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1. LIMITE DU COURS 

Ce cours se limite à l’analyse fréquentielle des systèmes : 
- Proportionnel 
- Intégrateur 
- Du premier ordre de classe zéro 
- Du second ordre de classe zéro 

 

2. POSITION DU PROBLEME 

Quand on sollicite un système linéaire avec un signal d’entrée harmonique 
e(t)=E0.sin(.t), quand le régime permanent est atteint la sortie s(t) possède les 
caractéristiques suivantes : 

- Le signal de sortie s(t) reste harmonique 
- La fréquence, la pulsation, la période sont conservées : sortie=entrée= 
- L’amplitude de s(t), nommée S0, est très souvent différente de celle de e(t), E0. 
- Les deux signaux peuvent être déphasés. Cela signifie que leurs extrema ne sont 

pas atteints au même instant. 
On note ainsi la sortie : s(t)=S0.sin(.t + ) 
 
Grandeurs, unités : 

- e(t), E0, s(t), S0, dépendent du système 

-  est la pulsation du signal en rad/s. On utilise aussi la fréquence 𝑓 =
𝜔

2𝜋
  (Hz), ou 

la période 𝑇 =
2𝜋

𝜔
  (s). 

-  est le déphasage de la sortie par rapport à l’entrée en radians. Si t est le 

déphasage temporel en s, le déphasage est 𝜑 en radians est :  𝜑 = 𝜑𝑡.
2𝜋

𝑇
. 

 
 
 
 
  
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

Système 
« H(p) » 

Entrée e(t) Sortie s(t) 

e(t) 

s(t) 

So 
Eo 

t (s) 

t 
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Il s’agira donc de connaître les caractéristiques du signal de sortie. La pulsation  étant  
imposée par le signal d’entrée, il faut donc chercher : 

- L’amplitude S0 donc le gain du système, 
𝑆0

𝐸0
  

- Le déphasage de la sortie par rapport à l’entrée,   
 
Ce qui est remarquable c’est que gain et déphasage dépendent de la pulsation (et des 
caractéristiques intrinsèques constantes du système). 
Dans une analyse fréquentielle, le point de vue change par rapport à l’analyse temporelle. 
Alors que la grandeur « d’entrée » était le temps t pour une analyse temporelle, la 
grandeur variable d’entrée devient la pulsation  pour une étude fréquentielle. 
 
La question à laquelle répondait une analyse temporelle  était : « comment évolue la sortie 
au cours du temps, pour un signal d’entrée de forme donnée ». 
La question à laquelle répond une analyse fréquentielle harmonique est : « comment 
évolue la sortie en fonction de la fréquence, pour une loi d’entrée harmonique ». 

 

3. REPONSE D’UN SLCI A UNE SOLLICITATION HARMONIQUE 

3.1. Cas du premier ordre 

 

 

 

 

 

Pour un modèle premier ordre la fonction de transfert 𝐻(𝑝) =
𝑆(𝑝)

𝐸(𝑝)
 est telle que : 

𝑆(𝑝) =
𝐾

1+𝜏.𝑝
. 𝐸(𝑝)  

L’entrée harmonique est : 

𝑒(𝑡) = 𝐸0 sin𝜔𝑡  
𝐿
→  𝐸(𝑝) =

𝐸0𝜔

𝑝2+𝜔²
  

La sortie est donc : 

 

𝑆(𝑝) =
𝐾

1+𝜏.𝑝
.
𝐸0𝜔

𝑝2+𝜔²
       …dont il faut trouver la fonction temporelle s(t). 

 

Déterminons d’abord la décomposition en éléments simple de 
1

(1+𝜏.𝑝)(𝑝2+𝜔²)
 qui s’écrit : 

1

(1+𝜏.𝑝)(𝑝2+𝜔²)
=

𝐴

1+𝜏.𝑝
+

𝐵𝑝+𝐶

𝑝2+𝜔²
       avec A, B, C constantes réelles à déterminer. 

Après calcul on trouve : 

𝐴 =
𝜏²

1+𝜏²𝜔²
  

𝐵 =
−𝜏

1+𝜏²𝜔²
  

𝐶 =
1

1+𝜏²𝜔²
  

D’où la D.E.S. : 

𝐾

1 + 𝜏𝑝
 

t (s) 

e(t) 

e(t) 

E(p) 

t (s) 

? 

s(t) 

S(p) 
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1

(1+𝜏.𝑝)(𝑝2+𝜔²)
=

𝜏²

1+𝜏²𝜔²
.
1

1+𝜏.𝑝
+

−𝜏

1+𝜏²𝜔²
.

𝑝

𝑝2+𝜔²
+

1

1+𝜏²𝜔²
.

1

𝑝2+𝜔²
  

Le retour dans le passage temporel donne : 

1

1+𝜏.𝑝
   
𝐿−1

→   
1

𝜏
𝑒−𝑡 𝜏⁄   

𝑝

𝑝2+𝜔²
  
𝐿−1

→   cos𝜔𝑡  

1

𝑝²+𝜔²
   
𝐿−1

→   
1

𝜔
sin𝜔𝑡  

D’où la sortie s(t) : 
𝑠(𝑡)

𝐾𝐸0𝜔
=

𝜏²

1+𝜏²𝜔²
.
1

𝜏
𝑒−𝑡 𝜏⁄   +  

−𝜏

1+𝜏²𝜔²
. cos𝜔𝑡 +

1

1+𝜏²𝜔²
.
1

𝜔
sin𝜔𝑡   

𝑠(𝑡) =
𝐾𝐸0𝜔𝜏

1+𝜏2𝜔2
𝑒−𝑡 𝜏⁄⏟        

𝑠𝑡𝑟𝑎𝑛(𝑡)

+
𝐾𝐸0

1+𝜏2𝜔2
[−𝜏𝜔 cos𝜔𝑡 + sin𝜔𝑡]⏟                  

𝑠𝑝𝑒𝑟(𝑡)

  

𝑠(𝑡) = 𝑠𝑡𝑟𝑎𝑛(𝑡) + 𝑠𝑝𝑒𝑟(𝑡)   

𝑠𝑡𝑟𝑎𝑛(𝑡) est la partie transitoire de la sortie avec lim
𝑡→∞

𝑠𝑡𝑟𝑎𝑛(𝑡) = 0. 

𝑠𝑝𝑒𝑟(𝑡) est la partie permanente de la sortie. 

Or en quelques constantes de temps, 𝑠𝑡𝑟𝑎𝑛(𝑡) ≪  𝑠𝑝𝑒𝑟(𝑡)  donc 𝑠(𝑡) ≈ 𝑠𝑝𝑒𝑟(𝑡). 

Donc seul le régime permanent nous intéresse, le régime transitoire devenant vite 
négligeable. 

𝑠(𝑡) ≈ 𝑠𝑝𝑒𝑟(𝑡) =
𝐾𝐸0

1+𝜏2𝜔2
[−𝜏𝜔 cos𝜔𝑡 + sin𝜔𝑡]  

𝑠𝑝𝑒𝑟(𝑡) =
𝐾𝐸0√𝜏

2𝜔2+1

1+𝜏2𝜔2
[

−𝜏𝜔

√𝜏2𝜔2+1
cos 𝜔𝑡  +  

1

√𝜏2𝜔2+1
sin𝜔𝑡]  

Posons 𝜑 tel que : 

sin𝜑 =  
−𝜏𝜔

√𝜏2𝜔2+1
  

cos 𝜑 =  
1

√𝜏2𝜔2+1
  

𝑠𝑝𝑒𝑟(𝑡) =
𝐾𝐸0√𝜏

2𝜔2+1

1+𝜏2𝜔2
[sin𝜑 cos𝜔𝑡  +   cos 𝜑 sin𝜔𝑡]  

𝑠𝑝𝑒𝑟(𝑡) =
𝐾𝐸0

√𝜏2𝜔2+1
[sin(𝜔𝑡 + 𝜑)]  

 
 

Illustration de la réponse harmonique d’un SLCI : régimes transitoire et permanent 

Transitoire Permanent 
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Conclusion : 

En régime permanent la réponse d’un système du premier ordre à une sollicitation 
harmonique est telle que : 

 La sortie est, elle aussi, harmonique (sinus) 

 La pulsation 𝜔 est inchangée 

 L’amplitude est différente, voire diminuée pour un premier ordre 

(𝐾𝐸0 →
𝐾𝐸0

√𝜏2𝜔2+1
), et dépend de la pulsation 

 La sortie est déphasée en retard par rapport à l’entrée, de l’angle  tel 

que tan 𝜑 = −𝜏𝜔, et dépend de la pulsation 

 

3.2. Généralisation pour une fonction de transfert quelconque 

Pour une fonction de transfert quelconque le calcul est similaire au cas particulier 
précédent. 

