
Mécanique – chapitre 4

Correction du TD d’application

I Intérêt des raisonnements énergétiques

1 On lance une balle avec une vitesse initiale v0 vers le haut depuis l’altitude z = 0. Déterminer la hauteur maximale
atteinte par la balle en négligeant tout frottement.

Réponse
À t = 0, la balle est lancée en z = 0 avec une vitesse
#»v0 = vO

# »uz. Elle va monter en altitude en perdant de
l’énergie cinétique et en gagnant en énergie potentielle.

Le système {masse} n’est soumis qu’au poids, qui est
conservatif ; le système est donc conservatif et l’énergie
mécanique se conserve, soit : Figure M4.1 – Schéma de la situation

dEm
dt

= 0 ⇔ Em(0) = Em(tmax)

⇔ 1

2�
�mv0

2 +mgz0
=0

=
1

2�
�mv(tmax)

2 +��mgh ⇔ h =

√
v02

2g
■

⋄
2 On considère un pendule simple (masse m ponctuelle, longueur ℓ, pas de frottements). On fait partir ce pendule

de la verticale (θ = 0, en bas) en lui communiquant une vitesse initiale v0. Déterminer l’expression de l’amplitude
maximale θmax du mouvement.

Réponse

Le système est conservatif puisque le poids est une force conservative et que le
travail de la force de tension est nul (

#»

T ⊥ #»v ). On peut donc utiliser le TEM en
déterminant l’énergie potentielle en fonction de θ.

On prend la référence d’altitude z = 0 en bas du pendule. La longueur du pendule
étant ℓ, on trouve l’altitude en projetant le point M sur l’axe z pour trouver
z(θ) = ℓ(1− cos(θ)) ; ainsi

Figure M4.2 – Schéma

∆ABEm = 0 ⇔ 1

2�
�mv0

2 +mgz0
=0

=
1

2�
�mvmax

2 +��mgzmax

⇔ ℓ(1− cos(θmax)) =
v0

2

2g
⇔ cos(θmax) = 1− v0

2

2gℓ
■

Cette équation est valable si v02/2gℓ < 2, sinon cos(θmax) < −1. Cette condition traduit le fait que le pendule ne fait
pas des tours, i.e. ne dépasse pas θ = π.

⋄
II Curling

Le curling est un sport de précision pratiqué sur la glace avec des pierres en granite, taillées et polies selon un
gabarit international. Le but est de placer les pierres le plus près possible d’une cible circulaire dessinée sur la glace,
appelée la maison.

Nous envisageons le lancer d’une pierre assimilée à un point M de masse
m = 20 kg glissant selon l’axe Ox vers le point M0 visé (la maison). La
pierre est lancée de la position initiale O avec une vitesse #»v0 = v0

# »ux, la
maison se trouvant à la distance D = OM0 = 25m du point O.
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2 Mécanique – chapitre 4. Correction du TD d’application

Nous supposerons que la force de frottement solide
#»

F = −F0
# »ux de la glace sur la pierre est constante pendant toute

la glissade et s’annule lorsque la vitesse de la pierre s’annule. Nous prendrons F0 = 3,0N. Nous négligerons par ailleurs
toute force de frottement fluide.

Le lancer étudié est supposé gagnant : la pierre atteint la maison et s’y arrête.

1 Exprimer le travail des forces appliquées sur la pierre pendant la glissade.
Réponse

⋄ Système : {pierre}

⋄ Référentiel : Rpiste, galiléen

⋄ Repère : (O, # »ux,
# »uz)

⋄ Repérage :
#     »

OM = x # »ux et #»v = ẋ # »ux

⋄ Conditions particulières

#»v0 = v0
# »uxVitesse initiale

#       »

OM0 = D # »uxPosition finale
Figure M4.3 – Schéma de la situation

⋄ BDF et BDW :

Poids
#»

P = −mg # »uz

Réaction
#»

N = N # »uz

Frottements
#»

F = −F0
# »ux

⇒

WOM0
(

#»

P ) =
#»

P · #       »

OM0 = −mgD( # »uz · # »ux

=0

) = 0

WOM0
(

#»

N) =
#»

N · #       »

OM0 = ND( # »uz · # »ux

=0

) = 0

WOM0
(

#»

F ) =
#»

F · #       »

OM0 = −F0D( # »ux · # »ux

=1

) = −F0D

⋄
2 Que valent les énergies cinétiques initiale Ec,I et finale Ec,F de la pierre ? Appliquer alors le théorème de l’énergie

cinétique à la pierre et en déduire la vitesse initiale v0.
Réponse

∆OM0
Ec =

∑
i

WOM0
(

#»

F i) ■Ici,

⇔ 0− 1

2
mv0

2 = −F0D

⇔ v0 =

√
2F0D

m
avec

F0 = 3,0N
D = 25m
m = 20 kg

■

A.N. : v0 = 2,7m·s−1

⋄
III Piégeage d’un électron

Considérons le mouvement selon un axe (Oz) d’un électron de masse m = 9,1 × 10−31 kg et de charge −e =
−1,6× 10−19 C dans un dispositif de piégeage. Il est soumis uniquement à des forces conservatives, d’énergie potentielle
totale Ep(z) telle que :

Ep(z) =
eV0

2d2
z2

avec V0 = 5,0V et d = 6,0mm.

