v1° <0
2(m1 —|—m2) 1

< Wint = -

Le travail des forces intérieures est donc négatif, ce qui est cohérent avec le fait que le systéme perd de ’énergie
cinétique, transformée en énergie thermique lors du choc.

&

On considére dans cette partie que le choc est élastique, c’est-a-dire que l’énergie cinétique de l’ensemble des deuz
masses est conservée au cours du choc et qu’elles ne sont plus solidaires apres.

a — Montrer que les vitesses v] et v} aprés le choc s’expriment :

, mp —mgy , 2my
v =———"v1 et vy=—""+—
mi 4+ ma mi + me
Réponse
On a toujours un systéme pseudo-isolé :
7, B} U1 Uy

R i R

um

On a donc la conservation de la quantité de mouvement totale, ainsi que I’énergie cinétique totale ; ainsi entre
les deux situations :

/ mip —mg
_ ! ! V= —————
{ mivy = M1vy + Mavy my + mo
1 2 _ 1, 0 4 1.0 m
5M1V1° = 3M1v] + 5M2Vy ol = 1 "
myp + ma

&

b — Que se passe-t-il si mo > mq ?

Réponse

Si mg > myq, alors v] — —uv; et vh — 0. La masse m; rebondit sur la masse ms, qui elle reste immobile. Cest
la situation du lancer d’une balle rebondissante sur un mur.

&

¢ — A quelle condition sur m; et mo est-il possible de réaliser un « carreau », i.e. échanger lors du choc les vitesses
des deux masses, comme & la pétanque ?

Réponse

Pour faire un carreau, on veut vj = 0 =[mj; = ma|, et on aura bien v = v;.
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Mécanique — chapitre 5

Correction du TD d’entrainement

R ‘ I |Chute sur corde en escalade

On étudie une grimpeuse qui chute. Une corde d’escalade de longueur L peut, en premiére approximation, étre
modélisée par un ressort de longueur a vide Ly et de raideur k = /L, avec « une caractéristique de la corde.

1 2 : début de mise 3 : tension maximale,
sous tension de la vitesse nulle
corde

La grimpeuse est en chute libre sur une hauteur h pendant laquelle la corde n’est pas sous tension. La corde passe
ensuite sous tension, et la chute se poursuit sur une hauteur Af. La vitesse de la grimpeuse devient ainsi nulle au bout
d’une hauteur totale de chute h + A/.

On prendra g = 10m-s~2, a = 5,0 x 10* N et une grimpeuse de masse m = 50kg.

A P’aide d’un bilan énergétique, donner I’expression de la vitesse maximale atteinte par la grimpeuse. Faire Papplication
numérique pour une hauteur de chute h = 5m.

Réponse
Pendant la chute libre, la grimpeuse ne subit que l'action du poids, qui est conservatif. On peut donc utiliser le TEM.
Or, z axe ascendant donc &, , = +mg(z — zrer), €t comme suggéré on prend ref = 20. Ainsi :

z(t1) = h = &, p(t1) = mgh " z(t2) =0 = &, ,(t2) =0
v(t)) =0= & (t1) =0 ? i

1 = .
D’ou A&, =0& imv(tg)2 =mgh < |v(tz) = \/2gh| avec {g éOm >

AN. : v(ty) =10m-s~*

Toujours & 'aide d’une méthode énergétique, donner ’expression de ’allongement maximal Af¢ de la corde. On
supposera Af < h afin de simplifier le calcul.

Réponse

On a maintenant deux forces conservatives qui agissent sur la grimpeuse, donc deux énergies potentielles. On
peut utiliser le TEM entre le point tout en haut et le point le plus bas, ou entre le point O et le point le plus bas.
Faisons le premier cas :

z(t1) =h = &pp(t1) =mgh z(t3) = — AL = 8,,(t3) =0
’U(tl) =0 = gc(tl) =0 et ’U(t3) =0 = 86(753) =0
U(t1) = Lo = &Eper(t1) =0 Uts) = Lo + Al = 8, (t3) = LkALR
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8 Mécanique — chapitre 5. Correction du TD d’entrainement

Ainsi, A&, =0 mgh = %kA(Q + mg(—Af) < mg(h +%) = %kAKQ S| A= \/727{:9}1 u
<h

La solution trouvée est plausible : homogeéne, augmente avec m, h et g mais diminue avec k.