Il s’agit de chercher la sortie s(t) pour une fonction écrite dans le domaine symbolique : 

𝑆(𝑝) = 𝐻(𝑝) =
𝐾

𝑝𝛼
.
1+𝑎1𝑝+⋯+𝑎𝑚𝑝

𝑚

1+𝑏1𝑝…+𝑏𝑛𝑝
𝑛 .

𝐸0𝜔

𝑝2+𝜔²
  

Il faut commencer par décomposer en élément simple la fraction rationnelle 

généralisée : 
1

𝑝𝛼
.
1+𝑎1𝑝+⋯+𝑎𝑚𝑝

𝑚

1+𝑏1𝑝…+𝑏𝑛𝑝
𝑛 .

1

𝑝2+𝜔²
, puis revenir dans le domaine temporel. 

On montre après un long calcul que la solution temporelle est du même type que la 
solution trouvée pour un premier ordre. 

C’est-à-dire : 

 La sortie s(t) est la somme d’une fonction transitoire 𝑠𝑡𝑟𝑎𝑛(𝑡) et permanente 

𝑠𝑝𝑒𝑟(𝑡) : 𝑠(𝑡) = 𝑠𝑡𝑟𝑎𝑛(𝑡) + 𝑠𝑝𝑒𝑟(𝑡) avec lim
𝑡→∞

𝑠𝑡𝑟𝑎𝑛(𝑡) = 0 

 𝑠𝑡𝑟𝑎𝑛(𝑡) devient très vite négligeable devant 𝑠𝑝𝑒𝑟(𝑡) 

 𝑠𝑝𝑒𝑟(𝑡)  est de type harmonique de même pulsation que l’entrée 

 L’amplitude est différente et dépend de la pulsation 

 La phase est différente et dépend de la pulsation 

 

3.3. Passage dans le domaine complexe 

Nous allons montrer dans ce paragraphe que le remplacement, dans une fonction de 
transfert 𝐻(𝑝), de 𝑝 par 𝑗 permet de déterminer aisément le déphasage et l’amplitude 
du signal de sortie en régime permanent dans le cas d’un signal harmonique en entrée. 
Le calcul qui suit est donc purement mathématique. 

 

Convertissons l’entrée et la sortie en nombre complexe par remplacement de 𝑝 par 𝑗 : 

𝑒(𝑡) = 𝐸0. 𝑠𝑖𝑛(. 𝑡 )            
ℂ
→  𝑒(𝑡) = 𝐸0. 𝑒

𝑗𝜔𝑡 

𝑠(𝑡) = 𝑆0. 𝑠𝑖𝑛(. 𝑡 +  )    
ℂ
→ 𝑠(𝑡) = 𝑆0. 𝑒

𝑗(𝜔𝑡+𝜑) 

 

Le rapport « sortie sur entrée » complexe est donc : 
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𝐻(𝑗𝜔) =
𝑠(𝑡)

𝑒(𝑡)
=
𝑆0

𝐸0
. 𝑒𝑗𝜑  

 

 

Déduisons l’équation différentielle du système linéaire dans le domaine complexe : 

m

m

mn

n

n
dt

ted
b

dt

tde
bteb

dt

tsd
a

dt

tds
atsa

)(
....

)(
.)(.

)(
....

)(
.)(. 1010 

       
  ℂ  

 

[𝑎0 + 𝑎1. (𝑗𝜔) + 𝑎2. (𝑗𝜔)
2 +⋯+ 𝑎𝑛 . (𝑗𝜔)

𝑛]. 𝑆0. 𝑒
𝑗(𝜔𝑡+𝜑) 

                                                                                                 =   [𝑏0 + 𝑏1. (𝑗𝜔) + 𝑏2. (𝑗𝜔)
2 +⋯+

𝑏𝑚. (𝑗𝜔)
𝑚]. 𝐸0. 𝑒

𝑗𝜔𝑡  

 

 

On obtient : 

𝐻(𝑗𝜔) =
𝑆(𝑗𝜔)

𝐸(𝑗𝜔)
=
𝑆(𝑡)

𝐸(𝑡)
=
𝑆0.𝑒

𝑗(𝜔𝑡+𝜑)

𝐸0.𝑒
𝑗𝜔𝑡 =

𝑆0.𝑒
𝑗(𝜑)

𝐸0
=
𝑏0+𝑏1.(𝑗𝜔)+𝑏2.(𝑗𝜔)

2+⋯+𝑏𝑚.(𝑗𝜔)
𝑚

𝑎0+𝑎1.(𝑗𝜔)+𝑎2.(𝑗𝜔)
2+⋯+𝑎𝑛.(𝑗𝜔)

𝑛   

 

Conclusion : 𝐻(𝑗𝜔) =
𝑆0

𝐸0
. 𝑒𝑗𝜑 =

𝑏0+𝑏1.(𝑗𝜔)+𝑏2.(𝑗𝜔)
2+⋯+𝑏𝑚.(𝑗𝜔)

𝑚

𝑎0+𝑎1.(𝑗𝜔)+𝑎2.(𝑗𝜔)
2+⋯+𝑎𝑛.(𝑗𝜔)

𝑛  

Pour obtenir le gain 
𝑆0

𝐸0
  ,  il suffit de calculer le module de la fonction de transfert dans 

laquelle on a remplacé 𝑝 par 𝑗𝜔 : 
𝑆0

𝐸0
= |𝐻(𝑗𝜔)| 

Pour obtenir la phase 𝜑 il suffit de calculer l’argument de la fonction de transfert 𝐻(𝑗𝜔) : 
𝜑 = 𝐴𝑟𝑔[𝐻(𝑗𝜔)] 

 

Il conviendra donc pour trouver la réponse harmonique d’un système linéaire en régime 
permanent, d’utiliser la méthode du remplacement de 𝑝 par 𝑗, même si 𝑝 n’est pas égal 
à 𝑗, mais une variable complexe quelconque comme vu lors de la définition de la 
transformée de Laplace. 

 

 Je me teste… et c’est pas si compliqué ! 

Soit la fonction de transfert 𝐻(𝑝) =
𝑆(𝑝)

𝐸(𝑝)
=

4

1+0,2𝑝
. 

L’entrée est harmonique : 𝑒(𝑡) = 3 sin 2𝑡 (pulsation 𝜔 = 2 𝑟𝑎𝑑/𝑠)  

L’objectif est de trouver la réponse s(t). 

a. Ecrire 𝐻(𝑗𝜔). 

b. Déduire |𝐻(𝑗𝜔)| et arg[𝐻(𝑗𝜔)]. 

c. Faire l’application numérique pour 𝜔 = 2 𝑟𝑎𝑑/𝑠 : |𝐻(2𝑗)| et arg[𝐻(2𝑗)] ? 

d. Déduire la sortie s(t). 

e. Tracer sur un même graphique e(t) et s(t). Remarquez le déphasage du signal. Le signal de 

sortie est-il en avance ou en retard par rapport au signal d’entrée ? 

f. Refaire les calculs pour une pulsation 𝜔 = 30 𝑟𝑎𝑑/𝑠. Tracez. Observez la différence avec la 

pulsation précédente. 

