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1. LIMITE DU COURS

Ce cours se limite a 'analyse fréquentielle des systémes :
- Proportionnel
- Intégrateur
- Du premier ordre de classe zéro
- Dusecond ordre de classe zéro

2. POSITION DU PROBLEME

Quand on sollicite un systeme linéaire avec un signal d’entrée harmonique
e(t)=Eovsin(wt), quand le régime permanent est atteint la sortie s(t) possede les
caractéristiques suivantes :

- Lesignal de sortie s(t) reste harmonique

- Lafréquence, la pulsation, la période sont conservées : @sortie= Wentrée=

- L’amplitude de s(t), nommée Sy, est tres souvent différente de celle de e(t), Eo.

- Les deux signaux peuvent étre déphasés. Cela signifie que leurs extrema ne sont

pas atteints au méme instant.

On note ainsi la sortie : s(t)=So.sin(w.t + @)

Grandeurs, unités :
- e(t), Eo, s(t), So, dépendent du systéme
- westla pulsation du signal en rad/s. On utilise aussi la fréquence f = % (Hz), ou

la période T = 2:” (s).

- @ est le déphasage de la sortie par rapport a 'entrée en radians. Si ¢ est le

déphasage temporel en s, le déphasage est ¢ en radians est: ¢ = ;. 2?71

\ /
\/
\/

/\ Entrée e(t) I Systéme I Sortie s(t) :gq.\ /\\ f’\\

— i s \‘m: !fu! T
« H(p) » o i

¢ ) =

t(s)

0,3
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Il s’agira donc de connalitre les caractéristiques du signal de sortie. La pulsation @ étant
imposée par le signal d’entrée, il faut donc chercher :
) : . \ S
- L’amplitude So donc le gain du systeme, E—°
0

- Le déphasage de la sortie par rapport a 'entrée, ¢

Ce qui est remarquable c’est que gain et déphasage dépendent de la pulsation (et des
caractéristiques intrinseéques constantes du systeme).

Dans une analyse fréquentielle, le point de vue change par rapport a I’analyse temporelle.
Alors que la grandeur « d’entrée » était le temps t pour une analyse temporelle, la
grandeur variable d’entrée devient la pulsation @ pour une étude fréquentielle.

La question a laquelle répondait une analyse temporelle était : « comment évolue la sortie
au cours du temps, pour un signal d’entrée de forme donnée ».

La question a laquelle répond une analyse fréquentielle harmonique est: « comment
évolue la sortie en fonction de la fréquence, pour une loi d’entrée harmonique ».

3. REPONSE D’UN SLCI A UNE SOLLICITATION HARMONIQUE

3.1. Casdupremier ordre
e(t)

?
t(s t(s)
e(t) K ~s(1)
E(p) 1+1p " S(p)
Pour un modeéle premier ordre la fonction de transfert H(p) = % est telle que :
K
S) =15 E®
L’entrée harmonique est:
e(t) = E, sinwt 5 E(p) = Fo®
0 p P2+ w?
La sortie est donc:
S(p) = ...dont il faut trouver la fonction temporelle s(t).
Déterminons d’abord la décomposition en éléments simple de ;2 qui s’écrit :
(1+7.p)(p?+w?)

1 A Bp+C
(1+.p)(P2+w?)  1+1p  p2+w?
Apres calcul on trouve :

2

avec A, B, C constantes réelles a déterminer.

T

A=
1+7%w?
-1
B =———
1+72w?
1
¢= 1+72w?
D’'oulaD.E.S.:
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1

72 1 -7 D 1 1

A+.p)(P2+w?d)  1+7%0% 1+1p = 1+7%w? p2+w?  1+47%w? p2+w?

Le retour dans le passage temporel donne :

1 L7t
—
1+T.p
p L7
s —
p2+tw
1 Lt
P —
p2+w2

1 .
—sin wt
w

D’ou la sortie s(t) :

2

s(t T 1 _ 1 1 .
20O - —— —e7t/T —.Cos wt + ——.—sinwt
KEyw 1+7°w° T 1+7°w 1+7°w° w

KEywT —t/T KE, .
s(t) =———e —Tw CcoS wt + sin wt
( ) 1+72w? 1+72w? [ ]
Stran(t) Sper(t)

s(t) = Seran(t) + Sper(t)
Stran(t) estla partie transitoire de la sortie avec tlim Seran(t) = 0.
—00

Sper(t) estla partie permanente de la sortie.

Or en quelques constantes de temps, Syqn(t) K Sper(t) doncs(t) = sper(t).

Donc seul le régime permanent nous intéresse, le régime transitoire devenant vite
négligeable.

s(t) = Sper(t) =
KEgVT2w?

Sper (t) =

KE,

——[—7w cos wt + sin wt]
1+72w?

+1[ Y _coswt + ;sinwt]
1+712w?2 VTlw?2+1 VTlw?+1

Posons ¢ tel que:

—Tw

SIng = VrZw?+1

1

cos¢ = ViZw2+1

Sper (t) =

KEgVT2w2+1

7,2 LSin@ coswt + cos @ sinwt]

Sper(t) = = [sin(wt + ¢)]

o)

T
il

temps (s)

Transitoire

<
< 7 <

Permanent

[llustration de la réponse harmonique d’un SLCI : régimes transitoire et permanent

D. Jolivet
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Conclusion:
En régime permanent la réponse d'un systeme du premier ordre a une sollicitation
harmonique est telle que :

e Lasortie est, elle aussi, harmonique (sinus)

e Lapulsation w estinchangée

e L’amplitude est différente, voire diminuée pour un premier ordre

(KEy — %} et dépend de la pulsation

e Lasortie est déphasée en retard par rapport a I'entrée, de I'angle ¢ tel
que tan ¢ = —1w, et dépend de la pulsation

3.2. Généralisation pour une fonction de transfert quelconque

Pour une fonction de transfert quelconque le calcul est similaire au cas particulier
précédent.

