
Mécanique – chapitre 5

Correction du TD d’application

I Mouvements simples de particules chargées

On considère une particule ponctuelle, de charge q et de masse m, de vitesse initiale #»v0 à l’entrée d’une zone où
règnent un champ électrique

#»

E ou un champ magnétique
#»

B. On suppose ces champs uniformes et indépendants du
temps, et on néglige toute autre force que celles provoquées par ces champs.

On suppose dans un premier temps que la particule décrit une droite et possède une accélération constante a.

1 Déterminer la direction et la norme du ou des champs qui provoquent cette trajectoire.
Réponse

On étudie la particule M de masse m et de charge q assimilée à un point matériel dans le référentiel du laboratoire
supposé galiléen. Cette particule est soumise à la force de Lorentz

#»

F = q(
#»

E + #»v ∧ #»

B)

La trajectoire est rectiligne et uniformément accélérée, soit

d #»v

dt
= #»a =

#  »cte ⇒ #»v = #»a t+ #»v0

La norme de #»v varie, donc l’énergie cinétique aussi. Or, seule la force électrique travaille 1, le champ est un
donc champ électrique. De plus, pour que la trajectoire soit rectiligne, il faut, d’après l’expression de #»v (t), que #»a
soit colinéaire à #»v0. Or,

#»a =
q

m

#»

E

donc
#»

E est colinéaire à #»v0. ⋄
2 Déterminer la position

#     »

OM du point en fonction du temps. On notera
#     »

OM0 la position initiale.
Réponse

On note O l’origine du repère. On intègre l’expression de la vitesse pour avoir la position
#     »

OM de la particule :

#     »

OM =
q

2m
t2

#»

E + t #»v0 +
#     »

OM0

⋄
La particule décrit maintenant une trajectoire circulaire de rayon R0, dans un plan xOy.

3 Déterminer la direction du ou des champs qui provoquent cette trajectoire.
Réponse

La trajectoire circulaire est celle d’une charge dans un champ magnétique perpendiculaire à la vitesse initiale. On en
déduit que

#»

B est suivant Oz et que #»v0 est dans le plan xOy.⋄
4 Déterminer l’équation de la trajectoire et la relation entre la norme du champ, v0 et R0. On suggère d’utiliser les

coordonnées polaires.
Réponse

La trajectoire étant circulaire, la vitesse en coordonnées polaires a pour expression #»v = R0θ̇(t)
# »uθ et l’accélération se

réduit à
#»a = −R0θ̇(t)

2 # »ur +R0θ̈(t)
# »uθ

Le principe fondamental de la dynamique, appliqué à la charge q dans le référentiel d’étude que l’on supposera
galiléen, s’écrit :

m #»a = q #»v ∧ #»

B

q #»v ∧ #»

B = qR0θ̇(t)
# »uθ ∧B # »uzOr,

#»

B = B # »uz. Par conséquent,

1. La force de Lorentz magnétique q( #»v ∧ #»
B) est perpendiculaire à #»v donc à la trajectoire
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2 Mécanique – chapitre 5. Correction du TD d’application

= qBR0θ̇(t)(
# »uθ ∧ # »uz

= # »ur

)

⇔ q #»v ∧ #»

B = qBR0θ̇(t)
# »ur

En projetant le PFD sur la base polaire ( # »ur,
# »uθ), il vient :{
−mR0θ̇(t)

2 = qR0θ̇(t)B

R0θ̈(t) = 0

On obtient alors

θ̇(t) = −qB

m
= cte ⇒ θ(t) = −qB

m
t+ θ0

Si la charge est positive, elle tourne dans le sens anti-trigonométrique (horaire) par rapport à Oz. Puisque θ̇(t) est
constante, le mouvement et circulaire uniforme et v0 = R0|θ̇(t)| (c’est une norme donc nécessairement positive !) d’où

R0 =
mv0
qB

⋄
II Filtre de vitesse

Un ion de masse m et de charge q pénètre dans un filtre par
la fente F1 avec un vecteur vitesse #»v = v0

# »ux. Il y règne un
champ électrique

#»

E = E # »uy et un champ magnétique
#»

B =
B # »uz, uniformes et stationnaires.