 



L.Pothier/CPGE/MPSI Asservissement des SLCI : partie 3 - analyse fréquentielle SII 

D. Jolivet Page 9 sur 32 MàJ : 01/02/26 

 

4. LIEU FREQUENTIEL DE BODE 

L’étude de la réponse fréquentielle d’un SLCI se traduit par le calcul de l’amplitude et de 
la phase du signal de sortie en fonction de la pulsation du signal d’entrée. 

Le tracé de ces deux fonctions de  est appelé lieu fréquentiel de Bode. 

 

Description du lieu de Bode 

Le lieu fréquentiel de Bode est constitué de deux diagrammes. 

L’axe des abscisses de ces deux diagrammes a pour grandeur physique la pulsation  
(rad/s), représentée en échelle logarithmique base 10 : log10(). L’axe des ordonnées 
est linéaire décimal. 

Les deux diagrammes sont : 
- Un diagramme de gain, dont la grandeur de l’axe des ordonnées est le gain en dB 

(décibel)  
- Un diagramme de phase, dont la grandeur de l’axe des ordonnées est la phase en ° ou 

rad. En sciences de l’ingénieur nous utilisons plutôt le °. 
 
 
 

 
 
 
 
  
 Remarque 1 : le terme de phase est abusif mais nous l’employons souvent. Il s’agit en 
fait du déphasage de la sortie par rapport à l’entrée. 
 

Exemple de diagramme de Bode   𝐻(𝑝) =
4(1+𝑝)

𝑝2+0,8𝑝+4
 

Diagramme de 

Gain G (dB) 

Diagramme de 

Phase  (°) 

Pulsation  (rad/s), sur 
échelle logarithmique 

Pas de zéro pour la 
pulsation car échelle log 

G (dB) 

 (°) 
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 Remarque 2 : Vous remarquez donc, en raison du logarithme, que la pulsation ne peut 
pas être… nulle ! Ce qui semble normal pour une étude fréquentielle. En revanche, elle 
peut être aussi petite que l’on veut (et positive !). 
 

4.1. L’échelle logarithmique : éclaircissement 

Cette échelle est linéaire en log  , mais on inscrit la valeur de  , pas la valeur du log ! 
 

 
 
 
Un intervalle est appelé décade quand  est multiplié par 10 : [1 ; 10] ou [3 ; 30] par 
exemple. L’intervalle logarithmique vaut alors 1. 
 
Un intervalle est appelé octave quand  est multiplié par 2 : [0,1 ; 0,2] ou [3 ; 6] par 
exemple. L’écart logarithmique vaut alors 0,3. Le vocabulaire octave est emprunté à la 
gamme musicale occidentale comptant sept notes. La fréquence du signal acoustique est 
multipliée par deux entre deux mêmes notes de gammes consécutives (huit notes et sept 
intervalles donc). 
 
Intérêt de l’échelle logarithmique. 
L’échelle logarithmique en abscisse permet de représenter une large plage de fréquence 
en augmentant la lisibilité des petites valeurs (basses fréquences) dans chaque décade. 
Cette échelle effectue donc un zoom sur les basses fréquences tout en contractant les 
hautes fréquences à l’intérieur de chaque décade. D’un point de vue global elle permet en 
même temps d’étudier une large plage de fréquence. 
Grâce à l’échelle log, on a donc une précision d’étude élevée : 

- quelle que soit la fréquence d’un point de vue global 
- en basse fréquence sur chaque décade 

 
 
Comme l’ordonnée est le gain exprimé en décibel (voir ci-après) et que le décibel est une 
fonction logarithme, l’échelle logarithmique en abscisse va permettre des représentations 
asymptotiques linéaires, impossibles si l’échelle avait été « proportionnelle ». 
 

 

4.2. Le gain et la phase 

4.2.1. Le gain en dB 

Le gain est exprimé en décibel (dB) : 𝐺𝑑𝐵 = 20. 𝑙𝑜𝑔|𝐻(𝑗𝜔)| 
𝐻(𝑗𝜔) est la fonction de transfert du système en régime harmonique.  
|𝐻(𝑗𝜔)| est le module du nombre complexe 𝐻(𝑗𝜔). 
Il suffira donc de remplacer la variable symbolique p par 𝑗𝜔 dans la fonction de transfert 
H(p), tel que 𝑗2 = −1. 
 
 Remarque : la dimension de p est [T]-1… comme 𝑗𝜔. 
  

    = 0,1                          =0,4                = 1                              = 4                 = 10     = 15      = 100 

 

 

 

  -1                                                             0                                                            1                  2 

 

 

 

 log   

    
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4.2.2. La phase 

La phase est définie de la manière suivante : 𝜑 = arg [𝐻(𝑗𝜔)], en degré (préféré au radian 
en SII). 
arg [𝐻(𝑗𝜔)] est l’argument du nombre complexe 𝐻(𝑗𝜔). 
 

 

4.2.3. Intérêt pratique du gain en dB et de la phase 

Les modules et les arguments s’ajoutent quand les fonctions de transfert se multiplient. 
Si on a deux composants (1) et (2) en série,  𝐻(𝑗𝜔) = 𝐻1(𝑗𝜔). 𝐻2(𝑗𝜔) : 
 
Addition des modules (gains en dB) 
𝐺𝑑𝐵 = 20𝑙𝑜𝑔|𝐻(𝑗𝜔)| = 20 log[|𝐻1(𝑗𝜔).𝐻2(𝑗𝜔)|] = 20𝑙𝑜𝑔|𝐻1(𝑗𝜔)| + 20𝑙𝑜𝑔|𝐻2(𝑗𝜔)|

= 𝐺𝑑𝐵1 + 𝐺𝑑𝐵2 
 
Addition des arguments (phase) 
φ = arg [𝐻(𝑗𝜔)] = arg [𝐻1(𝑗𝜔). 𝐻2(𝑗𝜔)]  =  arg[𝐻1(𝑗𝜔)] + arg[𝐻2(𝑗𝜔)] = 𝜑1 + 𝜑2  
 
Conclusion 

Pour une fonction de transfert H(p) qui est le produit de fonctions de transfert plus 
simples, H(p)=H1(p).H2(p)…Hn(p), on étudiera le gain et la phase de chacune des FT 
Hi(p) et on additionnera les graphiques. 

 

 

4.2.4. Eclairage : qu’est-ce que le décibel ? 

Le décibel, ou déciBel, 1/10ème du Bel, n’est pas une unité. C’est une grandeur d’évaluation 
adimensionnelle. Explications … 
 
Au départ, le Bel (un hommage, semble-t-il, à Graham Bell physicien et ingénieur à qui on 
doit l’invention du téléphone), est le logarithme du rapport de deux puissances : 
 𝐺𝐵𝑒𝑙 = 𝑙𝑜𝑔 (𝑃𝑠/𝑃𝑒). 
Le Bel étant une grandeur trop faible, donc insuffisamment précise pour nos études 
usuelles, on utilise le décibel qui multiplie par 10 le gain en Bel, et supprime une décimale 
inutile :  
GdB = 10. GBel = 10.log (Ps/Pe). 

Quand la puissance est multipliée par 10 (amplification), le gain est +10 dB. 
Quand le rapport des puissances est 100 le gain est +20 dB. 
Quand la puissance du signal est divisée par 100 (atténuation) le gain est -20 dB, etc. 

Notez au passage que l’opération multiplicative est convertie en opération additive. 
 