Il s’agit de chercher la sortie s(t) pour une fonction écrite dans le domaine symbolique :
_ _ K 1+a;pt-tamp™  Eyw

Sp) =H(p) = p%" 1+byp.+bpp" p2+w?

[l faut commencer par décomposer en élément simple la fraction rationnelle

1 14ayp+--tamp™
P’ 14+bip..+bpp™ p

généralisée : 7,,,» Puis revenir dans le domaine temporel.

On montre apres un long calcul que la solution temporelle est du méme type que la
solution trouvée pour un premier ordre.

C’est-a-dire :
e Lasortie s(t) est la somme d’une fonction transitoire s;,,,(t) et permanente
Sper(t) : S(t) = Stran(t) + Sper(t) avec L!l_)rg Stran(t) =0
®  Stran(t) devient trés vite négligeable devant s, (t)
® Sper(t) estde type harmonique de méme pulsation que I'entrée

e L’amplitude est différente et dépend de la pulsation
e Laphase est différente et dépend de la pulsation

3.3. Passage dans le domaine complexe

Nous allons montrer dans ce paragraphe que le remplacement, dans une fonction de
transfert H(p), de p par jw permet de déterminer aisément le déphasage et 'amplitude
du signal de sortie en régime permanent dans le cas d’un signal harmonique en entrée.
Le calcul qui suit est donc purement mathématique.

Convertissons I'entrée et la sortie en nombre complexe par remplacement de p par jo:
C .
e(t) = Ey.sin(w.t) - e(t) = Ey. e/t

C .
s(t) = Sy.sin(o.t + @) — s(t) = S,. e/ (@)

Le rapport « sortie sur entrée » complexe est donc :
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. s
HGe) = =

Déduisons I'équation différentielle du systeme linéaire dans le domaine complexe :

60O, L, 45O g €O, L, 670
at" dt at"

a,.S(t) +a,.

- C—

On obtient :
SGw) _ S _ Spel @ 5,eJ@)  by+by.(jw)+by.(jw) 4 +bm. ()™

H(jw)z—.z_—= - = =

E(jw) E(t) Eq.el®t Eo ap+aq.(jw)+ay.(jw)2++a,.(jw)™

; : S i bo+b1.(jw)+b,.(jw)2++bpm.(jw)™
Conclusion: H(jw) = 2.e/? = 2
(] ) Ey agta;.(Jw)+a,.(Gw)2++a,.Gow)n

Pour obtenir le gain — 2o , il suffit de calculer le module de la fonction de transfert dans
0
laquelle on a remplacé p par jw : = = |H(jw)|

Pour obtenir la phase ¢ il suffit de calculer I'argument de la fonction de transfert H(jw) :
¢ = Arg[H(jw)]

Il conviendra donc pour trouver la réponse harmonique d'un systéme linéaire en régime
permanent, d’utiliser la méthode du remplacement de p par jo, méme si p n’est pas égal
a jw, mais une variable complexe quelconque comme vu lors de la définition de la
transformée de Laplace.

= Je me teste... et c’est pas si compliqué !

Soit la fonction de transfert H(p) = % = 1+§ -

L’entrée est harmonique : e(t) = 3 sin 2t (pulsation w = 2 rad/s)
L’objectif est de trouver la réponse s(t).
a. Ecrire H(jw).

b. Déduire |H(jw)]| et arg[H(jw)].

c. Faire l'application numérique pour w = 2 rad/s : |H(2j)| et arg[H(2j)] ?

d. Déduire la sortie s(t).

e. Tracer sur un méme graphique e(t) et s(t). Remarquez le déphasage du signal. Le signal de
sortie est-il en avance ou en retard par rapport au signal d’entrée ?

f.  Refaire les calculs pour une pulsation w = 30 rad/s. Tracez. Observez la différence avec la
pulsation précédente.

- J
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4. LIEU FREQUENTIEL DE BODE

L’étude de la réponse fréquentielle d’'un SLCI se traduit par le calcul de I'amplitude et de
la phase du signal de sortie en fonction de la pulsation du signal d’entrée.

Le tracé de ces deux fonctions de o est appelé lieu fréquentiel de Bode.

Description du lieu de Bode

Le lieu fréquentiel de Bode est constitué de deux diagrammes.

L’axe des abscisses de ces deux diagrammes a pour grandeur physique la pulsation ®
(rad/s), représentée en échelle logarithmique base 10 : log;o(®). L’axe des ordonnées
est linéaire décimal.

Les deux diagrammes sont :
- Un diagramme de gain, dont la grandeur de I'axe des ordonnées est le gain en dB
(décibel)
- Un diagramme de phase, dont la grandeur de I'axe des ordonnées est la phase en ° ou
rad. En sciences de I'ingénieur nous utilisons plutét le °.