Figure M5.1 – Schéma du filtre de vitesse.

1 Écrire la force de Lorentz alors ressentie par l’ion.
Réponse

Dans le référentiel du laboratoire, le système {ion} repéré par son point matériel M de masse m et de charge q dans
un repère cartésien (F1,

# »ux,
# »uy,

# »uz) est soumis à la force de Lorentz, telle que

#»

F = q
(

#»

E + #»v ∧ #»

B
)

= qE # »uy + qBv0 (
# »ux ∧ # »uz

=− # »uy

)

⇔ #»

F = q(E −Bv0)
# »uy

⋄
2 À quelle condition l’ion peut-il avoir une trajectoire rectiligne l’amenant à passer à travers la fente F2 ?

Réponse
Pour avoir une trajectoire rectiligne sur # »ux, il faut que la somme des forces s’appliquant sur l’ion soit nulle. Ainsi, en
négligeant le poids devant la force de Lorentz, il faut que la force de Lorentz soit nulle.⋄

3 Exprimer en fonction de E et B la vitesse v0 lui permettant d’atteindre la fente F2. Justifier le nom du dispositif.
Réponse

La condition précédente avec l’équation de la première question amène à

E − v0B = 0 ⇔ v0 =
E

B

Ainsi, si le vecteur vitesse de la particule n’est pas égal à v0
# »ux, alors elle sera déviée et ne passera pas par la fente

F2 : on filtre effectivement les vitesses. ⋄
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III. Déviation d’un électron 3

III Déviation d’un électron

Un électron pénètre en A avec une vitesse initiale #»v0 dans
la zone grisée où règne un champ magnétique

#»

B uniforme
et stationnaire. On suppose que la zone où règne le champ
magnétique est très grand de telle sorte que la particule ne
peut que ressortir par les côtés AC ou AD.

A
v0

e-

x B

45°

45°

D

C

Figure M5.2 – Schéma de la situation.

1 Quelle est la trajectoire de la particule dans la zone grisée ? On précisera les caractéristiques de cette trajectoire.
Réponse

La particule arrive dans un champ magnétique uniforme et stationnaire
#»

B =
#  »cte avec une vitesse #»v0 = v0

#»ex orthogo-
nale à

#»

B. La trajectoire est donc un cercle de rayon R = mv0/(qB0), avec B0 = ∥ #»

B∥. La force en A est dirigée vers
le bas, on en déduit la position du centre C1 de la trajectoire.

A
v0

e-

x B

D

C

F

v0

F

C1

C2

E

ex

ey

G

Figure M5.3 – Trajectoire dans la zone.

⋄
2 Par quelle face ressort la particule ? Quelle est la direction de la vitesse ?

Réponse
La particule ressort par la face AC en E, avec une vitesse selon #»ey car le triangle AC1E est isocèle et rectangle en
C1. ⋄

3 Que se passe-t-il ensuite ? Quel nom donneriez-vous à ce dispositif ?
Réponse

En dehors de la zone grisée, la particule est isolée, donc elle est animée d’un mouvement rectiligne uniforme
( #»v = v0

#»ey =
#  »cte) dans le référentiel du laboratoire supposé galiléen.

La particule entre à nouveau dans le zone où règne le champ magnétique par la face AD, avec une vitesse #»v = v0
#»ey.

La trajectoire est alors circulaire de même rayon R (car la vitesse est la même en norme). On représente la force
magnétique en G, et on en déduit le position C2 du centre de la trajectoire. La particule arrive en A avec la vitesse
#»v = −v0

#»ex et sort de la zone grisée.

Au final, la particule a subi une déviation de π, comme si elle avait été réfléchie par un miroir. On pourrait donc
appeler ce dispositif un miroir magnétique.