Le passage à l’échelle logarithmique est justifié par, entre autres, deux raisons : 
- Une raison pratique similaire à l’utilisation de l’échelle logarithmique vue plus haut : la 

gamme de puissance balayée est souvent large en traitement du signal. Si la puissance 
s’étend de 0.001 W à 1000 W, (rapport 106), passer en dB permet une étude 
d’amplitude 60 dB !  
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- Une raison physiologique emprunté notamment à l’acoustique : nos sensations 
physiques ressenties varient peu lorsque la grandeur extérieure provoquant la 
stimulation varie beaucoup. On dit encore que la sensation ressentie varie comme le 
logarithme de l’excitation (loi de Weber-Fechner). Nous percevons donc les 
sollicitations au niveau de nos sens de manière logarithmique. Cela est bien connu en 
acoustique mais est aussi vrai pour les autres sens. Des modèles avancent même une 
perception logarithmique de l’écoulement du temps. 

 
Alors… pourquoi 20.log() en sciences de l’ingénieur et en physique, au lieu de 10.log() ? 
D’une manière générale, dans les systèmes linéaires, la puissance est proportionnelle au 
carré d’une grandeur cause. Par exemple, pour un conducteur ohmique la puissance est 
proportionnelle à la tension aux bornes : P=U²/R. 
Suivons cet exemple concret : 
 GdB =10.log (Ps/Pe) = 10.log [(Us²/R) / (Ue²/R)]  = 10.log [Us² / Ue²]  
GdB = 20.log(Us/Ue). Voilà, nous y sommes ! 

 
 
 

 
 
 
 
 
 
Deux valeurs approchées en dB remarquables à connaître 
20 log 2 = 6,0         (6,0206…) 
20 log 3 = 9,5     (9,5424) 
On peut déduire les autres valeurs sans calculette 
20 log 4 = 20log2²=2*20log2=… 
20 log 5 = 20log(10/2) = 20log10 – 20log2 =… 
20 log 6 = 20log(2*3)=20log2 + 20log3 =… 
20 log 7   20log(20/3) = 20log2 + 20log10 – 20log3 =… 
20 log11 20log10… 
20log13=20log(39/3)  20log(40/3)=… 
 
 
 
  

Vu-mètre d’amplificateur de puissance audio : remarquez 

l’échelle décibel par rapport à l’échelle puissance,  

GdB=10.log(P/100) ici. 
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5. LIEU FREQUENTIEL DE BODE DES 4 SYSTEMES FONDAMENTAUX 

Rappelons qu’il s’agit de traiter les quatre systèmes : proportionnel, intégrateur, 1er 

ordre, 2ème ordre. 

5.1. Réponse harmonique d’un système à action proportionnelle 

5.1.1. Transmittance du système en régime harmonique 

 

Transmittance : 𝐻(𝑝) = 𝐾 

Transmittance en régime harmonique : 𝐻(𝑗𝜔) = 𝐾 
 

5.1.2. Calculs du gain et de la phase 

Gain 
𝐺𝑑𝐵 = 20𝑙𝑜𝑔|𝐻(𝑗𝜔)| = 20𝑙𝑜𝑔𝐾 
 
Phase  
𝜑 = arg[𝐻(𝑗𝜔)] = arg[𝐾] =  0° 
 

5.1.3. Diagrammes de Bode 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

  

Diagramme de gain d’un 

système proportionnel 

Diagramme de phase d’un 

système proportionnel 

E(p) S(p) 
H(p) = K 
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5.2. Réponse harmonique d’un système intégrateur 

5.2.1. Transmittance du système en régime harmonique 

 

  Transmittance : 𝐻(𝑝) =
𝐾

𝑝
 

Transmittance en régime harmonique : 𝐻(𝑗𝜔) =
𝐾

𝑗𝜔
 

5.2.2. Calcul du gain et de la phase 

Gain 

𝐺𝑑𝐵 = 20𝑙𝑜𝑔|𝐻(𝑗𝜔)| =  20𝑙𝑜𝑔 |
𝐾

𝑗𝜔
| =  20𝑙𝑜𝑔𝐾 − 20𝑙𝑜𝑔𝜔 

La courbe de gain est donc une droite de pente -20dB/décade. 
La droite coupe l’axe de ordonnées, =1, à G1=20log K 
La droite coupe l’axe des abscisses, G=0 dB, à 𝜔𝑐 = 𝐾 . 
 
Phase  

𝜑 = arg[𝐻(𝑗𝜔)] = arg [
𝐾

𝑗𝜔
] = arg𝐾 − arg (𝑗𝜔) = 0 − 90 = −90° 

 

5.2.3. Diagrammes de Bode gain et phase 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

E(p) S(p) 
H(𝒑) =  

𝑲

𝒑
 

Diagramme de gain d’un 

système intégrateur pur 

Diagramme de phase d’un 
système intégrateur pur : 

constante à -90° 

20.log K - 



L.Pothier/CPGE/MPSI Asservissement des SLCI : partie 3 - analyse fréquentielle SII 

D. Jolivet Page 15 sur 32 MàJ : 01/02/26 

 

 

 

5.3. Réponse harmonique d’un système du premier ordre (de classe 0) 

5.3.1. Transmittance du système en régime harmonique 

 

 Transmittance : 𝐻(𝑝) =
𝐾

1+𝜏.𝑝
 

Transmittance en régime harmonique : 𝐻(𝑗𝜔) =
𝐾

1+𝑗.𝜏𝜔
 

 

5.3.2. Calcul du gain et de la phase 

Gain 

𝐺𝑑𝐵 = 20𝑙𝑜𝑔|𝐻(𝑗𝜔)| =  20𝑙𝑜𝑔 |
𝐾

1 + 𝑗. 𝜏𝜔
| =  20𝑙𝑜𝑔𝐾 − 20. log√1 + (𝜏𝜔)² 

 Basses fréquences, 𝜔 → 0 ∶  𝐺𝑑𝐵 → 20𝑙𝑜𝑔𝐾  => asymptote horizontale G=20.log K, 
pour 𝜔 → 0. 

 Hautes fréquences, →  ∞ ∶  𝐺𝑑𝐵 → 20𝑙𝑜𝑔𝐾 − 20. log√(𝜏𝜔)² , car (𝜏𝜔)² ≫ 1. 
    𝐺𝑑𝐵 → 20𝑙𝑜𝑔𝐾 − 20. log (𝜏𝜔)   

=> asymptote oblique de pente -20dB/décade, coupant l’asymptote horizontale 

(G=20.logK) à la valeur 𝜔 = 𝜔𝒄 =
1

𝜏
 , appelé pulsation de cassure. 

 Valeur remarquable, pulsation de coupure à -3dB :  𝐺𝑑𝐵(𝜔 = 𝜔𝑐) = 20𝑙𝑜𝑔𝐾 −

20. log√2 

𝐺𝑑𝐵(𝜔 = 𝜔𝑐) = 20𝑙𝑜𝑔𝐾 − 20. log√2   = 20𝑙𝑜𝑔𝐾 − 3𝑑𝐵  

   𝜔 = 𝜔𝑐 =
1

𝜏
 est la pulsation de coupure à -3dB 

 
Phase  

𝜑 = arg[𝐻(𝑗𝜔)] = arg [
𝐾

1 + 𝑗. 𝜏𝜔
] = arg[𝐾] − arg[1 + 𝑗. 𝜏𝜔]

= −arg[1 + 𝑗. 𝜏𝜔] = −arctan (
𝜏𝜔

1
) 

𝜑 = −arctan (𝜏𝜔) 
 
 Basses fréquences, 𝜔 → 0 ∶  𝜑 → 0°  => asymptote horizontale 𝜑 = 0°, pour 𝜔 → 0. 
 Hautes fréquences, 𝜔 →  ∞ ∶  𝜑 → lim

𝜔→∞
arctan (𝜏𝜔) = −90°   

=>  asymptote horizontale, 𝜑 = −90°, pour 𝜔 →  ∞ 

E(p) S(p) 
 
𝑲

𝟏 + 𝝉. 𝒑
 

Re(z) 

Im(z) 

 . 