4(1+p)
p2+0,8p+4

G (dB) Exemple de diagramme de Bode H(p) =

Diagramme de

"1~ Gain G (dB)

Gain (dB)

Pas de zéro pour la
pulsation car échelle log

T~ - ‘ : : ' i e Pulsation o (rad/s), sur
10 10° 10* 10? ., . .
80 : : ‘ échelle logarithmique
=3 [
g
=
o
-
o 80°
Diagramme de/
© -180° : L .
Phase (p ( ] 107 10° 10* 10°
Pulsation (rad/s)
o
¢ ()

¥ Remarque 1 : le terme de phase est abusif mais nous I'employons souvent. Il s’agit en
fait du déphasage de la sortie par rapport a I’entrée.
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% Remarque 2 : Vous remarquez donc, en raison du logarithme, que la pulsation ne peut
pas étre... nulle ! Ce qui semble normal pour une étude fréquentielle. En revanche, elle
peut étre aussi petite que I'on veut (et positive !).

4.1. L’échelle logarithmique : éclaircissement

Cette échelle est linéaire en log @, mais on inscrit la valeur de w, pas la valeur du log!

-1 0 1 2 = log w

w=0,1 a=0,4 w=1 w=4 =10 w=15 =100 = @

Un intervalle est appelé décade quand @ est multiplié par 10: [1; 10] ou [3; 30] par
exemple. L'intervalle logarithmique vaut alors 1.

Un intervalle est appelé octave quand @ est multiplié par 2: [0,1; 0,2] ou [3; 6] par
exemple. L’écart logarithmique vaut alors 0,3. Le vocabulaire octave est emprunté a la
gamme musicale occidentale comptant sept notes. La fréquence du signal acoustique est
multipliée par deux entre deux mémes notes de gammes consécutives (huit notes et sept
intervalles donc).

Intérét de I'échelle logarithmique.
L’échelle logarithmique en abscisse permet de représenter une large plage de fréquence

en augmentant la lisibilité des petites valeurs (basses fréquences) dans chaque décade.
Cette échelle effectue donc un zoom sur les basses fréquences tout en contractant les
hautes fréquences a I'intérieur de chaque décade. D'un point de vue global elle permet en
méme temps d’étudier une large plage de fréquence.
Grace a l’échelle log, on a donc une précision d’étude élevée :

- quelle que soit la fréquence d'un point de vue global

- en basse fréquence sur chaque décade

Comme 'ordonnée est le gain exprimé en décibel (voir ci-apres) et que le décibel est une
fonction logarithme, I'échelle logarithmique en abscisse va permettre des représentations
asymptotiques linéaires, impossibles si I'échelle avait été « proportionnelle ».

4.2. Le gainetlaphase
4.2.1. LegainendB

Le gain est exprimé en décibel (dB) : G4z = 20.log|H(jw)|

H(jw) estla fonction de transfert du systéeme en régime harmonique.

|H(jw)| estle module du nombre complexe H(jw).

Il suffira donc de remplacer la variable symbolique p par jw dans la fonction de transfert
H(p), tel que j2 = —1.

% Remarque : la dimension de p est [T]-L... comme jw.
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4.2.2. Laphase

La phase est définie de la maniere suivante : ¢ = arg[H (jw)], en degré (préféré au radian
en SII).
arg[H(jw)] est 'argument du nombre complexe H(jw).

4.2.3. Intérét pratique du gain en dB et de la phase

Les modules et les arguments s’ajoutent quand les fonctions de transfert se multiplient.
Si on a deux composants (1) et (2) en série, H(jw) = H;(jw). H,(jw) :

Addition des modules (gains en dB)
Gap = 20log|H(jw)| = 201og[|H; (jw). Hy(jw)|] = 20log|H, (jw)| + 20log|H,(fw)|
= Ggp1 + Gyp

Addition des arguments (phase)
@ = arg[H(jw)] = arg[H; jw). H,(jw)] = arg[H,(jw)] + arg[H,(jw)] = ¢, + ¢,

Conclusion

Pour une fonction de transfert H(p) qui est le produit de fonctions de transfert plus
simples, H(p)=H1(p).Hz(p)...Hn(p), on étudiera le gain et la phase de chacune des FT
Hi(p) et on additionnera les graphiques.

4.2.4. Eclairage: qu’est-ce que le décibel ?

Le décibel, ou déciBel, 1/10¢me du Bel, n’est pas une unité. C’est une grandeur d’évaluation
adimensionnelle. Explications ...

Au départ, le Bel (un hommage, semble-t-il, a Graham Bell physicien et ingénieur a qui on
doit I'invention du téléphone), est le logarithme du rapport de deux puissances :
Gger = log (Ps/Pe).
Le Bel étant une grandeur trop faible, donc insuffisamment précise pour nos études
usuelles, on utilise le décibel qui multiplie par 10 le gain en Bel, et supprime une décimale
inutile :
Gdp = 10. Gger = 10.1og (Ps/Pe).

Quand la puissance est multipliée par 10 (amplification), le gain est +10 dB.

Quand le rapport des puissances est 100 le gain est +20 dB.

Quand la puissance du signal est divisée par 100 (atténuation) le gain est -20 dB, etc.
Notez au passage que I'opération multiplicative est convertie en opération additive.