1 Tracer l’allure de Ep(z). Identifier la position d’équilibre et donner sa stabilité.
Réponse
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III. Piégeage d’un électron 3

Figure M4.4 – Ep(z)

On trace l’énergie potentielle, qui est évidemment une parabole
convexe. On trouve le point d’équilibre en calculant sa dérivée et en trou-
vant quand elle s’annule ; visuellement, la dérivée s’annule en zeq = 0,
mathématiquement

dEp
dz

∣∣∣∣
zeq

=
eV0

d2
zeq = 0 ⇔ zeq = 0

On trouve sa stabilité en évaluant sa dérivée seconde en ce point, et il
sera stable si elle est positive. En tant que fonction convexe en ce point,
il est visiblement stable. On calcule :

d2Ep
dz2

∣∣∣∣
zeq

=
eV0

d2
> 0

Il est donc bien stable.

⋄
2 Calculer la fréquence des oscillations de l’électron dans le piège.

Réponse
Tout système conservatif autour de son point d’équilibre stable est régit par une équation d’oscillateur harmonique,
faisant donc apparaître la pulsation propre ω0. Il suffit pour démontrer cela d’utiliser la caractéristique principale
d’un système conservatif : le fait que son énergie mécanique se conserve, i.e. dEm

dt = 0. En effet, le TPC nous indique

dEm
dt

=
∑
i

P(
#»

FNC,i)

=0 car conservatif

= 0

On nous donne Ep(z), donc pour avoir Em il faut trouver la vitesse de la particule. Rien n’est indiqué dans l’énoncé,
mais le problème n’indique qu’un potentiel selon # »uz ; on peut supposer que la vitesse ne se fait que selon # »uz également,
et qu’on a donc #»v = ż # »uz. Ainsi,

dEm
dt

= 0

⇔ d

dt
(Ec + Ep) = 0

⇔ d

dt

(
1

2
mż2 +

eV0

2d2
z2
)

= 0

⇔ m�̇zz̈ +
eV0

d2
z�̇z = 0

⇔ z̈ + ω0
2z = 0 avec ω0 =

√
eV0

md2

Étant donné que ω0 = 2πf0, on obtient finalement

f0 =
1

2π

√
eV0

md2
avec


e = 1,6× 10−19 C

V0 = 5,0V
m = 9,1× 10−31 kg
d = 6,0× 10−3 m

■

A.N. : f0 = 25MHz

⋄
3 Exprimer la résultante des forces

#»

F sur l’électron. On rappelle qu’en coordonnées cartésiennes, on a

#      »

grad f(x,y,z) =
∂f

∂x
# »ux +

∂f

∂y
# »uy +

∂f

∂z
# »uz

Réponse
Une force conservative dérive d’une énergie potentielle selon

#»

F = − #      »

gradEp
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4 Mécanique – chapitre 4. Correction du TD d’application

⇔ #»

F = −



∂Ep
∂x

∂Ep
∂y

∂Ep
∂z

 = −

 0
0

eV0

d2
z



⇔ #»

F = −eV0

d2
z # »uz ■

⋄
IV Balle dans un tonneau

Une balle, assimilée à un point matériel M de masse m, est lâchée sur
une rampe sans vitesse initiale depuis le point A d’une hauteur h par
rapport au point O le bout de la rampe. Elle achève sa course dans un
tonneau circulaire de rayon R lui permettant éventuellement de faire
des loopings. On néglige les frottements.

1 Exprimer la norme vO de la vitesse en O, puis vM en un point M quelconque du tonneau repéré par l’angle θ, en
fonction de g, h, a et θ. Donner la relation entre vM et θ̇(t).

Réponse
⋄ Système : {balle}

⋄ Référentiel : Rsol, supposé galiléen

⋄ Repère : cartésien pour la chute sur la rampe, avec # »uz vertical ascendant,
et (C, # »ur,

# »uθ) quand la balle est dans le tonneau ; voir schéma

⋄ Repérage : dans le tonneau,
#    »

CM = R # »ur

#»vM = Rθ̇(t) # »uθ

#»aM = Rθ̈(t) # »uθ −Rθ̇(t)2 # »ur
Figure M4.5 – Schéma de la

situation

⋄ BDF : dans le tonneau,
#»

P = mg(cos(θ) # »ur − sin(θ) # »uθ)Poids
#»

N = −N # »urRéaction

⋄ BDW :
#»

P conservatif

WAM(
#»

N) = 0 (
#»

N ⊥ d
#     »

OM)

Le système est donc conservatif. On peut appliquer le TEM :

⋄ En A : vA = 0, zA = h

⋄ En O : vO = vO, zO = 0 ⇐ référence pour toute l’étude

⋄ En M : z(θ) = R(1− cos(θ))

⋄ TEM :

∆AOEm = 0 ⇔ ��mgh =
1

2�
�mvO

2 ⇔ vO =
√

2gh ■

∆OMEm = 0 ⇔

Ec(M)

1

2�
�mvM

2 +

Ep,p(M)

��mgR(1− cos(θ)) =

Ec(O)

1

2�
�mvO

2 +

Ep,p(O)

mgzO

=0

puis
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V. Choc de deux chariots 5

⇔ vM =
√

vO2 + 2gR(cos(θ)− 1)

⇔ vM =
√
2g

√
h+R(cos(θ)− 1) = Rθ̇(t) ■

⋄
2 Déterminer la réaction du tonneau en un point du cercle en fonction de g, h, a et θ.