¬ Vérifiez que l’effet miroir est maintenu si la particule incidente n’arrive plus en A. On constate en revanche
que la particule n’emprunte plus le même chemin qu’à l’aller.

⋄
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4 Mécanique – chapitre 5. Correction du TD d’application

IV Imprimante jet d’encre

Dans un dispositif d’impression industriel, les goutte-
lettes d’encre sont chargées puis déviées de manière
contrôlée par un déflecteur électrostatique avant d’at-
teindre le support d’impression.

Un gouttelette de volume V = 10pL, de charge q =
3,4 × 10−14 C et de vitesse v0 = 20m·s−1 sur # »ux entre
en O dans le déflecteur, constitué de deux électrodes
planes portées aux potentiels électriques V1 et V2 et
générant un champ électrostatique uniforme

#»

E = E # »uy

avec E = 5,0× 105 V·m−1.

La longueur du déflecteur est L1 = 5,0 cm. Le support
d’impression se trouve à la distance L2 = 20 cm de la sor-
tie du déflecteur. L’encre est essentiellement constituée
d’eau, de masse volumique ρ = 1,0× 103 kg·m−3. Figure M5.4 – Schéma du déflecteur.

1 Quel est le signe de la tension V1 − V2 pour que la gouttelette d’encre soit effectivement déviée dans le sens des y
croissants ?

Réponse
La gouttelette est chargée positivement, et subit la force électrique

#»

F e = q
#»

E. Pour aller dans le sens des y croissants,
il faut que

#»

E soit selon # »uy, comme indiqué dans l’énoncé. Or,
#»

E = − #      »

gradV , donc
#»

E va des hauts potentiels vers
les bas potentiels ; il faut donc V1 > V2, soit

V1 − V2 > 0

⋄
2 Calculer la masse m de la gouttelette et montrer que l’on peut négliger son poids devant la force électrique de

Lorentz.
Réponse

La gouttelette a un volume V et une masse volumique ρ. On en déduit

m = ρV avec


ρ = 1,0× 103 kg·m−3

V = 10pL = 10× 10−12 (dm)
3

= 1,0× 10−11 (10
−1

m)
3

= 1,0× 10−14 m3

A.N. : m = 1,0× 10−11 kg

∥ #»

F e∥ = qE ≈ 1,7× 10−8 N et ∥ #»

P ∥ = mg ≈ 1,0× 10−10 N soit ∥ #»

F e∥ ≈ 200× ∥ #»

P ∥Soit

On peut donc négliger le poids devant la force de Lorentz.⋄
3 Appliquer la deuxième loi de Newton à la gouttelette entre les électrodes et déterminer l’équation de sa trajectoire.

En déduire le déplacement Y1 en sortie du déflecteur.
Réponse

On applique le PFD à la gouttelette dans le référentiel de la salle d’impression, supposé galiléen, avec un repère
cartésien tel qu’indiqué sur le schéma :

m #»a = q
#»

E ⇒


mẍ = 0

mÿ = 0

mz̈ = qE

⇒


ẋ = v0

ẏ =
qE

m
t
⇒


x(t) = v0t

y(t) =
qE

2m
t2

en intégrant une première fois avec ẋ(0) = v0 et ẏ(0) = 0, en ignorant le mouvement en z, puis en intégrant une
seconde fois, avec x(0) = 0 = y(0). On trouve alors l’équation de la trajectoire :

y(x) =
qE

2mv02
x2

qui est l’équation d’une parabole. Ainsi, on trouve Y1 = y(L1) :

Y1 = 5,3× 10−3 m = 5,3mm

⋄
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IV. Imprimante jet d’encre 5

4 Caractériser la trajectoire de la gouttelette après sa sortie du déflecteur, en négligeant son poids.
Réponse

Après être sortie du déflecteur, la gouttelette n’est soumise à aucune action sauf son poids, que l’on ignore sur la
durée du trajet restant (v0 = 20m·s−1) : sa trajectoire est donc rectiligne et uniforme.⋄