Le passage a I’échelle logarithmique est justifié par, entre autres, deux raisons :

- Une raison pratique similaire a I'utilisation de I'échelle logarithmique vue plus haut: la
gamme de puissance balayée est souvent large en traitement du signal. Si la puissance
s'étend de 0.001 W a 1000 W, (rapport 106), passer en dB permet une étude
d’amplitude 60 dB!
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- Une raison physiologique emprunté notamment a l'acoustique: nos sensations
physiques ressenties varient peu lorsque la grandeur extérieure provoquant la
stimulation varie beaucoup. On dit encore que la sensation ressentie varie comme le
logarithme de l'excitation (loi de Weber-Fechner). Nous percevons donc les
sollicitations au niveau de nos sens de maniére logarithmique. Cela est bien connu en
acoustique mais est aussi vrai pour les autres sens. Des modeles avancent méme une
perception logarithmique de I’écoulement du temps.

Alors... pourquoi 20.log() en sciences de I'ingénieur et en physique, au lieu de 10.1og() ?
D’une maniere générale, dans les systemes linéaires, la puissance est proportionnelle au
carré d’'une grandeur cause. Par exemple, pour un conducteur ohmique la puissance est
proportionnelle a la tension aux bornes : P=U?/R.

Suivons cet exemple concret :

Gas =10.log (Ps/Pe) = 10.1og [(Us*/R) / (Ue*/R)] = 10.log [Us? / Ue?]

Gas = 20.1og(Us/Ue). Voila, nous y sommes !

Vu-métre d’amplificateur de puissance audio : remarquez
I’échelle décibel par rapport a I'échelle puissance,
GdB=10.1og(P/100) ici.

Deux valeurs approchées en dB remarqguables a connaitre
20log2=6,0 (6,0206...)

20log3=9,5 (9,5424)

On peut déduire les autres valeurs sans calculette

20 log 4 = 20log2%=2*20log2=...

20 log 5 =20log(10/2) = 20log10 - 20log2 =...

20 log 6 = 20log(2*3)=20log2 + 20log3 =...

20log 7 ~20log(20/3) = 20log2 + 20log10 - 20log3 =...
20log11~20log10...

20log13=20log(39/3) ~ 20log(40/3)=...
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5. LIEU FREQUENTIEL DE BODE DES 4 SYSTEMES FONDAMENTAUX

Rappelons qu'il s’agit de traiter les quatre systemes : proportionnel, intégrateur, 1er
ordre, 2¢me grdre.

5.1. Réponse harmonique d’un systéme a action proportionnelle

5.1.1. Transmittance du systeme en régime harmonique

E(p) Hiv) = K S(r)
Transmittance : H(p) = K — | Hp)=

Transmittance en régime harmonique : H(jw) = K

5.1.2. Calculs du gain et de la phase

Gain
Gyg = 20log|H(jw)| = 20logK

Phase
¢ = arg[H(jw)] = arg[K] = 0°

5.1.3. Diagrammes de Bode

G (dB)

A

20.log(K)

o (rad/s) Diagramme de gain d’un

+ + t +—> systeme proportionnel
Q)
A
} -0 1 o (rad’s) Diagramme de phase d’un
systeme proportionnel
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5.2. Réponse harmonique d’un systéme intégrateur

5.2.1. Transmittance du systeme en régime harmonique

- : _K E(p) kK| S
Transmittance : H(p) = > Hp) == (v)
. - . . K p
Transmittance en régime harmonique : H(jw) = o
5.2.2. Calcul du gain et de la phase
Gain
K
Ggg = 20log|H(jw)| = 20log ' = 20logK — 20logw
La courbe de gain est donc une droite de pente -20dB/décade.
La droite coupe I'axe de ordonnées, =1, a G1=20log K
La droite coupe I'axe des abscisses, G=0dB,a w, = K .
Phase
K
@ = arg[H(jw)] = arg L—w] =argK —arg(jw) = 0—90 = —90°
5.2.3. Diagrammes de Bode gain et phase
G (dB)
£
Droite de pente
- 20dB/décade
I o (rad/s)
0,01 0.1 1 100 Diagramme de gain d’un
systéme intégrateur pur
- 20 dB A

o (rad/s)

| O Gl

0.01 0.1 1 10 100 Diagramme de phase d’un
systéme intégrateur pur :
constante a -90°
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= Je me teste et je me rassure
Un vérin est alimenté avec un débit d’huile q(t) en m3/s. La position de la tige est x(t).
La section du piston est S.
a. Ecrire la relation entre q(t), S et la vitesse de tige x(t).
X(®)
I}
c. Tracez les diagrammes de Bode de H(p) = 50}%. Prenez une plage de pulsation [103, 105 rad/s].

b. Ecrire la fonction de transfert H(p) = L’écrire pour une section S=200 mm?.

5.3. Réponse harmonique d’un systéme du premier ordre (de classe 0)

5.3.1. Transmittance du systéme en régime harmonique

Transmittance : H(p) = 1+KTp E(p) K S(p)
Transmittance en régime harmonique : H(jw) = 1+;{w 1+7.p

5.3.2. Calcul du gain et de la phase

Gain

K
Gag = 20log|H(jw)| = 20log |m| = 20logK — 20.log Il + (tw)?

e Basses fréquences, w = 0: Gz = 20logK => asymptote horizontale G=20.log K,
pour w = 0.
e Hautes fréquences, > o : Gz - 20logK — 20.logy/ (tw)?, car (tw)* > 1.
Gap = 20logK — 20.log(tw)
=> asymptote oblique de pente -20dB/décade, coupant 'asymptote horizontale

(G=20.logK) alavaleur w = w, = %, appelé pulsation de cassure.