Réponse
On sort de l’analyse énergétique, puisqu’on veut une valeur de force en un point du mouvement. On applique donc
le PFD :

m #»a =
#»

P +
#»

N

⇔

{
−mRθ̇(t)2 = mg cos(θ)−N

mRθ̈(t) = −mg sin(θ)
⇒ N = mg cos(θ) +mRθ̇(t)2

Or, vM = Rθ̇(t) ⇔ vM
2 = R2θ̇(t)2 ⇔ Rθ̇(t)2 = vM

2/R donc

N = m

(
g cos(θ) +

2g

R
(h+R(cos(θ)− 1))

)
⇔ N = m

(
g cos(θ) + 2g cos(θ)− 2g + 2g

h

R

)
⇔ N = mg

(
3 cos(θ)− 2 + 2

h

R

)
■

⋄
3 Déterminer la hauteur minimale hmin pour que la bille fasse le tour complet du tonneau sans tomber.

Réponse
La condition de contact entre deux solides est que la réaction normale ne soit pas nulle. Autrement dit, si la réaction
normale est nulle, il n’y a plus contact : on cherche donc ici à voir si N > 0 à chaque instant. On pourrait tracer la
fonction N(θ), mais on remarque facilement que l’endroit où N est la plus susceptible de s’annuler est quand θ = π,
quand la belle est « la tête à l’envers ». On résout donc

N(π) > 0

⇔��mg
(
−3− 2 + 2

g

R

)
> 0

⇔ 2
h

R
> 5

⇔ h >
5

2
R = hmin ■

⋄
V Choc de deux chariots

Deux masses m1 et m2 sont montées sur un banc
horizontal à coussins d’air, de sorte qu’on peut négliger
tout frottements. On les projette l’une contre l’autre
avec des vitesses initiales #»v 1 = v1

# »ux et #»v 2 =
#»
0 (m2

initialement à l’arrêt).

1 Dans cette partie, on suppose qu’après le choc les masses restent solidaires.

a – Quelle est la vitesse commune des deux masses après le choc ?
Réponse

⋄ Système : {2 chariots} considérés chacun comme un point matériel
⋄ Référentiel : terrestre supposé galiléen
⋄ Base : ( # »ux,

# »uz) avec # »uz vertical ascendant
⋄ BdF :
▷ #»

P 1 = −m1g
# »uz et

#»

N1
# »uz pour le premier

▷ #»

P 2 = −m2g
# »uz et

#»

N2
# »uz pour le second
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6 Mécanique – chapitre 4. Correction du TD d’application

▷ Aucune force de frottements, donc système pseudo-isolé (
∑

i

#»

F i =
#»
0 )

Ainsi, d #»p tot

dt =
#»
0 soit #»p tot =

#  »cte. Ainsi,

m1
#»v 1 +m2

#»v 2 = (m1 +m2)
#»v f ⇔ #»v f =

m1

m1 +m2
v1

# »ux

⋄
b – Quel est le travail des actions intérieures lors du choc ? Commenter le signe du résultat.

Réponse
On utilise le TEC :

∆Ec = Wint +Wext

=0

⇔ Wint = Ef − Ei =
1

2
(m1 +m2)vf

2 − 1

2
m1v1

2

⇔ Wint = − m1m2

2(m1 +m2)
v1

2 < 0

Le travail des forces intérieures est donc négatif, ce qui est cohérent avec le fait que le système perd de l’énergie
cinétique, transformée en énergie thermique lors du choc.⋄

2 On considère dans cette partie que le choc est élastique, c’est-à-dire que l’énergie cinétique de l’ensemble des deux
masses est conservée au cours du choc et qu’elles ne sont plus solidaires après.

a – Montrer que les vitesses v′1 et v′2 après le choc s’expriment :

v′1 =
m1 −m2

m1 +m2
v1 et v′2 =

2m1

m1 +m2
v1

Réponse
On a toujours un système pseudo-isolé :

On a donc la conservation de la quantité de mouvement totale, ainsi que l’énergie cinétique totale ; ainsi entre
les deux situations :

{
m1v1 = m1v

′
1 +m2v

′
2

1
2m1v1

2 = 1
2m1v

′
1 +

1
2m2v

′
2
⇔


v′1 =

m1 −m2

m1 +m2
v1

v′2 =
2m1

m1 +m2
v1

⋄
b – Que se passe-t-il si m2 ≫ m1 ?

Réponse
Si m2 ≫ m1, alors v′1 → −v1 et v′2 → 0. La masse m1 rebondit sur la masse m2, qui elle reste immobile. C’est
la situation du lancer d’une balle rebondissante sur un mur.⋄

c – À quelle condition sur m1 et m2 est-il possible de réaliser un « carreau », i.e. échanger lors du choc les vitesses
des deux masses, comme à la pétanque ?