5 Exprimer puis calculer la déflexion angulaire θ. En déduire le déplacement Y2.
Réponse

On trouve l’angle de sortie en prenant

tan θ =
dy

dx
=

ẏ(L1)

ẋ(L1)
=

qEL1

mv02
= 2

Y1

L1

L’angle trouvé étant petit (θ ≈ 0,21 rad), tan θ ≈ θ ≈ sin θ. Or, on a

Y2 = Y1 + L2 sin θ

⇒ Y2 = Y1

(
1 + 2

L2

L1

)
avec

 Y1 = 5,3× 10−1 cm
L1 = 5,0 cm
L2 = 20 cm

A.N. : Y2 = 4,8 cm

⋄
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Mécanique – chapitre 5

Correction du TD d’entraînement

I Séparation isotopique

Le spectromètre de Dempster permet, entre autres, de
séparer les différents isotopes chargés d’un élément dans
un échantillon.

Considérons un faisceau de particules chargées, consti-
tué des ions de deux isotopes de mercure : 200

80Hg2+ et
202
80Hg

2+, notés respectivement (1) et (2). Ce faisceau sort
de la chambre d’ionisation avec une vitesse négligeable,
puis accéléré par une tension UPP ′ appliquée entre les
deux plaques P et P ′. Les ions traversent ensuite une
zone de déviation où règne un champ magnétique trans-
versal uniforme, tel que

#»

B = B # »uz. Figure M5.1 – Schéma du dispositif

On donne : mnucléon = 1,67 × 10−27 kg, mélectron négligeable devant mnucléon, |UPP ′ | = 10 kV, B = 0,10T et e =1,6× 10−19 C.

1 Quel doit être le signe de UPP ′ pour que les ions soient effectivement accélérés entre P et P ′ ?
Réponse

Les ions étant positifs, ils subissent la force
#»

F e = q
#»

E dans le même sens que
#»

E. Il faut donc que
#»

E soit selon # »uy. Or,
#»

E = − #      »

gradV indique que
#»

E va des hauts potentiels aux bas potentiels (
#      »

grad indique le sens des grandes variations,
− #      »

grad indique l’inverse) : on veut donc que VP soit plus grand que VP ′ , soit

UPP ′ = VP − VP ′ > 0

⋄
2 Exprimer les vitesses v1 et v2 des isotopes suite à l’accélération.

Réponse
L’ion, assimilable à un point matériel Mi, de masse mi, est soumis dans le référentiel du laboratoire supposé galiléen
à la force électrique qui est conservative. Donc le système est conservatif : Em(P ) = Em(P ′). L’énergie potentielle
électrique s’écrit Ep = qV (on prend la constante nulle), on part à vitesse nulle et on accélère jusqu’à P ′, d’où

qV (P ) =
1

2
mivi

2 + qV (P ′) ⇒ vi =

√
2qUPP ′

mi

⋄
3 Déterminer les trajectoires des ions dans la zone de déviation. Exprimer les rayons R1 et R2 des trajectoires.

Réponse

1 Système et référentiel : {particule} masse m charge q dans Rlabo supposé galiléen.

2 Repère et repérage :

⋄ Repère : (M(t), #  »uT ,
#  »uN ) avec

#»

B = B # »uz avec
#»

B ⊥ #»v0

⋄ Repérage :

#»v0
#  »uT (0)

#»

B = B # »uz

# »uz

#   »

Fm(0)

#  »uN (0)

•
M(0)
q > 0

Figure M5.2 – 4
#»v (t) = v(t) #  »uT

#»a (t) = v̇(t) #  »uT +
v2(t)

R(t)
#  »uN

P(
#   »

Fm) = 0 ⇔ Ec(t) = cteOr,

#»v (t) = v0
#  »uT et #»a (t) =

v0
2

R(t)
#  »uNDonc

3 BDF :
#   »

Fm = q
(

#»v (t) ∧ #»

B
)
= qBv0 (

#  »uT ∧ # »uz)

5 PFD : m #»a (t) =
#   »

Fm ⇔ mv �C20
R(t)