1 

Arg(1+j.)= 
arctan( ) 

0 

 Je me teste et je me rassure 
Un vérin est alimenté avec un débit d’huile q(t) en m3/s. La position de la tige est x(t). 
La section du piston est S. 

a. Ecrire la relation entre q(t), S et la vitesse de tige 𝑥̇(𝑡). 

b. Ecrire la fonction de transfert 𝐻(𝑝) =
𝑋(𝑝)

𝑄(𝑝)
. L’écrire pour une section S=200 mm². 

c. Tracez les diagrammes de Bode de 𝐻(𝑝) =
5000

𝑝
. Prenez une plage de pulsation [103, 105 rad/s]. 
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 Valeur remarquable : à = 𝜔𝒄 =
1

𝜏
  , on a  𝜑 = −45°, et il y a un point d’inflexion. 

 

5.3.3. Diagrammes de Bode gain et phase 

 

 
 

 

 

5.3.4. Conséquences, remarques 

 Un système du premier ordre est dit passe bas : il transmet les basses 

fréquences, et atténue, voire coupe, les hautes fréquences. Cela est visible sur le 

diagramme de gain. 

 

 La pulsation de cassure (rencontre des deux asymptotes) est identique à la 

pulsation de coupure à -3dB. Cela est propre aux systèmes du premier ordre et 

n’est pas toujours vrai pour les ordres supérieurs. 

 

 La pulsation de coupure à -3 dB est la pulsation avant laquelle le rapport  
|𝐻(𝑗𝜔)|

|𝐻(𝑗𝜔)|𝜔=0
 reste supérieur à 

1

√2
. La valeur -3dB correspond à une diminution de 

moitié de la puissance du signal, ou une division par √2 de la grandeur de sortie, 

conformément à ce qui a été dit au paragraphe ci-dessus « Eclairage sur l’échelle 

décibel ». 

10. log (
𝑃

𝑃0
) = 10. log (

1

2
) = −3𝑑𝐵    (-3,0103 plus exactement) 

20. log (
𝑆

𝑆0
) = 20. log (

1

√2
) = −3𝑑𝐵 

   0,1                                                          1                                                            10                      100 
 

 

GdB 

 c = 1/ 
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 Pour un système passe bas (cas d’un système du premier ordre), la Bande 

Passante à -3dB, est la plage de fréquences (ou de pulsations) pour laquelle le 

gain ne subit pas une atténuation de plus de 3dB.  

  

 

5.4. Réponse harmonique d’un système du deuxième ordre (de classe 0) 

5.4.1. Transmittance en régime harmonique 

 

Transmittance : 𝐻(𝑝) =
𝐾

𝑝²

𝜔0²
+ 
2𝜉

𝜔0
𝑝+1

 

Transmittance en régime harmonique après calcul : 𝐻(𝑗𝜔) =
𝐾

1−(
𝜔

𝜔0
)
2
+𝑗.2𝜉

𝜔

𝜔0

 

 
Un système du second ordre présente trois   régimes de fonctionnement possibles. 
 Trois cas différents sont donc à étudier. 
 

 

5.4.2. Calcul général du gain et de la phase commune aux trois régimes de 
fonctionnement 

Calcul du gain 

𝐺𝑑𝐵 = 20𝑙𝑜𝑔|𝐻(𝑗𝜔)| =  20𝑙𝑜𝑔 |
𝐾

1 − (
𝜔
𝜔0
)
2

+ 𝑗. 2𝜉
𝜔
𝜔0

|

=  20𝑙𝑜𝑔𝐾 − 20. log√[1 − (
𝜔

𝜔0
)
2

]

2

+ 4𝜉² (
𝜔

𝜔0
)
2

 

Calcul de la phase  

𝜑 = arg[𝐻(𝑗𝜔)] = arg [
𝐾

1 − (
𝜔
𝜔0
)
2

+ 𝑗. 2𝜉
𝜔
𝜔0

] = arg[𝐾] − arg [1 − (
𝜔

𝜔0
)
2

+ 𝑗. 2𝜉
𝜔

𝜔0
] 

𝜑 = −arg [1 − (
𝜔

𝜔0
)
2

+ 𝑗. 2𝜉
𝜔

𝜔0
]. 

 

E(p) S(p)  
𝐾

𝑝²
𝜔0²

+ 
2𝜉
𝜔0
𝑝 + 1

 

 Je me teste et je me rassure 
Un filtre de haut-parleur type boomer (basses) d’enceinte acoustique, a la fonction de transfert 

suivante : 𝐻(𝑝) =
𝑉𝑠(𝑝)

𝑉𝑒(𝑝)
=

0,8

1+0,004.𝑝
 . 𝑉𝑠(𝑝) et 𝑉𝑒(𝑝) sont les tensions d’entrée et de sortie du filtre. 

a. Donner les caractéristiques de ce premier ordre. 
b. Calculer le gain en basse fréquence 𝐺𝑑𝐵_𝐵𝐹 (asymptote horizontale) 

c. Calculer la pulsation de cassure 𝜔𝑐 . 
d. Tracer les asymptotes du Bode gain et phase. 
e. Tracez les courbes de gain et de phase. 
f. Donnez la bande passante en fréquence à -3dB de ce filtre. 
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 Si 𝜔 < 𝜔0     1 − (
𝜔

𝜔0
)
2

> 0 ,   𝜑 = −arctan
2𝜉

𝜔

𝜔0

1−(
𝜔

𝜔0
)
2 

 

 Si 𝜔 > 𝜔0     1 − (
𝜔

𝜔0
)
2

< 0 ,   𝜑 = − [arctan
2𝜉

𝜔

𝜔0

1−(
𝜔

𝜔0
)
2 + 𝜋]  

 

 
 

5.4.3. Caractéristiques communes aux trois régimes 

 
Courbe de gain : asymptotes 
 Basses fréquences, 𝜔 → 0 ∶  𝐺𝑑𝐵 → 20𝑙𝑜𝑔𝐾  => asymptote horizontale G=20.log K, 

pour 𝜔 → 0. 
 Hautes fréquences, →  ∞ ∶  𝐺𝑑𝐵 → 20𝑙𝑜𝑔𝐾 + 40. log𝜔0 − 40. log𝜔   
 => asymptote oblique de pente -40 dB/décade, qui coupe l’asymptote horizontale 
à la pulsation de cassure c=0.    

 
 
Courbe de phase : asymptotes et point remarquable 
 Basses fréquences, 𝜔 → 0 ∶  𝜑 → 0°  => asymptote horizontale 𝜑 = 0° en BF 
 Hautes fréquences, 𝜔 →  ∞ ∶  𝜑 → −180°  => asymptote horizontale 𝜑 = −180°en HF 

  
 Valeur remarquable : à = 𝜔𝒄 =  𝜔𝟎  on a  𝜑 = −90°, et il y a un point d’inflexion. 
 

 

5.4.4. Cas du régime apériodique (sur amorti) : >1 

La fonction de transfert peut se mettre sous la forme : 𝐻(𝑝) =
𝐾′

(1+𝜏1.𝑝)(1+𝜏2.𝑝)
. 

Les courbes de gain et de phase sont donc la somme des courbes de gain et de phase de 

deux fonctions de transfert du 1er ordre : 𝐻(𝑝) =
𝐾′

1+𝜏1.𝑝
×

1

1+𝜏2.𝑝
 

  

Im(z) 

arg [1 − (
𝜔

𝜔0
)
2

+ 𝑗. 2𝜉
𝜔

𝜔0
] 

Re(z) 

 𝟏 − (
𝝎

𝝎𝟎
)
𝟐
< 0 

𝜔 > 𝜔0 
 
 
 

𝟐𝝃
𝝎

𝝎𝟎
 

 
 

0 
arctan

2𝜉
𝜔
𝜔0

1 − (
𝜔
𝜔0
)
2 

Attention : l’argument d’un nombre complexe dont 
la partie réelle est positive et la partie imaginaire  

est négative, est supérieur à…
𝜋

2
. Or, l’arctangente est 

par définition comprise entre 
−𝜋

2
 et 

+𝜋

2
. 