Réponse
Pour faire un carreau, on veut v′1 = 0 ⇒ m1 = m2 , et on aura bien v′2 = v1.

⋄
Lycée Pothier 6/16 MPSI3 – 2025/2026



Mécanique – chapitre 5

Correction du TD d’entraînement

I Chute sur corde en escalade

On étudie une grimpeuse qui chute. Une corde d’escalade de longueur L0 peut, en première approximation, être
modélisée par un ressort de longueur à vide L0 et de raideur k = α/L0, avec α une caractéristique de la corde.

La grimpeuse est en chute libre sur une hauteur h pendant laquelle la corde n’est pas sous tension. La corde passe
ensuite sous tension, et la chute se poursuit sur une hauteur ∆ℓ. La vitesse de la grimpeuse devient ainsi nulle au bout
d’une hauteur totale de chute h+∆ℓ.

On prendra g = 10m·s−2, α = 5,0× 104 N et une grimpeuse de masse m = 50 kg.

1 À l’aide d’un bilan énergétique, donner l’expression de la vitesse maximale atteinte par la grimpeuse. Faire l’application
numérique pour une hauteur de chute h = 5m.

Réponse
Pendant la chute libre, la grimpeuse ne subit que l’action du poids, qui est conservatif. On peut donc utiliser le TEM.
Or, z axe ascendant donc Ep,p = +mg(z − zref), et comme suggéré on prend rref = zO. Ainsi :{

z(t1) = h ⇒ Ep,p(t1) = mgh
v(t1) = 0 ⇒ Ec(t1) = 0

et
{
z(t2) = 0 ⇒ Ep,p(t2) = 0
v(t2) = ? ⇒ Ec(t2) =

1
2mv(t2)

2

∆Em = 0 ⇔ 1

2
mv(t2)

2 = mgh ⇔ v(t2) =
√
2gh avec

{
g = 10m·s−2

h = 5m
D’où

A.N. : v(t2) = 10m·s−1

⋄
2 Toujours à l’aide d’une méthode énergétique, donner l’expression de l’allongement maximal ∆ℓ de la corde. On

supposera ∆ℓ ≪ h afin de simplifier le calcul.
Réponse

On a maintenant deux forces conservatives qui agissent sur la grimpeuse, donc deux énergies potentielles. On
peut utiliser le TEM entre le point tout en haut et le point le plus bas, ou entre le point O et le point le plus bas.
Faisons le premier cas : z(t1) = h ⇒ Ep,p(t1) = mgh

v(t1) = 0 ⇒ Ec(t1) = 0
ℓ(t1) = L0 ⇒ Ep,el(t1) = 0

et

 z(t3) = −∆ℓ ⇒ Ep,p(t3) = 0
v(t3) = 0 ⇒ Ec(t3) = 0
ℓ(t3) = L0 +∆ℓ ⇒ Ep,el(t3) =

1
2k∆ℓ2
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8 Mécanique – chapitre 5. Correction du TD d’entraînement

∆Em = 0 ⇔ mgh =
1

2
k∆ℓ2 +mg(−∆ℓ) ⇔ mg(h+��∆ℓ

≪h

) =
1

2
k∆ℓ2 ⇔ ∆ℓ =

√
2mgh

k
■Ainsi,

La solution trouvée est plausible : homogène, augmente avec m, h et g mais diminue avec k.

⋄
3 Donner enfin l’expression de la norme de la force maximal Fmax qu’exerce la corde sur la grimpeuse. On introduira le

facteur de chute f = h/L0.
Réponse

En norme, une force de rappel s’exprime F = k(ℓ− ℓ0), soit ici

Fmax = k∆ℓ =
√
2mghk =

√
2mgh

α

L0

⇔ Fmax =
√
2mgαf ■

⋄
4 Au-delà d’une force de 12 kN, les dommages sur le corps humain deviennent importants. Que vaut Fmax pour une

chute de h = 4m sur une corde de longueur L0 = 4m ? Conclure.
Réponse

avec


m = 50 kg
g = 10m·s−2

α = 5,0× 104 N
f = 1

A.N. : Fmax = 10 kNOn fait l’application numérique :

Il n’y a donc pas de risque aggravé pour la grimpeuse avec cette chute.

⋄
5 Une chute d’un mètre arrêtée par une corde de 50 cm est-elle plus ou moins dangereuse qu’une chute de 4 m arrêtée

par une corde de 8 m ?
Réponse

Dans le premier cas, f1 = 2 ; dans le second, f2 = 0,5. Or, Fmax évolue en
√
f , donc plus f augmente plus la force

subie augmente : le premier cas est donc 2 fois plus dangereux que le premier !

⋄
II Positions d’équilibre d’un anneau sur un cercle

Un anneau assimilable à un point matériel M de masse m peut glisser sans
frottement sur une glissière circulaire de rayon R et de centre O. L’anneau est
attaché à un ressort de raideur k dont une extrémité est fixée à la glissière
au point A. Sa position est repérée par l’angle θ entre le rayon OM et l’axe
horizontal (Ox). Pour simplifier les calculs, on considérera que la longueur à
vide ℓ0 du ressort est nulle.