e Valeur remarquable, pulsation de coupure a -3dB: Ggp(w = w,) = 20logK —

20.1ogv2
Gap(w = w,) = 20logK — 20.logv2 =20logK — 3dB
S w=w, = %est la pulsation de coupure a -3dB

Phase

¢ = arg|H(jw)] = arg [ﬁ] = arg[K] — arg[1 + j.tw]

_ (10)
= —arg[l +j.17w] = —arctan(T) Arg(14).70)
rg(1+.tw)=

¢ = —arctan(tw) to arctan(z)
Re(z)
e Basses fréquences, w = 0 : ¢ = 0° =>asymptote horizontale ¢ = 0° pour w = |0.
e Hautes fréquences, w =» o : @ = lim arctan(tw) = —90°
w—00 0
=> asymptote horizontale, ¢ = —90°, pour w — oo
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e Valeur remarquable:a = w, = % ,ona ¢ = —45° etil y aun point d’inflexion.

5.3.3. Diagrammes de Bode gain et phase

A Asymptote de pente -20dB/décade

5.3.4. Conséquences, remarques

» Un systeme du premier ordre est dit passe bas: il transmet les basses
fréquences, et atténue, voire coupe, les hautes fréquences. Cela est visible sur le
diagramme de gain.

> La pulsation de cassure (rencontre des deux asymptotes) est identique a la
pulsation de coupure a -3dB. Cela est propre aux systemes du premier ordre et
n’est pas toujours vrai pour les ordres supérieurs.

» La pulsation de coupure a -3 dB est la pulsation avant laquelle le rapport

|[H(jw)]| - v 1 N . .
# reste supérieur a —=. La valeur -3dB correspond a une diminution de
|[H(jw)|w=0 V2

moitié de la puissance du signal, ou une division par V2 de la grandeur de sortie,

conformément a ce qui a été dit au paragraphe ci-dessus « Eclairage sur l'échelle
décibel ».

10.log (P%) = 10.log (%) = —3dB (-3,0103 plus exactement)

S 1
20.log (—) = 20.log (—) = —3dB
So V2
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> Pour un systéme passe bas (cas d'un systéme du premier ordre), la Bande
Passante a -3dB, est la plage de fréquences (ou de pulsations) pour laquelle le
gain ne subit pas une atténuation de plus de 3dB.

= Je me teste et je me rassure
Un filtre de haut-parleur type boomer (basses) d’enceinte acoustique, a la fonction de transfert
Vs(p) _ 08
Ve(p)  1+0,004.p
Donner les caractéristiques de ce premier ordre.

Calculer le gain en basse fréquence G5 pr (asymptote horizontale) —"—%—\
Calculer la pulsation de cassure w,. :mi]l

Tracer les asymptotes du Bode gain et phase. i '

suivante : H(p) = V. (p) et V,(p) sont les tensions d’entrée et de sortie du filtre.

Tracez les courbes de gain et de phase.
Donnez la bande passante en fréquence a -3dB de ce filtre.

mo a0 o

5.4. Réponse harmonique d’'un systeme du deuxiéme ordre (de classe 0)

5.4.1. Transmittance en régime harmonique

E(p) K S(p)
Transmittance : H(p) = -—~ |2 X,
ransmittance : H(p 2 +2_$ " woz W p
Transmittance en régime harmomque apres calcul : H(jw) = %
Un systeme du second ordre présente régimes de fonctionnement possibles.

cas différents sont donc a étudier.

5.4.2. Calcul général du gain et de la phase commune aux trois régimes de
fonctionnement

Calcul du gain

Gy = 20log|H(jw)| = ZOIog

W
(w—o) +J. 25—
w\2
= 20logK — 20.log [1 — l +4§’2<—>
Wo
Calcul de la phase
K w \? w
¢ = arg|H(jw)] = arg o2 == arg[K] — arg [1 - (a)_> + j. 250)—
_ (X g W 0 0
1 (wo) +).28

@ = —arg [1 - (wﬂo)z +j.2€wio].
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Attention : I'argument d’'un nombre complexe dont
la partie réelle est positive et la partie imaginaire

7 . 7 s N T
est négative, est supérieur a...—. Or, 'arctangente est

T . -7 +1
par définition comprise entre — et—.

Il faut donc ajouter & a I'arctangente pour obtenir
I'argument.

w

2
> Siw<w, & 1—(w—) >0, @ = —arctan
0

w

wo + T
1-(2)’

2
> Siw > wy < 1—(3) <0, ¢ =—]arctan

Wo

5.4.3. Caractéristiques communes aux trois régimes

Courbe de gain : asymptotes
e Basses fréquences, w = 0: Gz — 20logK => asymptote horizontale G=20.log K,
pour w = 0.
e Hautes fréquences, » o : Gz = 20logK + 40.logw, — 40.logw
=> asymptote oblique de pente -40 dB/décade, qui coupe 'asymptote horizontale
a la pulsation de cassure wc=mo.

Courbe de phase : asymptotes et point remarquable
e Basses fréquences, w = 0 : ¢ = 0° =>asymptote horizontale ¢ = 0° en BF
e Hautes fréquences, w - o : ¢ - —180° =>asymptote horizontale ¢ = —180°en HF

e Valeur remarquable:a= w, = wy ona ¢ = —90° et il y a un point d’'inflexion.