&

Donner enfin I'expression de la norme de la force maximal Fi,.x qu’exerce la corde sur la grimpeuse. On introduira le
facteur de chute f = h/Ly.

Réponse
En norme, une force de rappel s’exprime F' = k(¢ — ¢;), soit ici

Frax = kAL = \/2mghk = | /2mgth
0

& | Frax = V 2mgaf [}
O

Au-dela d’une force de 12kN, les dommages sur le corps humain deviennent importants. Que vaut Fy,.x pour une
chute de h = 4m sur une corde de longueur Ly = 4m? Conclure.

Réponse
m = 50kg
e e L g=10m=s~?2 ' B
On fait 'application numérique : avec a=50x10'N AN. : Fpa = 10kN
f=1

Il n’y a donc pas de risque aggravé pour la grimpeuse avec cette chute.

&

Une chute d’un métre arrétée par une corde de 50 cm est-elle plus ou moins dangereuse qu'une chute de 4 m arrétée
par une corde de 8m ?

Réponse

Dans le premier cas, fi = 2; dans le second, f = 0,5. Or, Fy.x évolue en /f, donc plus f augmente plus la force
subie augmente : le premier cas est donc 2 fois plus dangereux que le premier !

&

X el . eqe
x| II | Positions d’équilibre d’un anneau sur un cercle

Un anneau assimilable & un point matériel M de masse m peut glisser sans
frottement sur une glissiére circulaire de rayon R et de centre O. L’anneau est
attaché & un ressort de raideur k dont une extrémité est fixée a la glissiére
au point A. Sa position est repérée par 'angle 6 entre le rayon OM et 'axe
horizontal (Oz). Pour simplifier les calculs, on considérera que la longueur a
vide ¢y du ressort est nulle.

Montrer que la longueur £(t) s’exprime £(t) = R+/2(1 4 cos(0)).

Réponse

, 1. . 4 . T2 2 3 , .
On peut réutiliser la relation de CHASLES pour écrire AM = AO+OM et déterminer
la distance en prenant la norme, mais ici une simple utilisation du théoréme de
PYTHAGORE suffit. On projette M sur I’axe x pour avoir

(1)

> = (R + Rcos(#))* + (Rsin(9))?
& (% = R? + 2R? cos(#) + R*(cos? 6 + sin? §)
& 02 = 2R*(1 + cos(0))

< £ = R+/2(1 + cos(6)) [ ]
&

Al R O geus

FIGURE M5.1 —
Détermination de ¢
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II. Positions d’équilibre d’un anneau sur un cercle 9

Exprimer ’énergie potentielle &, du systéme constitué de 'anneau et du ressort en fonction de I’angle 6.

Réponse

L’énergie potentielle totale &, est constituée de I’énergie potentielle de pesanteur de I’anneau et de I’énergie potentielle
élastique du ressort. Pour &, ,, avec origine en O, on a une altitude Rsin(f) ; pour &, ¢ on a la différence de longueur
a a vide £ — £y avec £y = 0, d’ou

(gp = ‘gzup + ‘g:mel

& 8, = mgRsin(0) + gég

=| 8, = mgRsin(0) + kR*(1 + cos(0)) |

&

Déterminer les positions d’équilibre de I'anneau.

Réponse
On trouve les positions d’équilibre de I’anneau en trouvant les angles .4 tels que la dérivée de &, s’annule, soit

d—gp = —kR? sin(feq) + mgR cos(beq) =0
de 6o
- mgR

& sin(feq) = cos (b,

(0cq) 1 (Oeq)
_mg
< tan(feq) = R
- g _ mg
& | beq1 = arctan( kR) et |feq2 =7+ arctan( kR) [

avec foq,1 compris entre 0 et 90°, et .4 2 compris entre 180 et 270°.

&

Préciser si les positions d’équilibre obtenues sont stables.