1 Montrer que la longueur ℓ(t) s’exprime ℓ(t) = R
√

2(1 + cos(θ)).
Réponse

Figure M5.1 –
Détermination de ℓ

On peut réutiliser la relation de Chasles pour écrire
#     »

AM =
#    »

AO+
#     »

OM et déterminer
la distance en prenant la norme, mais ici une simple utilisation du théorème de
Pythagore suffit. On projette M sur l’axe x pour avoir

ℓ2 = (R+R cos(θ))2 + (R sin(θ))2

⇔ ℓ2 = R2 + 2R2 cos(θ) +R2(cos2 θ + sin2 θ)

⇔ ℓ2 = 2R2(1 + cos(θ))

⇔ ℓ = R
√

2(1 + cos(θ)) ■

⋄
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II. Positions d’équilibre d’un anneau sur un cercle 9

2 Exprimer l’énergie potentielle Ep du système constitué de l’anneau et du ressort en fonction de l’angle θ.
Réponse

L’énergie potentielle totale Ep est constituée de l’énergie potentielle de pesanteur de l’anneau et de l’énergie potentielle
élastique du ressort. Pour Ep,p avec origine en O, on a une altitude R sin(θ) ; pour Ep,el on a la différence de longueur
à a vide ℓ− ℓ0 avec ℓ0 = 0, d’où

Ep = Ep,p + Ep,el

⇔ Ep = mgR sin(θ) +
k

2
ℓ2

⇔ Ep = mgR sin(θ) + kR2(1 + cos(θ)) ■

⋄
3 Déterminer les positions d’équilibre de l’anneau.

Réponse
On trouve les positions d’équilibre de l’anneau en trouvant les angles θeq tels que la dérivée de Ep s’annule, soit

dEp
dθ

∣∣∣∣
θeq

= −kR2 sin(θeq) +mgR cos(θeq) = 0

⇔ sin(θeq) =
mg�R

kR �2
cos(θeq)

⇔ tan(θeq) =
mg

kR

⇔ θeq,1 = arctan
(mg

kR

)
et θeq,2 = π + arctan

(mg

kR

)
■

avec θeq,1 compris entre 0 et 90°, et θeq,2 compris entre 180 et 270°.

⋄
4 Préciser si les positions d’équilibre obtenues sont stables.

Réponse
On étudie la stabilité des positions en évaluant la dérivée seconde de Ep en ce point et en vérifiant son signe. On
obtient

d2Ep
dθ2

∣∣∣∣
θeq

= −kR2 cos(θeq)−mgR sin(θeq)

⇔ d2Ep
dθ2

∣∣∣∣
θeq

= −
(
kR2 +

m2g2

k

)
cos(θeq)

en utilisant les résultats précédents sur la dérivée première de Ep. L’intérieur de la parenthèse étant positif, le signe
de cette dérivée seconde est opposé à celui du cosinus de la position d’équilibre. Or, cos(θeq,1) > 0 et cos(θeq,2) < 0,
donc

d2Ep
dθ2

∣∣∣∣
θeq,1

< 0 et
d2Ep
dθ2

∣∣∣∣
θeq,2

> 0 ■

La première position est donc instable, et la seconde stable.

Figure M5.2 – Positions d’équilibre du système

⋄
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10 Mécanique – chapitre 5. Correction du TD d’entraînement

III Pendule électrique

On étudie un pendule constitué d’une boule de polystyrène expansé recouverte d’une feuille d’aluminium, et
suspendue à une potence par une fine tige de longueur R = 10 cm dont nous négligerons la masse. La boule de masse
m = 20 g sera assimilée à un point matériel M.

Une boule identique est placée en A (voir schéma). Les deux boules sont chargées électriquement avec la même
charge, et donc se repoussent. La force exercée par A sur M s’écrit

#»

F e =
k

AM3

#     »

AM avec k = 4,4× 10−3 N·m2

Figure M5.3 – Dispositif
Figure M5.4 – Courbe Ep(θ)

1 Exprimer la distance AM en fonction de R et θ.
Réponse

Pour exprimer la distance AM, on la décompose par des vecteurs connus et on pourra prendre la norme du vecteur
#     »

AM avec
√
xAM

2 + yAM
2, ou

√
#     »

AM · #     »

AM. Notamment,
#     »

AM =
#    »

AO+
#     »

OM.