5.4.4. Cas durégime apériodique (sur amorti) : £>1

KI
(1+71.p)(1+72.)
Les courbes de gain et de phase sont donc la somme des courbes de gain et de phase de
K’ 1
1+T1.p 1+T2.p

La fonction de transfert peut se mettre sous la forme : H(p) =

deux fonctions de transfert du 1er ordre : H(p) =
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Asymptote horizontale )
Asymptote -20 dB/décade

Asymptote -40 dB/décade

|
B
=

o
=
£
T
()

Pulsation (rad/s)

Remarque sur les pulsations de cassure :
1

[ ] wl:;
1
[ ) (1)2:;

1 .

® wy=+w;.w, ,donc: logwy=logyw;.w, = E(loga)l + logw,). Conclusion
graphique : w, est rigoureusement située au milieu de w, et w, sur les abscisses
graduées en log.

5.4.5. Cas durégime pseudo périodique (sous amorti) : <1

Deux cas sont a étudier
NG

2

<€<1 : pas de résonance, courbe de gain au dessous des deux asymptotes

\/E 7 . 7 by . 7
0<g< ~ : présence d’un pic de résonance a la pulsation de résonnance w, (# w,). Courbe
de gain au-dessus des deux asymptotes.
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=

Représentation ci-dessous dans le cas de la résonnance 0 < & < >

Q = coefficient de

surtension Pic de résonance: w, = wg.1/1 — 2&2
Q= 1 Wy < Wo
2§1-¢* (voir le facteur de surtension Q)
Courbe au-dessus de A Courbe au-dessus de
I'asymptote Gas I'asymptote
20
s ®
/ o1 1 140
Asymptote
Asymptote horizontale y P
20.10sK oblique de pente -
o8 o 40 dB/décade

0,1
Asymptote en basses
fréquences a 0°

1000

10@oo

=120

-140

-1s0

Asymptote en hautes

-1&0

fréquences a -180°

Comment évoluent les courbes de Bode quand I'amortissement & varie ?
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Le pic de résonance visible la courbe

g0 GAIN(B) | :
50 ‘ L Li{4-- de gain correspond a un maximum de

—_J-FT I
10 1 gain, obtenu pour la pulsation o, =
" D w1282

: On quantifie la résonance avec le

Aiog K- i facteur de surtension Q :

10 ‘ : Q= |H(jw)|w=wr _ 1
0 = | - ] -
/T . HGo)w=0  2¢/1—¢2
10 =15 3 —] - : Ainsi, a la résonance :
0 ™N | Gap(wg) = 20logK + 20log Q(wg)
o : La courbe ci-dessous, montre que la
@ 100 ! résonance est faible pour £>0,2. Elle
£=0,02 1 croit brusquement quand £<0,1.
\:‘ gt :
-20. - = \. |
-40 ] _\ I‘ 1
0 KA 9 courbes de phase : : ®
~J£ \ [ pour&=2:1,5:1:0,707 ] L
-80. £=2 ——0,55 0,35 0,25 0,15 0,02 :
-100 S | 15
RN 1 10
-120 1
1 5
-140 | o
I 0 01 02 03 0,4 05 0,6 07
-160 1 Coefficient de surtension Q en fonction
-180 : de f (0<§S\/77)
01w,

Evolution du diagramme de Bode en fonction de I'amortissement.

5.4.6. Bande passante d’un systéme du deuxieme ordre

La pulsation de coupure a -3dB, @-34B, est définie comme cela :
IHG®_3ap)l _ |H(Gw-3ap)| _ V2

|H(jw)lw=0 K 2

L’équation a résoudre est donc :
2\2 2
< -2 o (1—(—“’-3d3) ) +48%(2248) =2, etc.
©0_3aB\2\, , po(@sam\? wo @o
(1_( wo ))+4€( wo )

Il faut donc résoudre une équation polynomiale bicarrée, dont la solution se trouve sans
peine.

Voici la solution qu'’il est interdit de connaitre par cceur et qu'il faut savoir trouver :
2nd 0,

W_3qp = wo-\/l —&+y1+(1-¢)? 0. 0<é<1 =1 e>1

| W_3qp | W_3ap =1/T | W_3qp > Wg | W_3qp =Wo | W_3ap < Wo
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5.5. Synthese des différentes pulsations

o? Appellation Remarque

™o Pulsation propre du systeme non amorti

Mk Pulsation de cassure Intersection de deux asymptotes consécutives

Or Pulsation de résonnance w, = wo1 — 28%; w, < w,

®n Pulsation propre (ou pseudo pulsation) W, = W 1= &2

w_34p | Pulsation de coupure a -3dB Défini la bande passante

¢ Pulsation de coupure a 0dB (wqg5) Intersection courbe de gain avec les abscisses
( )

= Je me teste : ce n’est pas tres difficile
Un amortisseur de voiture usé a pour fonction de transfert :

X)) _ 1
F(p) ~ 300p? + 400p + 15000

Ou X(p) est I'enfoncement de I'amortisseur en m. F(p) est la force appliquée en N.

H(p) =

a. Mettre H(p) sous forme canonique. Quel est le type de régime ?

Déterminer I'asymptote en basse fréquence (diagramme de Bode gain)

Tracez les autres asymptotes (deux diagrammes de Bode)

Etudier éventuellement la résonnance.

Tracez les courbes de gain et de phase.

Quelle est la bande passante en fréquence a -3dB ?

Que se passe-t-il si les roues de la voiture sont excitées a une période située autour d’une
seconde ? (Succession de petites bosses)

@™ mo oo o
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6. GENERALISATION : REPONSE HARMONIQUE D’UN SYSTEME QUELCONQUE

Pour tracer les diagrammes de Bode d’une transmittance quelconque on se ramene aux
quatre transmittances de bases étudiées précédemment: il suffit d’ajouter leurs
diagrammes de gain et de phase.