#  »uN = qB��ZZv0 (
#  »uT ∧ # »uz) ⇔

mv0
R(t)

#  »uN = qB ( #  »uT ∧ # »uz)
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8 Mécanique – chapitre 5. Correction du TD d’entraînement

Planéité
#  »uN = #  »uT ∧ # »uz soit #  »uN ∧ # »uz ∀t

#  »uT ⊥ #  »uN donc #  »uT ⊥ # »uz ∀t ■Or,

Autrement dit, ( #  »uT (0),
#  »uN (0)) donne le plan de la tra-

jectoire ∀t : la trajectoire de M(t) s’effectue dans
le plan constant perpendiculaire à

#»

B !

Circularité

En reprenant le PFD en norme, on a

mv0
R(t)

= |q|B ⇔ R(t) = Rc =
mv0

|q|B
■

La trajectoire est donc un cercle de rayon constant Rc.

⋄
4 On recueille les particules sur une plaque photographique sous P ′ après leur demi-tour. Exprimer puis calculer la

distance d entre les deux traces observées.
Réponse

d =
2
√
2

B

√
U

q
(
√
m2 −

√
m1)Graphiquement, d = 2(R2 −R1), soit

⋄
II Cyclotron Inspiré CCP PC 2014, oral banque PT

Un cyclotron est formé de deux enceintes demi-cylindriques D1 et D2, appelées dees en anglais, séparées d’une
zone étroite d’épaisseur a. Les dees sont situés dans l’entrefer d’un électroaimant qui fournit un champ magnétique
uniforme

#»

B = B #»ez, de norme B = 1,5T. Une tension sinusoïdale d’amplitude Um = 200 kV est appliquée entre les
deux extrémités de la bande intermédiaire, si bien qu’il y règne en champ électrique orienté selon #»ex.

On injecte des protons de masse m = 1,7 × 10−27 kg au sein de la zone intermédiaire avec une vitesse initiale
négligeable.

Figure M5.3 – Schéma de principe.
Figure M5.4 – Photon du cyclotron de l’université de
Rutgers, mesurant ≈ 30 cm en diamètre.

1 Montrer qu’à l’intérieur d’un dee, la norme de la vitesse des protons est constante.
Réponse

⋄ Système : proton, assimilé à un point matériel de masse m et de charge q.

⋄ Référentiel : lié au cyclotron, donc référentiel du laboratoire supposé galiléen.

⋄ BDF :

négligeable devant
#»

FPoids
#»

F = e(
#»

E + #»v ∧ #»

B)Force de Lorentz

À l’intérieur des dees, seule la force magnétique
#»

Fm = e #»v ∧ #»

B existe. Ainsi, d’après le TPC,

dEc
dt

= e #»v ∧ #»

B
⊥ #»v

· #»v

=0

= 0 soit mv
dv

dt
= 0 d’où

dv

dt
= 0

⋄
2 En déduire le rayon de courbure R de la trajectoire des protons ayant une vitesse v ainsi que le temps que passe un

proton dans un dee.
Réponse
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II. Cyclotron Inspiré CCP PC 2014, oral banque PT9

La trajectoire d’un proton dans un champ magnétique est un arc de cercle,
parcouru à vitesse constante. Utilisons un repérage polaire, centré sur le
centre de l’arc de cercle :

#     »

OM(t) = R # »ur

#»v (t) = Rθ̇(t) # »uθ = −v # »uθ

#»a (t) = −Rθ̇(t)2 = −v2

R
# »ur

En effet, θ̇ < 0 car le proton tourne dans le sens horaire avec
#»

B vers le haut
(à retrouver par la cohérence des signes en appliquant le PFD ou par dessin
de la force sur le schéma). De plus, d’après la deuxième loi de Newton,

m #»a = e #»v ∧ #»

B

m

(
−v2

R
# »ur

)
= evB (− # »uθ ∧ # »uz)

= # »ur

= −evB #»ersoit

mv2

R
= evB d’où R =

mv

eB
Finalement,

La trajectoire dans un des dee est ainsi un demi-cercle, de longueur πR et, puisque la vitesse est constante,
parcourue en un temps