Figure M5.5 – Détermination de AM

Il faut donc décomposer
#    »

AO et
#     »

OM sur la même base, comme on le fait pour
le poids sur un plan incliné. En effet,

#    »

AO = 2R # »uz

#     »

OM = R # »ur

mais on ne peut pas sommer les deux dans des bases différentes. Décomposons
# »ur sur ( # »ux,

# »uz) : on trouve

# »ur = sin(θ) # »ux − cos(θ) # »uz

#     »

AM =
#    »

AO+
#     »

OMAinsi,

⇔ #     »

AM =

(
R sin(θ)

2R−R cos(θ)

)
⇒ ∥ #     »

AM∥ =

√
R2 sin2 θ + (2R−R cos(θ))2

⇔ AM =

√
R2 sin2 θ + 4R2 − 4R2 cos(θ) +R2 cos2 θ

⇔ AM =
√
5R2 − 4R2 cos(θ) avec cos2 θ + sin2 θ = 1

⇔ AM = R
√

5− 4 cos(θ) ■

⋄
2 Montrer que la force

#»

F e est conservative, et que son énergie potentielle s’exprime

Ep,e(θ) =
k

R
√

5− 4 cos(θ)

Réponse
Une force est conservative si son travail élémentaire s’exprime sous la forme −dEp. Calculons son travail élémentaire :

δW (
#»

F e) =
#»

F e · d
#     »

AM
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III. Pendule électrique 11

⇔ δW (
#»

F e) =
k

AM3

#     »

AM · d #     »

AM

⇔ −dEp,e =
1

2

k

AM3
d
(
∥ #     »

AM∥2
)

⇔ −dEp,e =
1

2

k

u3/2
duAvec u = AM2 :

⇔ dEp,e
du

= −1

2

k

u3/2

⇒ Ep,e =
k

u1/2
+ cte

prise nulle

⇔ Ep,e =
k

AM
=

k

R
√

5− 4 cos(θ)
■

⋄
3 Exprimer l’énergie potentielle totale Ep(θ) de la boule M.

Réponse
La boule M a également une énergie potentielle de pesanteur. En prenant O comme origine de l’altitude, l’altitude
de la boule M z(θ) s’exprime

z(θ) = −R cos(θ)

Ep(θ) = Ep,p(θ) + Ep,e(θ)Ainsi,

⇔ Ep(θ) =
k

R
√

5− 4 cos(θ)
−mgR cos(θ) ■

⋄
4 Le tracé de l’énergie potentielle est proposé sur la figure 2. Déduire de ce graphe l’existence de positions d’équilibres,

et indiquer leur nature.
Réponse

On observe en tout 5 positions d’équilibres : deux stables dans les puits de potentiel vers ±1 rad, et trois instables
(maxima locaux d’énergie potentielle) en −π, 0 et π.

⋄
5 Discuter de la nature de la trajectoire de M suivant la valeur de son énergie mécanique.

Réponse
Le mouvement du pendule ne se fait que dans les zones du graphique où Ep < Em. On distingue donc 4 cas :

Cas 1 0 J < Em < 3,5× 10−2 J ⇒ pas de mouvement
Cas 2 3,5× 10−2 J < Em < 4,4× 10−2 J ⇒ oscillations ≈ position stable
Cas 3 4,4× 10−2 J < Em < 5,4× 10−2 J ⇒ mouvement périodique entre Ep,max

Cas 4 5,4× 10−2 J < Em < +∞ ⇒ mouvement révolutif : tours à l’infini
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12 Mécanique – chapitre 5. Correction du TD d’entraînement

Figure M5.6 – Mouvement selon Em

⋄
IV Recul d’un canon

On considère un canon (figure M5.7) de masse M = 800 kg. Lors du tir horizontal d’un obus de masse m = 2,0 kg
avec une vitesse #»v0 = v0

# »ux telle que v0 = 600m·s−1, le canon acquiert une vitesse de recul #»vc = −m
M

#»v0.

Pour limiter la course du canon, on utilise un ressort de raideur k1, de longueur à vide L0 dont l’une des extrémités
est fixe, et l’autre liée au canon. Le déplacement a lieu suivant l’axe Ox. Dans la suite, le canon est assimilé à un point
matériel, son centre de gravité G (figure M5.8).

Figure M5.7 – Canon Figure M5.8 –
Repérage

Figure M5.9 – Amortisseur

1 Quelle est la longueur du ressort lorsque le canon est au repos ?
Réponse

Au repos, la tension du ressort est nulle, donc ℓ = L0. ⋄
2 En utilisant l’énergie mécanique, déterminer la distance de recul d. En déduire la raideur k1 pour avoir un recul

inférieur ou égal à d. Application numérique pour d = 1,0m.
Réponse

⋄ Système : {canon}, repéré par G de masse M

⋄ Référentiel : Rsol, supposé galiléen

⋄ Repère : mouvement horizontal donc cartésien, (O, # »ux,
# »uz) avec # »uz vertical ascendant

⋄ Repérage :
#    »

OG(t) = x(t) # »ux et #»v (t) = ẋ(t) # »ux et #»a (t) = ẍ(t) # »ux

⋄ BDF :
#»

P = −mg # »uzPoids
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IV. Recul d’un canon 13

#»

N = N # »uzRéaction
#»

F = −k1(x− L0)
# »uxRessort

Le poids et la tension du ressort sont conservatives, et la réaction du sol ne travaille pas : on a donc un système
conservatif, et on applique simplement le TEM :

⋄ Au moment du tir : v = vc, x = L0 ⇒ Ec,0 = Mvc
2/2 et Ep,el = k1(L0 − L0)

2/2 = 0

⋄ Après le recul : v = 0, x = L0 − d ⇒ Ec,f = 0 et Ep,el = k1d
2/2

⋄ TEM :

1

2
k1d

2 =
1

2
M vc
=mv0/M

2

⇔ d2 =
m2

k1M
v0

2

⇔ d =
m√
k1M

v0 ■

⇔ k1 =
m2v0

2

d2M
avec


m = 2,0 kg
M = 800 kg
v0 = 600m·s−1

d = 1,0m

■

A.N. : k1 = 1800N·m−1

⋄
3 Retrouver la relation entre k1 et d en appliquant le PFD.