Réponse

On étudie la stabilité des positions en évaluant la dérivée seconde de &, en ce point et en vérifiant son signe. On
obtient

dze, ) .
5 = —kR* c08(0eq) — mgRsin(feq)
de> |,
d?é, o Mg’
S I . =— <k‘R +— ) cos(beq)

en utilisant les résultats précédents sur la dérivée premiére de §,. L’intérieur de la parenthése étant positif, le signe
de cette dérivée seconde est opposé a celui du cosinus de la position d’équilibre. Or, cos(feq,1) > 0 et cos(feq2) < 0,
donc

426,
62

d42¢,

| >0 ]

<0 et

Ocq,1 Ocq,2

La premiére position est donc instable, et la seconde stable.

FiGURE M5.2 — Positions d’équilibre du systéme

&
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Mécanique — chapitre 5. Correction du TD d’entrainement

#x

I1I | Pendule électrique

On étudie un pendule constitué d’une boule de polystyréne expansé recouverte d’une feuille d’aluminium, et
suspendue & une potence par une fine tige de longueur R = 10 cm dont nous négligerons la masse. La boule de masse
m = 20 g sera assimilée a un point matériel M.

Une boule identique est placée en A (voir schéma). Les deux boules sont chargées électriquement avec la méme
charge, et donc se repoussent. La force exercée par A sur M s’écrit

k

- ANT -3 2
Fo=—=-AM avec k=44x10"°N-m
AM3
0.060
O .
) 0.055
|
I
R ; 0.050F
0
| =
e ! _ M — 0.045
L - - q
9 |
: 0.040
I
R |
! 0.035
I
|
oA 0.0304

=3 = 1 0 1 2 3
. e 0 (rad
FicureE M5.3 — Dispositif (rad)

FI1GURE M5.4 — Courbe &,(0)

Exprimer la distance AM en fonction de R et 6.
Réponse

Pour exprimer la distance AM, on la décompose par des vecteurs connus et on pourra prendre la norme du vecteur

AM avec vVoam? + yam2, ou V AM - AM. Notamment, AM = AG + OM.

Il faut donc décomposer AO et OM sur la méme base, comme on le fait pour
le poids sur un plan incliné. En effet,

AO = 2Rw
OM = Ru;

mais on ne peut pas sommer les deux dans des bases différentes. Décomposons
—> —> —>
u,. sur (ug,u,) : on trouve

u, = sin(0)u, — cos(0)u,

AM = AQ + OM

& AM = <2RR811%l éii(e))

Ainsi,

= [|AM] = \/R2 sin? @ + (2R — Rcos(#))?2

& AM = \/R2 sin? @ + 4R2 — 4R2? cos(f) + R? cos? 6
& AM = /5R? — 4R2 cos(h)

< AM = R+/5 — 4 cos(d) |

avec  cos?f +sin?f =1

FiGURE M5.5 — Détermination de AM

&

—_>
Montrer que la force F'. est conservative, et que son énergie potentielle s’exprime

ok
Ry\/5 — 4 cos(6)

gp,e (9) =

Réponse

Une force est conservative si son travail élémentaire s’exprime sous la forme —dé,. Calculons son travail élémentaire :

SW(F.) = F. dAM
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III. Pendule électrique 11

- k — —
& OW(F.) = 5 AM - dAM
1k s
& =6y = 50 a (IAnl)
1 k
2. —
Avec u = AM“ : @—d€p7e—§mdu
d&pe _ 1k
du — 2u3/?
Kk
= 8?,6 - u1/2 + I(le'
prise nulle
k k
o= e = ]
PCAM T R\/5 = 4cos(0)

&

Exprimer Pénergie potentielle totale &,(0) de la boule M.

Réponse

La boule M a également une énergie potentielle de pesanteur. En prenant O comme origine de l'altitude, I'altitude
de la boule M z(0) s’exprime

2(0) = —Rcos(6)

Ainsi, Ep(0) = Ep,p(0) + Ep,c(0)
k
&l 8,(0) = ———= — mgRcos(f [ ]
o) R+/5 — 4cos(6) " ©)

&

Le tracé de ’énergie potentielle est proposé sur la figure 2. Déduire de ce graphe l'existence de positions d’équilibres,
et indiquer leur nature.