 Il faut donc ajouter  à l’arctangente pour obtenir 
l’argument. 
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Remarque sur les pulsations de cassure : 

 𝜔1 =
1

𝜏1
 

 𝜔2 =
1

𝜏2
 

 𝜔0 = √𝜔1. 𝜔2   , donc :  𝑙𝑜𝑔𝜔0 = 𝑙𝑜𝑔√𝜔1. 𝜔2 =
1

2
(𝑙𝑜𝑔𝜔1 + 𝑙𝑜𝑔𝜔2). Conclusion 

graphique : 𝜔0 est rigoureusement située au milieu de 𝜔1 et  𝜔2 sur les abscisses 
graduées en log. 

 

 

5.4.5. Cas du régime pseudo périodique (sous amorti) : <1 

Deux cas sont à étudier  

 
√2

2
<<1 : pas de résonance, courbe de gain au dessous des deux asymptotes 

0<  ≤ 
√2

2
 : présence d’un pic de résonance à la pulsation de résonnance 𝜔𝑟 (≠ 𝜔0). Courbe 

de gain au-dessus des deux asymptotes. 
 

  

20.log K 

Asymptote -20 dB/décade 

Asymptote -40 dB/décade 

Asymptote horizontale 

1 
2 

0 

-45° 

-135° 

1 2 0 

GdB 
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Représentation ci-dessous dans le cas de la résonnance 0 <  ≤ 
√2

2
 

 
 
 
 
 
 

 
 
 
 

 
 

 

Comment évoluent les courbes de Bode quand l’amortissement  varie ? 

  

(°)   

GdB 

  
 R 

 0 
Asymptote 

oblique de pente -

40 dB/décade 

Asymptote horizontale 

20.logK 

 0 

- 90° 

Courbe au-dessus de 

l’asymptote 

Courbe au-dessus de 

l’asymptote 

Pic de résonance: 𝜔𝑟 = 𝜔0. √1 − 2𝜉² 
𝜔𝑟 < 𝜔0 
(voir le facteur de surtension Q) 

Q = coefficient de 
surtension 

 𝑄 =
1

2𝜉√1−𝜉²
. 

20.log Q 

20. 𝑙𝑜𝑔2𝜉 

Asymptote en hautes 

fréquences à -180° 

Asymptote en basses 

fréquences à 0° 
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5.4.6. Bande passante d’un système du deuxième ordre 

La pulsation de coupure à -3dB, -3dB , est définie comme cela : 

 
|𝐻(𝑗𝜔−3𝑑𝐵)|

|𝐻(𝑗𝜔)|𝜔=0
=
|𝐻(𝑗𝜔−3𝑑𝐵)|

𝐾
=
√2

2
 

L’équation à résoudre est donc : 

 
1

√(1−(
𝜔−3𝑑𝐵
𝜔0

)
2
)
2

+4𝜉²(
𝜔−3𝑑𝐵
𝜔0

)
2

=
√2

2
    ⇔     (1 − (

𝜔−3𝑑𝐵

𝜔0
)
2
)
2

+ 4𝜉2 (
𝜔−3𝑑𝐵

𝜔0
)
2

 = 2     ,   etc. 

Il faut donc résoudre une équation polynomiale bicarrée, dont la solution se trouve sans 
peine. 

Voici la solution qu’il est interdit de connaître par cœur et qu’il faut savoir trouver : 

𝜔−3𝑑𝐵 = 𝜔0. √1 − 𝜉 + √1 + (1 − 𝜉)2 

 

  

 

Evolution du diagramme de Bode en fonction de l’amortissement. 

 =2 

 =0,02 

Le pic de résonance visible la courbe 
de gain correspond à un maximum de 
gain, obtenu pour la pulsation  𝜔𝑟 =
𝜔0. √1 − 2𝜉². 
On quantifie la résonance avec le 
facteur de surtension Q : 

𝑄 =
|𝐻(𝑗𝜔)|𝜔=𝜔𝑟
|𝐻(𝑗𝜔)|𝜔=0

=
1

2𝜉√1 − 𝜉²
 

Ainsi, à la résonance : 
𝐺𝑑𝐵(𝜔𝑅) = 20𝑙𝑜𝑔𝐾 + 20𝑙𝑜𝑔 𝑄(𝜔𝑅) 

La courbe ci-dessous, montre que la 
résonance est faible pour >0,2. Elle 
croit brusquement quand <0,1. 
 
 

 
 

Coefficient de surtension Q en fonction 

de  .  (0<  ≤ 
√2

2
) 

 
1er O. 

2nd O. 
 0<<1 =1 >1 
𝜔−3𝑑𝐵 𝜔−3𝑑𝐵 = 1/𝜏 𝜔−3𝑑𝐵 > 𝜔0 𝜔−3𝑑𝐵 = 𝜔0 𝜔−3𝑑𝐵 < 𝜔0 
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5.5. Synthèse des différentes pulsations 

 

 

 

  

 ? Appellation Remarque 

0 Pulsation propre du système non amorti   

k Pulsation de cassure Intersection de deux asymptotes consécutives 

r Pulsation de résonnance 𝜔𝑟 = 𝜔0√1− 2𝜉² ;  𝜔𝑟 < 𝜔0 

n Pulsation propre (ou pseudo pulsation) 𝜔𝑛 = 𝜔0√1 − 𝜉²  
𝜔−3𝑑𝐵 Pulsation de coupure à -3dB Défini la bande passante 
c Pulsation de coupure à 0dB (𝜔0𝑑𝐵) Intersection courbe de gain avec les abscisses 

 Je me teste : ce n’est pas très difficile 
Un amortisseur de voiture usé a pour fonction de transfert : 

𝐻(𝑝) =
𝑋(𝑝)

𝐹(𝑝)
=

1

 300𝑝2 + 400𝑝 + 15000
 

Ou X(p) est l’enfoncement de l’amortisseur en m. F(p) est la force appliquée en N. 

a. Mettre H(p) sous forme canonique.  Quel est le type de régime ? 

b. Déterminer l’asymptote en basse fréquence (diagramme de Bode gain) 

c. Tracez les autres asymptotes (deux diagrammes de Bode) 

d. Etudier éventuellement la résonnance. 

e. Tracez les courbes de gain et de phase. 

f. Quelle est la bande passante en fréquence à -3dB ? 

g. Que se passe-t-il si les roues de la voiture sont excitées à une période située autour d’une 

seconde ? (Succession de petites bosses) 
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6. GENERALISATION : REPONSE HARMONIQUE D’UN SYSTEME QUELCONQUE  

Pour tracer les diagrammes de Bode  d’une transmittance quelconque on se ramène aux 
quatre transmittances de bases étudiées précédemment : il suffit d’ajouter leurs 
diagrammes de gain et de phase. 

 

Attention : avant de commencer toute étude, il est obligatoire de factoriser au 

maximum dans  le numérateur et le dénominateur de la transmittance, et de les mettre 

sous forme canonique ! 

 

 

Préliminaire de calcul important 

Il s’agit, pour le tracé des diagrammes de Bode d’être pragmatique et efficace. 

Nous utilisons les équivalents mathématiques suivants. 