∆td =
πR

v
=

πm

eB
= 22ns

On remarque ainsi que ∆td ne dépend pas de la vitesse du proton, mais seulement du champ appliqué dans le dee
(en plus des variables intrinsèques au proton, e et m). ⋄

3 Quelle doit être la fréquence f de la tension pour que le proton soit accéléré de façon optimale à chaque passage
entre les dee ? Pour simplifier on pourra supposer a ≪ R. Justifier le choix d’une tension harmonique au lieu, par
exemple, d’une tension créneau.

Réponse
Pour que le proton soit accéléré de façon optimale à chaque passage entre les dees, il faut que la force électrique qu’il
subit soit alternativement orientée selon + # »ux lorsqu’il passe de D2 à D1, et selon − # »ux en passant de D1 à D2. En
négligeant le temps de passage dans l’espace entre les dees (a ≪ πR), il faut donc qu’une demi-période de la tension
appliquée soit égale à ∆td, soit pour une période entière :

T = 2∆td =
2πm

eB
et f =

eB

2πm
= 23MHz

Utiliser une tension harmonique plutôt qu’une tension créneau a l’intérêt de regrouper tous les protons pour que leur
passage dans les dees soit en phase avec la tension. Regrouper les protons permet aux impulsions du faisceau d’être
plus puissantes. De plus, en pratique, un tension créneau requiert beaucoup d’harmoniques qu’il peut ne pas être
simple d’imposer à de telles fréquences. ⋄

4 Exprimer en fonction de n la vitesse vn puis le rayon Rn de la trajectoire d’un proton après n passages dans la zone
d’accélération. Le demi-cercle n = 1 est celui qui suit la première phase d’accélération.

Réponse
Jusqu’à présent, nous avons relié le rayon à la vitesse du proton. Il faut donc maintenant relier la vitesse du proton au
nombre de passage dans les dees, ou plutôt au nombre de passage dans la zone accélératrice. Comme on ne s’intéresse
qu’à la norme, le théorème de l’énergie cinétique est le plus adapté. Appliquons ce théorème sur une trajectoire
entre la sortie d’un dee et l’entrée de l’autre, en supposant que le passage du proton se fait au moment où la tension
atteint son maximum (justifié par la question précédente), et en supposant aussi que la durée de passage dans la zone
accélératrice est négligeable devant la période de la tension, ce qui permet de supposer que la tension est presque
constante égale à Um. Sous ces hypothèses, on trouve :

1

2
mvn+1

2 − 1

2
mvn

2 = W(
#»

F e) = e
Um

a
a

En raisonnant par récurrence, on obtient

1

2
mvn

2 − 1

2
mv0

2 ≈ 1

2
mvn

2 = neUm soit vn =

√
2neUm

m
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10 Mécanique – chapitre 5. Correction du TD d’entraînement

et en utilisant le résultat d’une question précédente,

Rn =
m

eB

√
2neUm

m
soit Rn =

√
2nmUm

B2e

⋄
5 Calculer numériquement le rayon de la trajectoire après un tour (donc un passage dans chaque dee), puis après dix

tours.
Réponse

Remarquons bien que n compte le nombre de passages dans la zone accélératrice, faire un tour complet revient donc
à passer de n à n+ 2. Après un seul tour, n = 2, et

v2 =

√
4eUm

m
et R2 = 2

√
mUm

eB2
= 6,1 cm

Après dix tours, n = 20 et

R20 =
√
10R2 = 19 cm

⋄
Le rayon de la dernière trajectoire décrite par les protons accélérés avant de bombarder une cible est RN = 35 cm.

6 Déterminer l’énergie cinétique du proton avant le choc contre la cible proche du cyclotron, puis le nombre de tours
parcourus par le proton.