Réponse
Avec le PFD et en projetant sur # »ux (on a N = mg sur # »uz) :

Mẍ = −k1(x− L0)

⇔ ẍ+ ω0
2x = ω0

2L0 avec ω0 =

√
k1
M

⇒ x(t) = A cos(ω0t+ φ) + L0

Or,
x(t = 0) = L0 ⇒ A cosφ = 0

On choisit φ = −π/2, et ainsi
x(t) = A sin(ω0t) + L0

⇒ ẋ(t) = Aω0 cos(ω0t)

Or,

ẋ(t = 0) = −m

M
v0

⇒ A = −m

M

v0
ω0

⇒ x(t) = − mv0√
k1M

sin(ω0t) + L0 ■

On obtient alors d comme étant l’amplitude du sinus, c’est-à-dire le résultat précédent.

⋄
4 Quel est l’inconvénient d’utiliser un ressort seul ?

Réponse
On vient donc de démontrer qu’avec un seul ressort, le canon va osciller et donc après le recul, il va repartir vers
l’avant. L’amplitude va diminuer petit à petit à cause des frottements inéluctables, mais le temps avant immobilisation
sera important : on a donc intérêt à ajouter une force de frottements visqueux.

⋄
Pour pallier ce problème, on ajoute au système un dispositif amortisseur (figure M5.9), exerçant une force de frottement
#»

F = −λ #»v , #»v étant la vitesse du canon.
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14 Mécanique – chapitre 5. Correction du TD d’entraînement

5 Le dispositif de freinage absorbe une fraction Ea = 778 J de l’énergie cinétique initiale. Calculer la nouvelle valeur k2
de la constante de raideur du ressort avec les données numériques précédentes. Déterminer la pulsation propre ω0 de
l’oscillateur.

Réponse
Le système n’est plus conservatif, et la variation d’énergie mécanique est maintenant égale à l’énergie absorbée par le
dispositif de freinage, c’est-à-dire

∆Em = Em,f − Em,i = −Ea

puisque l’énergie cinétique doit décroître et que Ea est positive. Or, initialement et finalement,

Em,i = Ec =
1

2
Mvc

2 et Em,f = Ep =
1

2
k2d

2

1

2
k2d

2 − 1

2
Mvc

2 = −Ea ■Soit

⇔ k2 =
1

d2
(
Mvc

2 − 2Ea
)

⇔ k2 =
1

d2

(
m2

M
v0

2 − 2Ea

)
avec


m = 2,0 kg
M = 800 kg
v0 = 600m·s−1

Ea = 778 J

■

A.N. : k2 = 244N·m−1

ω0 =

√
k2
M

avec
{

k2 = 244N·m−1

M = 800 kg
De plus,

A.N. : ω0 = 0,55 rad·s−1

⋄
6 Déterminer λ pour que le régime soit critique. Application numérique.

Réponse
On reprend la question 3) mais avec la force de frottements, pour obtenir l’équation d’un oscillateur amorti :

ẍ+
λ

M
ẋ+ ω0

2x = ω0
2L0

Le discriminant de l’équation caractéristique associée est

∆ =

(
λ

M

)2

− 4ω0
2

et on a un régime critique quand ce discriminant est nul ; soit

λ = 2Mω0 avec
{
M = 800 kg
ω0 = 0,55 rad·s−1 ■

A.N. : λ = 884 kg·s−1

⋄
7 Déterminer l’expression de l’élongation x(t) du ressort, ainsi que celle de la vitesse ẋ(t). En déduire l’instant tm pour

lequel le recul est maximal. Exprimer alors ce recul en fonction de m, v0 et λ. L’application numérique redonne-t-elle
la valeur de d précédente ?

Réponse

x(t) = (At+B) exp

(
− λt

2M

)
+ L0 ■Avec le régime critique, on a

x(0) = 0 ⇒ B = 0Or,

⇒ ẋ(t) = A exp

(
− λt

2M

)(
1− λ

2M
t

)
ẋ(0) = vc ⇒ A = vcOr,

⇒ ẋ(t) = −m

M
exp

(
− λt

2M

)(
1− λ

2M
t

)
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V. Oscillateur de Landau 15

x(t) = −m

M
v0t exp

(
− λt

2M

)
+ L0 ■et

Le recul est maximal quand la vitesse s’annule, soit

tm =
2M

λ
= 1,8 s

On calcule x(tm), sachant qu’on a par définition x(tm) = L0 − d :

x(tm) = −m

M
v0

2M

λ
e−1 + L0

⇔ L0 − d = L0 −
2mv0
λe

⇔ d =
2mv0
λe

■

d = 1,0met l’application numérique donne

On retrouve bien la distance de recul précédente, mais cette fois il n’y a pas d’oscillation ! Cahier des charges rempli.