Réponse

On observe en tout 5 positions d’équilibres : deux stables dans les puits de potentiel vers +1rad, et trois instables
(maxima locaux d’énergie potentielle) en —m, 0 et 7.

Discuter de la nature de la trajectoire de M suivant la valeur de son énergie mécanique.

Réponse
Le mouvement du pendule ne se fait que dans les zones du graphique ou &, < &,,. On distingue donc 4 cas :

Cas 1 0J <&, <3,5x1072] = pas de mouvement

Cas 2 35x1072J < &, < 4,4 x1072J = oscillations ~ position stable

Cas 3 44x1072J <&, <54 x 1072J = mouvement périodique entre &, max
Cas4 54x1072J< &, < +o0 = mouvement révolutif : tours & U'infini
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12 Mécanique — chapitre 5. Correction du TD d’entrainement
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FIGURE M5.6 — Mouvement selon &,,

&

*
x% | IV |Recul d’un canon
On considére un canon (figure M5.7) de masse M = 800kg. Lors du tir horizontal d’un obus de masse m = 2,0kg
avec une vitesse 05 = vou, telle que vy = 600m-s~', le canon acquiert une vitesse de recul v, = —3g.

Pour limiter la course du canon, on utilise un ressort de raideur k;, de longueur & vide Ly dont I'une des extrémités
est fixe, et autre liée au canon. Le déplacement a lieu suivant ’axe Oz. Dans la suite, le canon est assimilé & un point
matériel, son centre de gravité G (figure M5.8).

A A

FiGURE M5.7 — Canon

]
g
v w
~
]é\
=
AN

FIGURE M5.8 —

o G
L

FIGURE M5.9 — Amortisseur

Repérage

Quelle est la longueur du ressort lorsque le canon est au repos ?

Réponse

Au repos, la tension du ressort est nulle, donc £ = L.

&

En utilisant 1’énergie mécanique, déterminer la distance de recul d. En déduire la raideur k; pour avoir un recul
inférieur ou égal a d. Application numérique pour d = 1,0 m.

Réponse

<& Systéme : {canon}, repéré par G de masse M

< Reéférentiel : Ry, supposé galiléen

<& Repére : mouvement horizontal donc cartésien, (O,u,,u,) avec u, vertical ascendant

<& Repérage : (Y})(t) =z(t) u,

et TEH)=2(t)u, et d(t)=2(t)u,

<& BDF :
Poids P= —mgu,
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IV. Recul d’un canon 13

Réaction N=N u,
Ressort F=—k (z — Lo)u,
Le poids et la tension du ressort sont conservatives, et la réaction du sol ne travaille pas : on a donc un systéme
conservatif, et on applique simplement le TEM :
<& Au moment du tir : v =v,, 1= Lo = &.0 = Mv.2/2 et &, 1 = k1(Lo — Lo)?/2=0
O Apréslerecul :v=0,2="Lo—d= & 5 =0et & = kid*/2

<& TEM :
1 1
*kldQ =-M UCQ
2 2 14
=muvo/M
2 m®
Sdf =
kMO
=4 = m Vo |
kM
m = 2,0kg
m2uvg? M = 800kg
SIM=TEr | ™ vy = 600ms ! u
d=1,0m
AN. : |k = 1800 Nm ™! |
O
Retrouver la relation entre k; et d en appliquant le PFD.
Réponse
Avec le PFD et en projetant sur u, (on a N =mg sur u,) :
Mi = 7]61(1’ - L())
. 2 2 kl
S T4 we'r =we“Ly avec wy= i
= z(t) = Acos(wgt + ¢) + Lo
Or,
2(t=0)=Lo= Acosp=0
On choisit ¢ = —7/2, et ainsi
.’13(t) = Asin(wot) + LQ
= i(t) = Awg cos(wot)
Or,
#(t=0)= —%vo
m Vg
>A=—-———
Mwo
mvg .
= x(t) = — sin(wot) + L |
( ) \/m ( 0 ) 0

On obtient alors d comme étant ’amplitude du sinus, c’est-a-dire le résultat précédent.