 

 

  

 Cassure 𝜔 < 𝜔𝐾  𝜔 > 𝜔𝐾  

Binôme du 1er degré : 

1 + 𝜏𝑝 
𝜔𝐾 =

1

𝜏
 1 + 𝜏𝑝 ~

𝜔<𝜔𝐾
1 1 + 𝜏𝑝 ~

𝜔>𝜔𝐾
𝜏𝑝 

Trinôme du 2ème degré non 
factorisable* dans  : 

1 + 𝑎𝑝 +
𝑝²

𝜔02
 

𝜔𝐾 = 𝜔0 1 + 𝑎𝑝 +
𝑝²

𝜔02
  ~
𝜔<𝜔𝐾

1 1 + 𝑎𝑝 +
𝑝²

𝜔02
  ~
𝜔>𝜔𝐾

  
𝑝²

𝜔02
  

Monôme, puissance de p : 

𝐾𝑝𝑛 

Pas de 
cassure 

𝐾𝑝𝑛 𝐾𝑝𝑛 

  * Il est nécessaire que le trinôme du 2ème degré ne soit pas factorisable dans , sinon il faut le factoriser 
en produit de deux binômes du 1er degré. Et il y a deux cassures. 
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Soit à tracer les diagrammes de Bode de la transmittance : 

𝐻(𝑝) =
5

𝑝
.
(1 + 𝑝)(100 + 𝑝)

𝑝2 + 8𝑝 + 400
 

 

a. Dénominateur et numérateur sont-ils factorisés dans  ? 

Numérateur : oui, évident 

Dénominateur : calculons ∆= 82 − 4 ∗ 400 = −1536 < 0     => ok, il est factorisé dans . 

 

b. H(p) est-elle sous forme canonique ? 

Non elle ne l’est pas. Rendons H(p) canonique. 

𝐻(𝑝) =
5

𝑝
.
(1+𝑝)(100+𝑝)

𝑝2+8𝑝+400
=
5

𝑝
.
400

100
.
(1+𝑝)(1+0,01𝑝)

𝑝2

400
+
8

400
𝑝+1

=
20

𝑝
.
(1+𝑝)(1+0,01𝑝)

𝑝2

400
+0,02𝑝+1

  

 

 

 

c. Quelles fonctions de transfert étudier ? 

Il y a quatre FT à étudier : 

 𝐻1(𝑝) =
20

𝑝
 

 

  𝐻2(𝑝) = 1 + 𝑝  

 

  𝐻3(𝑝) = 1 + 0,01𝑝 

 

  𝐻4(𝑝) =
1

𝑝2

20²
+0,02𝑝+1

 

 

d. Calcul des pulsations de cassure 

𝐻2(𝑝) = 1 + 𝑝 => 𝜔𝑘2 = 1 𝑟𝑎𝑑/𝑠 

𝐻3(𝑝) = 1 + 0,01𝑝 => 𝜔𝑘3 = 100 𝑟𝑎𝑑/𝑠 

𝐻4(𝑝) =
1

𝑝2

20²
+0,02𝑝+1

 => 𝜔𝑘4 = 𝜔0 = 20 𝑟𝑎𝑑/𝑠 

 

Il y a donc trois cassures : 1, 20, 100 rad/s 
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e. Equivalents de H(p) / Asymptotes gain / Asymptotes phase 

𝜔 (𝑟𝑎𝑑/𝑠) →                                     1                             20                                          100 

20

𝑝
 / 

20

𝑝
 

20

𝑝
 

20

𝑝
 

20

𝑝
 

1 + 𝑝 
𝜔𝐾
= 1 1 p p p 

1

1 + 0,02𝑝 +
𝑝²
20²

 𝜔𝑘
= 20 1 1 

1

𝑝²
20²

=
400

𝑝²
 400

𝑝²
 

1 + 0,01𝑝 
𝜔𝑘
= 100 1 1 1 0,01p 

H(p)  
𝟐𝟎

𝒑
 

20

𝑝
𝑝 = 𝟐𝟎 

20

𝑝
𝑝
400

𝑝²
=  
𝟖𝟎𝟎𝟎

𝒑²
 

20

𝑝
𝑝
400

𝑝²
0,01𝑝 =

𝟖𝟎

𝒑
 

Courbe de gain : 
asymptotes 

 -20 dB/dec 
Horizontale 
20. 𝑙𝑜𝑔20
= 26𝑑𝐵 

-40 dB/dec -20 dB/dec 

Courbe de 
phase : 

asymptotes 

 -90° 0° -180° -90° 

 

  

f. Particularités 

Gain en basse fréquence :  car présence de l’intégration H1(p). 

Positionnement de l’intégration 𝐻1(𝑝) =
20

𝑝
 : coupe l’axe des abscisses à 20 rad/s et 

coupe la droite verticale =1rad/s à 20.log20=26dB. 

2ème ordre : résonnant à 𝜔𝑟 = 𝜔0√1 − 𝜉² = 20√1 − 0,2² ≈ 20 𝑟𝑎𝑑/𝑠 

Pic de résonnance : 𝑄 =
1

2𝜉√1−𝜉²
=

1

2.0,2√1−0,2²
= 2,5 =>  20.logQ = 20.log(2,5) = 8 dB 

 

 

g. Tracé des asymptotes 
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h. Tracé de l’allure des courbes 

 
 

 

 

  

𝜔𝑘2 = 1 𝑟𝑎𝑑/𝑠 𝜔𝑘4 = 20 𝑟𝑎𝑑/𝑠 

𝜔𝑘3 = 100 𝑟𝑎𝑑/𝑠 

−20𝑑𝐵/𝑑𝑒𝑐 

−40𝑑𝐵/𝑑𝑒𝑐 

−20𝑑𝐵/𝑑𝑒𝑐 

20𝑙𝑜𝑔𝟐𝟎 = 26𝑑𝐵 

𝟐𝟎 

𝟐𝟎𝒍𝒐𝒈𝑸 = 𝟖𝒅𝑩 

𝜔𝑟 ≈ 20 𝑟𝑎𝑑/𝑠 

 Je me teste (en allant lentement) 
Tracer les diagrammes de Bode de la transmittance : 

𝐻(𝑝) =
1,4

𝑝
.

5 + 𝑝

 400𝑝2 + 4𝑝 + 1
 

  

𝐻(𝑝) =
5

𝑝
.
(1 + 𝑝)(100 + 𝑝)

𝑝2 + 8𝑝 + 400
= 𝐻(𝑝) =

20

𝑝
.
(1 + 𝑝)(1 + 0,01𝑝)

𝑝2

20²
+ 0,02𝑝 + 1
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7. RETOUR SUR LES PERFORMANCES DES SLCI : POINT DE VUE FREQUENTIEL 

  

7.1. Stabilité d’un système bouclé : marges de stabilité 

Nous avons vu lors de l’étude temporelle des SLCI, (partie 2 du cours), que la notion de 

stabilité était binaire : stable ou instable. Nous avons pu déterminer le caractère stable ou 

instable par l’étude des pôles de la FTBF. 

Nous allons voir dans ce chapitre que la stabilité peut être quantifiée par l’étude sa boucle 

ouverte. 

7.1.1. Critère du Revers 

Attention : le critère du Revers ne peut pas s’appliquer si FTBO(p) a des pôles à partie 
réelle strictement positive. Autrement dit le critère du Revers ne peut s’appliquer que si 
les pôles sont à partie réelle négative ou nulle. 

Exemple : le critère du Revers ne peut pas s’appliquer à 𝐹𝑇𝐵𝑂(𝑝) =
1

𝑝−5
 mais il peut 

s’appliquer à 𝐹𝑇𝐵𝑂(𝑝) =
1

𝑝(𝑝+5)
. 

 
Enoncé du critère du Revers, théorème 
Le système sera stable en boucle fermée si pour la pulsation 𝜔−𝜋 pour laquelle 
arg[𝐻𝐵𝑂(𝑗𝜔−𝜋)] = −180°, la courbe de gain de la FTBO passe au-dessous   du 
niveau 0dB. Cela revient à dire |𝐻𝐵𝑂(𝑗𝜔−𝜋)| < 1. 
 