Attention : avant de commencer toute étude, il est obligatoire de factoriser au
maximum dans R le numérateur et le dénominateur de la transmittance, et de les mettre
sous forme canonique !

Préliminaire de calcul important
Il s’agit, pour le tracé des diagrammes de Bode d’étre pragmatique et efficace.

Nous utilisons les équivalents mathématiques suivants.

Cassure w < wg w > wg
Bindme du 1¢r degré : 1 1+1p ~ 1+1p ~
1+1p Wk = ; w<wg Ww>wg
Trindme du 2¢me degré non
factorisable* dans R :
2 Wk = Wo
1+ap+ L
wo?
Mondme, puissance de p : Pas de
Kp" cassure

* 11 est nécessaire que le trindme du 2¢me degré ne soit pas factorisable dans R, sinon il faut le factoriser
en produit de deux bindomes du 1er degré. Etil y a deux cassures.
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Soit a tracer les diagrammes de Bode de la transmittance :
5 (1+p)(100 + p)

H(p)

p  p?+8p+400

a. Dénominateur et numérateur sont-ils factorisés dans R ?

Numérateur : oui, évident
Dénominateur : calculons A=

b. H(p) est-elle sous forme canonique ?
Non elle ne I'est pas. Rendons H(p) canonique.

c. Quelles fonctions de transfert étudier ?
[l y a quatre FT a étudier :

H(p) =

Hy(p) =
H;(p) =

Hy(p) =

d. Calcul des pulsations de cassure
Hy(p) =1+ p=>wy, =
H3;(p) =1+ 0,01p => wy3 =

1
H,(p) = 2z o Wk =W =
2—02+0,02p+1

Il y a donc trois cassures : 1, 20, 100 rad/s

=> 0Kk, il est factorisé dans ‘R.
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e. Equivalents de H(p) / Asymptotes gain / Asymptotes phase

w (rad/s) -
20
— /
p
1+p Zkl
1
Pz C:kzo
1+0,02p + 202
1+0,01p 2k 00
H(p)

Courbe de gain :
asymptotes

Courbe de
phase :
asymptotes

f. Particularités
Gain en basse fréquence : oo car présence de 'intégration H1(p).

. T . 20 , . .
Positionnement de 'intégration H,(p) = ~ i coupe 'axe des abscisses a 20 rad/s et

coupe la droite verticale =1rad/s a 20.lo0g20=26dB.

2éme ordre : résonnant d w, = wyy/1 — &% = 204/1 — 0,2 ~ 20 rad/s

Pic de résonnance : Q = 2§J11—_§2 =- 02\/11—W = 2,5 => 20.logQ = 20.log(2,5) =8 dB

g. Tracé des asymptotes

D. Jolivet
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agf T

- 20 (1+p)(1+0,01p)

P iz?o—zéo,bzgairi ,

20

Gain (dB)
a

ptog
o - - -

-80°

Fhase (deg}

-180°
107"

Pulsation (rad/s)

Gain (dB)

o
-180* ‘ ‘ H
107t 10° 10 10% 10* 10
Pulsation (rad/s)
= Je me teste (en allant lentement)
Tracer les diagrammes de Bode de la transmittance :
1,4 5+p
Hp)=—.
p 400p°+4p+1
D. Jolivet
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7. RETOUR SUR LES PERFORMANCES DES SLCI : POINT DE VUE FREQUENTIEL

7.1. Stabilité d’un systeme bouclé : marges de stabilité

Nous avons vu lors de I'étude temporelle des SLCI, (partie 2 du cours), que la notion de
stabilité était binaire : stable ou instable. Nous avons pu déterminer le caractere stable ou
instable par I’étude des pdles de la FTBF.

Nous allons voir dans ce chapitre que la stabilité peut étre quantifiée par I'étude sa boucle
ouverte.

7.1.1. Critere du Revers

Attention : le critere du Revers ne peut pas s’appliquer si FTBO(p) a des pdles a partie
réelle strictement positive. Autrement dit le critére du Revers ne peut s’appliquer que si
les pdles sont a partie réelle négative ou nulle.
Exemple : le critére du Revers ne peut pas s’appliquer a FTBO(p) = ﬁ mais il peut

1
p(+5)

s’appliquer a FTBO(p) =

Enoncé du critére du Revers, théoreme
Le systeme sera stable en boucle fermée si pour la pulsation w_, pour laquelle
arg[Hgo(jw_;)] = —180°, la courbe de gain de la FTBO passe du

niveau 0dB. Cela revient a dire |Hgo(jw_)| < 1. |Hgo Giw)las

[lustration du critére du Revers

La courbe de phase est la méme pour les trois systémes
mais :

- Courbe (1) : stable en BF

- Courbe (2) : oscillant en BF Arg(Hpo(j@)) ()

- Courbe (3) : instable en BF
0 \ w

-180°

Point entouré sur Bode = point critique (0dB, -180°).

Explication, éclaircissement : notion de point critigue
La fonction de transfert d'une boucle est:

_ _FTCO@®)_
FTBF(p) - 14+FTBO(p)

FTBF (p) n’est pas définie pour 1 + FTBO(p) = 0 & FTBO(p) = —1.