⋄
V Oscillateur de Landau

L’oscillateur de Landau est un modèle théorique permettant de modéliser efficacement des systèmes physiques pour
lesquelles des faibles non-linéarités sont à prendre en compte. Il s’agit d’une approximation un peu plus précise que
celle de l’oscillateur harmonique pour étudier le comportement de systèmes au voisinage de leur position d’équilibre.

Un exemple de système modèle permettant de réaliser un oscillateur de Landau est
un petit anneau, assimilé à un point matériel M de masse m, astreint à se déplacer
sans frottement le long d’une tige rectiligne horizontale choisie comme axe (Ox).
Cet anneau est relié à un ressort, de longueur à vide ℓ0 et de raideur k, dont l’autre
extrémité est fixée en A. La distance de A à la tige est notée AO = a.

1 Exprimer l’énergie potentielle totale Ep(x).
Réponse

Comme l’anneau est contraint de se déplacer sur une ligne horizontale, son énergie potentielle de pesanteur est
constante. Ainsi, la seule contribution à l’énergie potentielle est d’origine élastique,

Ep(x) =
1

2
k(AM− ℓ0)

2

La longueur AM s’exprime à partir du théorème de Pythagore,

AM2 = a2 + x2 d’où Ep(x) =
1

2
k
(√

a2 + x2 − ℓ0

)2

⋄
2 La courbe d’énergie potentielle est représentée ci-dessous pour quatre valeurs de a : a1 = ℓ0/10, a2 = ℓ0/3, a3 = ℓ0

et a4 = 3ℓ0. En raisonnement qualitativement sur les positions d’équilibre, attribuer chaque courbe à la valeur de a
qui lui correspond.

Réponse
Qualitativement, il est assez simple de comprendre pourquoi certaines courbes font apparaître deux minima et d’autre
un seul. Si a < ℓ0, alors deux positions de M, symétriques par rapport à O sont telles que AM = ℓ0. Dans ce cas,
l’énergie potentielle élastique est nulle. Au contraire, si a > ℓ0, le ressort est toujours étiré et l’énergie potentielle
élastique jamais nulle.

Remarque M5.1 :

¬ Ce raisonnement se retrouve tout à fait sur l’expression mathématique de Ep !

Ainsi on peut identifier la courbe en pointillés violets au cas a4 = 3ℓ0. La courbe en points verts ne fait
apparaître qu’un seul minimum, mais son énergie potentielle est nulle : elle correspond au cas a3 = ℓ0. Enfin, il reste
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16 Mécanique – chapitre 5. Correction du TD d’entraînement

à identifier les deux dernières courbes, ce qui peut se faire à partir de la valeur de l’énergie potentielle en x = 0.
Elle est plus élevée sur la courbe bleue que sur la courbe rouge, signe que le ressort est davantage comprimé. On en
déduit que la courbe bleue est celle du cas a1 = ℓ0/10 alors que la courbe rouge correspond à a2 = ℓ0/3.

⋄
3 Pour chaque valeur de a, analyser le mouvement possible de l’anneau en fonction des conditions initiales.

Réponse
Quelles que soient les conditions initiales, le mouvement est borné car Ep diverge en ±∞, et il est donc périodique.
Dans le cas a ≤ ℓ0, si les conditions initiales sont telles que Em < Ep(x = 0), alors le mouvement est restreint à
un côté x < 0 ou x > 0 car l’anneau n’a pas assez d’énergie pour franchir la barrière de potentiel en x = 0. Si les
conditions initiales sont en revanche telles que Em > Ep(x = 0), le mouvement a lieu de part et d’autre de la barrière,
et il est symétrique car le profil d’énergie potentielle l’est. C’est également le cas si a > ℓ0, et ce quelles que soient les
conditions initiales.

⋄
4 Pour les valeurs de a précédentes, l’anneau est lâché avec les mêmes conditions initiales. Sa vitesse et sa position

sont enregistrées au cours du temps, ce qui donne les trajectoires de phase de la figure ci-dessous. Déterminer la
condition initiale et affecter chaque trajectoire de phase à la valeur de a qui lui correspond.

Réponse
La condition initiale est très simple à déterminer : c’est le seul point commun à toutes les trajectoires de phase.
Compte tenu de la symétrie des portraits de phase et des profils d’énergie potentielle, seule la norme de la vitesse
peut être déterminée. On trouve

x0 = 0,4ℓ0 et ẋ0 = 0,5ℓ0

√
k

m

Seule la trajectoire de phase représentée en bleu n’est pas symétrique par rapport à x = 0. Elle correspond donc au
cas où la barrière de potentiel centrale est la plus élevée, donc le cas a1 = ℓ0/10. La trajectoire de phase représentée
en rouge montre une réduction de vitesse en x = 0 : elle correspond donc au cas où il y a une barrière de potentiel,
mais moins élevée, c’est-à-dire le cas a2 = ℓ0/3. Enfin, la trajectoire de phase verte est plus aplatie que la trajectoire
de phase violette. Cet aplatissement se retrouve dans les courbes d’énergie potentielle : la courbe verte correspond au
cas a3 = ℓ0 et la courbe violette au cas a4 = 3ℓ0. ⋄
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