Illustration du critère du Revers 
 
La courbe de phase est la même pour les trois systèmes 
mais : 

- Courbe (1) : stable en BF 
- Courbe (2) : oscillant en BF 
- Courbe (3) : instable en BF 

 
Point entouré sur Bode = point critique (0dB, -180°). 
 
 
Explication, éclaircissement : notion de point critique 
La fonction de transfert d’une boucle est : 

 𝐹𝑇𝐵𝐹(𝑝) =
𝐹𝑇𝐶𝐷(𝑝)

1+𝐹𝑇𝐵𝑂(𝑝)
 . 

𝐹𝑇𝐵𝐹(𝑝) n’est pas définie pour 1 + 𝐹𝑇𝐵𝑂(𝑝) = 0 ⇔  𝐹𝑇𝐵𝑂(𝑝) = −1 . 
Le nombre complexe 𝐹𝑇𝐵𝑂(𝑗𝜔) est égal à -1 quand son module vaut 1 et sa phase -. 
Le point complexe (0dB, -180°), ( ( |𝐹𝑇𝐵𝑂(𝑗𝜔)| = 1  ;  arg[𝐹𝑇𝐵𝑂(𝑗𝜔)] = −180° ),  est 
appelé point critique. 
Sur le diagramme de Bode le point critique est atteint quand la phase vaut -180° et le 
gain 0dB, soit, la courbe limite (2) ci-dessus tracée en pointillés. 
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Quand la phase vaut -180° cela signifie que la sortie a un signe opposé à l’écart. Donc le 
soustracteur ajoute la sortie à l’entrée (sin(𝜔𝑡 − 𝜋) = − sin(𝜔𝑡)), au lieu de la retrancher. 
Pour ne pas que la sortie diverge il faut alors atténuer le signal et surtout pas l’amplifier 
sinon le système devient instable. Il faut donc un gain négatif. 
Les marges de stabilités représentent donc la distance du système par rapport au point 
critique (0dB, -180°). 
 

  

 

 

  

 
 
 
 
 

7.1.2. Marges de stabilité 

Si un système est à la limite de la stabilité, la moindre dérive de l’un des paramètres, (due 
à la température en particulier), peut entraîner l’instabilité. Il est donc nécessaire de 
prévoir des "marges" vis-à-vis du problème d’instabilité. Elles se traduisent par une 
"distance de sécurité" entre le lieu de la transmittance en boucle ouverte et le point 
critique mis évidence précédemment. On définit ainsi la marge de phase et la marge de 
gain. 
 
Marge de phase 
Dans le diagramme de Bode phase, c’est la distance entre la ligne -180° et la courbe de 
phase en 𝜔𝑐 :  
 
 
Où 𝜔𝑐 est la pulsation de coupure à 0dB. C’est-à-dire la pulsation pour laquelle la courbe 
de gain coupe l’axe des abscisses. 
 
Marge de gain 
Dans le diagramme de Bode gain, c’est la distance entre l’axe des abscisses et la courbe en 
𝜔−𝜋 : 
 
 
Où 𝜔−𝜋  est la pulsation pour laquelle la phase vaut -180°. 
 

+ - 
E(p) −𝟏 × 𝜺(𝒑) 

 

𝑯𝑩𝑶(𝒑) =  −𝟏 

(𝒑) 

 (p) 

−𝜺(𝒑) 

Illustration : situation d’une boucle au point critique 
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Illustration 
Notez que les marges sont 
indiquées grâce à des 
vecteurs (orientés). 
 
 Attention, danger : 
L’extrémité du vecteur 
Marge de phase est sur la 
courbe de gain, alors que 
c’est l’origine du vecteur 
marge de gain qui est sur la 
courbe. 
 
Dans l’exemple ci-contre : 
MG = +20 dB 
 
M𝜑 = + 80° 
 
 
Remarque : les systèmes du premier et du deuxième ordre de classe 0 à coefficients 
positifs sont intrinsèquement stable. La marge de gain est infinie (phase jamais égale à        
-180°, asymptotique en l’infini) et la marge de phase est strictement positive. 
 
 
Valeurs usuelles des marges 
Pour avoir un système stable en BF, les marges de stabilités doivent être strictement 
positives. 
Toutefois, les valeurs de M = 45° et MG = 10 dB sont considérées comme satisfaisantes 
pour la plupart des systèmes asservis. Ces valeurs conduisent à des oscillations dont le 
dépassement relatif est généralement compris en 10% et 20%. 
Ces réglages de marge conduisent ainsi à une réponse indicielle légèrement oscillatoire, 
aussi est-il parfois nécessaire de les ajuster pour chaque cas particulier. 
 

 

−𝟏𝟖𝟎° 

 Je me teste. 
On donne ci-contre les diagrammes de Bode de la FTBO 

d’un système linéaire. 

a. Tracez les marges 

b. Evaluer leur valeur 

c. Conclure 

d. Quelles sont les valeurs de 𝜔𝑐 et 𝜔−𝜋 ? 
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7.2. Rapidité : bande passante 

Propriété : un système est d’autant plus rapide que sa bande passante est élevée. 

 

Explication  

Nous avons vu lors de l’étude temporelle des SLCI, (partie 2 du cours), que la rapidité d’un 
système peut être quantifiée grâce au temps de réponse à 5%. Sa rapidité est d’autant plus 
élevée que Tr5 est faible. 

Or, plus la bande passante d’un système est élevée plus il restitue les hautes fréquences 
sans atténuation de l’amplitude. Et plus un système est apte à restituer les hautes 
fréquences plus il est rapide. 

La rapidité peut donc être caractérisée par la bande passante. 

 

Si on prend l’exemple classique des systèmes du 1er ordre et 2ème ordre : 
 

 Temps de 
réponse 

Bande 
passante 

 Tr5% -3dB 
1er ordre 3 1/ 

2ème ordre oscillant (=0,7) 3/0 1,16.0 

2ème ordre critique (=1) 5/0 0 

2ème ordre sur amorti (=2) 12/0 0,64.0 

 
Ces quatre exemples étayent le fait que bande passante et temps de réponse sont 
inversement proportionnels. Plus la bande passante est élevée plus le temps de réponse 
est faible, donc plus le système est rapide. 

  

 

FIN DU COURS 
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ANNEXE 1 : TRANSFORMÉES DE LAPLACE USUELLES 

FONCTION ALLURE f(t) F(p) 

Impulsion  

 

(t) 1 

Echelon 
 

u(t) 
1

𝑝
 

Rampe 
 

𝑎. 𝑡. 𝑢(𝑡) 
1

𝑝2
 

Puissance 
 

 𝑡𝑛. 𝑢(𝑡) 
𝑛!

𝑝𝑛+1
 

Exponentielle 

 

𝑒−𝑎𝑡 𝑢(𝑡) 
1

𝑝 + 𝑎
 

Exponentielle  
1

𝜏
 𝑒− 

 𝑡
𝜏   𝑢(𝑡) 

1

1 + 𝜏. 𝑝
 

 

 

𝑡. 𝑒−𝑎𝑡  𝑢(𝑡) 
1

(𝑝 + 𝑎)2
 

Sinus 
 

sin𝜔𝑡 . 𝑢(𝑡) 
𝜔

𝑝2 + 𝜔²
 

Cosinus 
 

cos𝜔𝑡 . 𝑢(𝑡) 
𝑝

𝑝2 + 𝜔²
 

Sinus amorti 

 

sin𝜔𝑡 . 𝑒−𝑎𝑡  . 𝑢(𝑡) 
𝜔

(𝑝 + 𝑎)2 +𝜔²
 

Cosinus 
amorti 

 
cos𝜔𝑡 . 𝑒−𝑎𝑡  . 𝑢(𝑡) 

𝑝

(𝑝 + 𝑎)2 +𝜔²
 

  



L.Pothier/CPGE/MPSI Asservissement des SLCI : partie 3 - analyse fréquentielle SII 

D. Jolivet Page 32 sur 32 MàJ : 01/02/26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