Le nombre complexe FTBO(jw) est égal a -1 quand son module vaut 1 et sa phase -m.
Le point complexe (0dB, -180°), ( ( |FTBO(jw)| =1 ; arg[FTBO(jw)] = —180°), est
appelé point critique.

Sur le diagramme de Bode le point critique est atteint quand la phase vaut -180° et le
gain 0dB, soit, la courbe limite (2) ci-dessus tracée en pointillés.
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Quand la phase vaut -180° cela signifie que la sortie a un signe opposé a l'écart. Donc le
soustracteur ajoute la sortie a I'entrée (sin(wt — ) = — sin(wt)), au lieu de la retrancher.
Pour ne pas que la sortie diverge il faut alors atténuer le signal et surtout pas I'amplifier
sinon le systeme devient instable. Il faut donc un gain négatif.

Les marges de stabilités représentent donc la distance du systeme par rapport au point

critique (0dB, -180°).
Hpo(p) = @ “1x (@)

Illustration : situation d’une boucle au point critique

7.1.2. Marges de stabilité

Si un systeme est a la limite de la stabilité, la moindre dérive de I'un des parameétres, (due
a la température en particulier), peut entrainer l'instabilité. Il est donc nécessaire de
prévoir des "marges" vis-a-vis du probleme d’instabilité. Elles se traduisent par une
"distance de sécurité" entre le lieu de la transmittance en boucle ouverte et le point
critique mis évidence précédemment. On définit ainsi la marge de phase et la marge de
gain.

Marge de phase
Dans le diagramme de Bode phase, c’est la distance entre la ligne -180° et la courbe de
phase en w, :

Ou w, est la pulsation de coupure a 0dB. C’est-a-dire la pulsation pour laquelle la courbe
de gain coupe l'axe des abscisses.

Marge de gain
Dans le diagramme de Bode gain, c’est la distance entre I'axe des abscisses et la courbe en

W_r:

Ou w_, estla pulsation pour laquelle la phase vaut -180°.
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501

[llustration -
Notez que les marges sont :
indiquées grace a des °

vecteurs (orientés).

£ Attention, danger :
L’extrémité du vecteur :
Marge de phase est sur la  -u-

courbe de gain, alors que

c’est l'origine du vecteur
marge de gain qui est sur la
courbe.

Phase (deg}

Dans I'exemple ci-contre :
MG =

Mg =

al
10°
Pulsation (rad/s}

Remarque : les systemes du premier et du deuxieme ordre de classe 0 a coefficients
positifs sont intrinsequement stable. La marge de gain est infinie (phase jamais égale a
-180°, asymptotique en 'infini) et la marge de phase est strictement positive.

Valeurs usuelles des marges

Pour avoir un systéme stable en BF, les marges de stabilités doivent étre strictement
positives.

Toutefois, les valeurs de M@ = 45° et MG = 10 dB sont considérées comme satisfaisantes
pour la plupart des systémes asservis. Ces valeurs conduisent a des oscillations dont le
dépassement relatif est généralement compris en 10% et 20%.

Ces réglages de marge conduisent ainsi a une réponse indicielle légerement oscillatoire,
aussi est-il parfois nécessaire de les ajuster pour chaque cas particulier.

4 )
= Je me teste. : ‘ D
On donne ci-contre les diagrammes de Bode de la FTBO r—
d’un systeme linéaire.
a. Tracezles marges g
b. Evaluer leur valeur )
c. Conclure
d. Quelles sont les valeurs de w, et w_, ?
7 [ i
- J
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7.2. Rapidité : bande passante

Propriété : un systeme est d’autant plus rapide que sa bande passante est élevée.

Explication

Nous avons vu lors de I’étude temporelle des SLCI, (partie 2 du cours), que la rapidité d'un
systeme peut étre quantifiée grace au temps de réponse a 5%. Sa rapidité est d’autant plus
élevée que Trs est faible.

Or, plus la bande passante d’'un systeme est élevée plus il restitue les hautes fréquences
sans atténuation de l'amplitude. Et plus un systéme est apte a restituer les hautes
fréquences plus il est rapide.

La rapidité peut donc étre caractérisée par la bande passante.

Si on prend 'exemple classique des systemes du 1¢ ordre et 2¢me ordre :

Temps de Bande
réponse | passante

Trs% ®-3dB
1er ordre 31 1/t
2éme ordre oscillant (£=0,7) | 3/wo 1,16.00
2¢me ordre critique (§=1) | 5/wo ™o
2¢me ordre sur amorti (§=2) | 12/wo 0,64.00

Ces quatre exemples étayent le fait que bande passante et temps de réponse sont
inversement proportionnels. Plus la bande passante est élevée plus le temps de réponse
est faible, donc plus le systeme est rapide.

FIN DU COURS
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ANNEXE 1 : TRANSFORMEES DE LAPLACE USUELLES

FONCTION ALLURE f(t) F(p)
Impulsion o(t) 1
) 1
Echelon u(t) E
1
n!
Puissance t™ u(t) ol
. a-< 0 1
Exponentielle & . e~ u(t) T a
E tiell -7 !
xponentielle Z e 7 u(t) 1+zp
- —at 1
a=0 t.e u(t) (p + a)Z
)
Sinus sin wt . u(t) P2+ W
_ p
Cosinus Wvﬂvﬂv cos wt . u(t) 22+ W
. . : —at @
Sinus amorti sinwt .e u(t) P+ a2+
Cosinus cos wt .e™ % . u(t) P
amorti ' ' (p + a)? + w?
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