&

Quel est 'inconvénient d’utiliser un ressort seul 7

Réponse

On vient donc de démontrer qu’avec un seul ressort, le canon va osciller et donc apres le recul, il va repartir vers
Iavant. L’amplitude va diminuer petit & petit a cause des frottements inéluctables, mais le temps avant immobilisation
sera important : on a donc intérét a ajouter une force de frottements visqueux.

&

Pour pallier ce probléme, on ajoute au systéme un dispositif amortisseur (figure M5.9), exergant une force de frottement
F = -\, U étant la vitesse du canon.
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14 Mécanique — chapitre 5. Correction du TD d’entrainement

Le dispositif de freinage absorbe une fraction §, = 778 J de I’énergie cinétique initiale. Calculer la nouvelle valeur ko
de la constante de raideur du ressort avec les données numériques précédentes. Déterminer la pulsation propre wqy de
loscillateur.

Réponse

Le systéme n’est plus conservatif, et la variation d’énergie mécanique est maintenant égale a ’énergie absorbée par le
dispositif de freinage, c’est-a-dire
A&y = Epy g — EMi = —&,

puisque I’énergie cinétique doit décroitre et que &, est positive. Or, initialement et finalement,

1 1
Emi =8 = incz et Enp=68,= §k2d2

)

_ 1, 1,
il — Myl =— |
Soit 2k2d 5 Ve &,
1 2
= k'Q = ﬁ (MUC — 2611)
m = 2,0kg
1 (m? M = 800kg
Slky = =z (M’UO — 28a> avec o = 600m.s—! |
8, =T78]J

AN. : |ky = 244N-m™'|

ko { ky = 244N-m~1
avec

De plus, wo = i M = 800 ke

AN. : [wp=055rads |

&

@ Déterminer \ pour que le régime soit critique. Application numérique.

Réponse
On reprend la question 3) mais avec la force de frottements, pour obtenir I’équation d’un oscillateur amorti :

. A 9 9
LA -
x+Mm+w0 T = wo Ly

Le discriminant de I’équation caractéristique associée est

A 2
A= <M) — 4W02

et on a un régime critique quand ce discriminant est nul ; soit

— M = 800kg
AN. 1| X =884kgs !

&

Déterminer expression de 1’élongation z(t) du ressort, ainsi que celle de la vitesse 4:(t). En déduire I'instant ¢,, pour
lequel le recul est maximal. Exprimer alors ce recul en fonction de m, vy et A. L’application numérique redonne-t-elle
la valeur de d précédente ?

Réponse

Avec le régime critique, on a x(t) = (At + B) exp (;}‘\Z) + Lo m
OI‘, .'17(0) =0=
. At A

Or, i(0) = v, =
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V. Oscillateur de LANDAU 15

At
et x(t) = —%’Uot exp (—2]\/[> + Lo |

Le recul est maximal quand la vitesse s’annule, soit

2M
tm = T = 1,83

On calcule x(t,,), sachant qu’'on a par définition x(t,,) = Lo — d :

2M
.’L'(tm> = _%UOTe_l + LO
2

o Ly—d=Ly— 20

e
2
Sld= 1Yo |
e

et I'application numérique donne

On retrouve bien la distance de recul précédente, mais cette fois il n’y a pas d’oscillation! Cahier des charges rempli.

&

R ‘ A% |Oscillateur de LANDAU

L’oscillateur de LANDAU est un modéle théorique permettant de modéliser efficacement des systémes physiques pour

lesquelles des faibles non-linéarités sont & prendre en compte. Il s’agit d’une approximation un peu plus précise que
celle de P'oscillateur harmonique pour étudier le comportement de systémes au voisinage de leur position d’équilibre.

Un exemple de systéme modéle permettant de réaliser un oscillateur de Landau est
un petit anneau, assimilé a un point matériel M de masse m, astreint a se déplacer
sans frottement le long d’une tige rectiligne horizontale choisie comme axe (Ox).
Cet anneau est relié¢ a un ressort, de longueur a vide ¢y et de raideur k, dont l'autre
extrémité est fixée en A. La distance de A & la tige est notée AO = a.

&

Ty, 7]

a

|

|

|

|

|

|

:

@) M
Exprimer Pénergie potentielle totale &,(x).

Réponse

Comme ’anneau est contraint de se déplacer sur une ligne horizontale, son énergie potentielle de pesanteur est
constante. Ainsi, la seule contribution & ’énergie potentielle est d’origine élastique,

§,(x) = %k(AM —4)?

La longueur AM s’exprime a partir du théoréme de PYTHAGORE,

1 2
AM? =@+ 22 dou [E,(z) = §k (\/ a? + 2% — 60)

&

La courbe d’énergie potentielle est représentée ci-dessous pour quatre valeurs de a : a; = £y/10, az = ¢y/3, a3 = 4y
et ays = 3¢y. En raisonnement qualitativement sur les positions d’équilibre, attribuer chaque courbe & la valeur de a
qui lui correspond.

Réponse

Qualitativement, il est assez simple de comprendre pourquoi certaines courbes font apparaitre deux minima et d’autre
un seul. Si a < £y, alors deux positions de M, symétriques par rapport a O sont telles que AM = ¢;y. Dans ce cas,
I’énergie potentielle élastique est nulle. Au contraire, si a > (g, le ressort est toujours étiré et ’énergie potentielle
élastique jamais nulle.

Remarque M5.1 :
|’ Ce raisonnement se retrouve tout a fait sur I’expression mathématique de &, !

Ainsi on peut identifier la courbe en pointillés violets au cas ay = 3/y. La courbe en points verts ne fait
apparaitre qu’un seul minimum, mais son énergie potentielle est nulle : elle correspond au cas ag = fg. Enfin, il reste
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Mécanique — chapitre 5. Correction du TD d’entrainement

a identifier les deux derniéres courbes, ce qui peut se faire a partir de la valeur de I’énergie potentielle en z = 0.
Elle est plus élevée sur la courbe bleue que sur la courbe rouge, signe que le ressort est davantage comprimé. On en
déduit que la courbe bleue est celle du cas a; = £/10 alors que la courbe rouge correspond a az = {y/3.

&

Pour chaque valeur de a, analyser le mouvement possible de I’anneau en fonction des conditions initiales.

Réponse
Quelles que soient les conditions initiales, le mouvement est borné car &, diverge en 400, et il est donc périodique.
Dans le cas a < 4y, si les conditions initiales sont telles que &, < &,(z = 0), alors le mouvement est restreint a
un c6té z < 0 ou x > 0 car 'anneau n’a pas assez d’énergie pour franchir la barriére de potentiel en x = 0. Si les
conditions initiales sont en revanche telles que &,, > &,(z = 0), le mouvement a lieu de part et d’autre de la barriére,
et il est symétrique car le profil d’énergie potentielle 'est. C’est également le cas si a > £y, et ce quelles que soient les

conditions initiales.

Pour les valeurs de a précédentes, 'anneau est 1aché avec les mémes conditions initiales. Sa vitesse et sa position
sont enregistrées au cours du temps, ce qui donne les trajectoires de phase de la figure ci-dessous. Déterminer la
condition initiale et affecter chaque trajectoire de phase a la valeur de a qui lui correspond.

Réponse

La condition initiale est trés simple a déterminer : c’est le seul point commun & toutes les trajectoires de phase.
Compte tenu de la symétrie des portraits de phase et des profils d’énergie potentielle, seule la norme de la vitesse

peut étre déterminée. On trouve
[k
o — 0,4@0 et j)o = 0,550 —
m

Seule la trajectoire de phase représentée en bleu n’est pas symétrique par rapport & = 0. Elle correspond donc au
cas ol la barriére de potentiel centrale est la plus élevée, donc le cas a; = {p/10. La trajectoire de phase représentée
en rouge montre une réduction de vitesse en x = 0 : elle correspond donc au cas ou il y a une barriére de potentiel,
mais moins élevée, c'est-a-dire le cas ag = fo/3. Enfin, la trajectoire de phase verte est plus aplatie que la trajectoire
de phase violette. Cet aplatissement se retrouve dans les courbes d’énergie potentielle : la courbe verte correspond au
cas ag = {g et la courbe violette au cas aq4 = 3/¢,.

1.0 T T
E 0.5 SO
~
— -2 \
B 0.0
=3 < /
7
E —0.5} - .
—~1.0 ] ] | |
-2 -1 0 1 2
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