Réponse
Avec RN = 35 cm, la vitesse finale vaut

vfin =
eBRN

m
d’où Ec,fin =

e2B2RN
2

2m
= 2,1× 10−12 J = 14MeV

puis

Ec,fin = NeUm d’où N =
Ec,fin

eUm
= 33

ce qui correspond à 16 tours et demi au sein du cyclotron.⋄
III Chambre à bulles

La chambre à bulles est un dispositif mis au point en 1952 par Donald Arthur Glaser (prix Nobel 1960), et destiné
à visualiser des trajectoires de particules subatomiques. Il s’agit d’une enceinte remplie d’un liquide (généralement
du dihydrogène) à une température légèrement supérieure à celle de vaporisation : le passage d’une particule chargée
déclenche la vaporisation et les petites bulles formées ainsi matérialisent la trajectoire de la particule.

L’ensemble est plongé dans un champ magnétique uniforme et stationnaire, qui courbe les trajectoires et permet
ainsi d’identifier les particules (à partir de leur masse et de leur charge).

On étudie ici une particule P de masse m, de charge q (positive ou négative), introduite à t = 0 dans la chambre à
bulles où règne le champ

#»

B = B #»ez (avec B > 0). Sa position initiale est l’origine O du repère, et sa vitesse initiale est
#»v0 = v0

#»ey (avec v0 > 0). Le poids de la particule est négligé dans tout le problème. Le référentiel du laboratoire est
supposé galiléen.

Dans un premier temps, on suppose que les frottements du liquide sur la particule P sont négligeables.

1 Établir les équations différentielles du mouvement de P. On posera ω = qB/m.
Réponse

Dans le référentiel terrestre supposé galiléen, la particule P n’est soumise qu’à la force magnétique
#»

F = q #»v ∧ #»

B, en
négligeant le poids devant cette force. Avec le principe fondamental de la dynamique, on trouve


mẍ = qẏ(t)B

mÿ = −qẋ(t)B

mz̈ = 0

⇔


ẍ(t) =

qB

m
ẏ(t)

ÿ(t) = −qB

m
ẋ(t)

z̈(t) = 0
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III. Chambre à bulles 11

soit 
ẍ(t) = +ωẏ(t)

ÿ(t) = −ωẋ(t)

z̈(t) = 0

(M5.1)
(M5.2)
(M5.3)

⋄
2 En déduire les équations horaires de P et indiquer précisément la nature de sa trajectoire. Représenter sur un même

schéma les trajectoires d’un proton (charge q = +e et masse mp) et d’un électron (q = −e et me ≪ mp).
Réponse

L’équation M5.3 donne successivement ż = cte = 0 puis z = cte = 0 : le mouvement a donc lieu dans le plan (Oxy).

Pour les équations horaires, on intègre une fois les deux premières équations M5.1 et M5.2 :{
ẍ(t) = ωẏ(t)

ÿ(t) = −ωẋ(t)
⇔

{
ẋ(t) = ωy(t) +K

ẏ(t) = −ωx(t) +K ′

ẋ(0) = 0 or ẋ(0) = ω y(0)

=0

+K = K donc K = 0Conditions initiales :

ẏ(0) = v0 or ẏ(0) = −ω x(0)

=0

+K ′ = K ′ donc K ′ = v0et

{
ẋ(t) = ωy(t)
ẏ(t) = −ωx(t) + v0

Soit {
ẍ(t) + ω2x(t) = ωv0

ÿ(t) + ω2y(t) = 0
On inject ẏ dans M5.1 et inversement :

x(t) =
v0
ω

(1− cos(ωt)) et y(t) =
v0
ω

sin(ωt)D’où les solutions (
x− v0

ω

)2

+ y2 =
(v0
ω

)2

Donnant l’équation cartésienne :

correspondant à l’équation d’un cercle de centre Ω
(
v0
ω ,0,0

)
et de rayon R = v0

|ω| =
mv0

|q|B .

Figure M5.5 – Trajectoires pour un proton et un électron.
Pour un proton, v0

ω
= mv0

qB
> 0, donc la trajectoire est à droite,

et le mouvement se fait dans le sens horaire.
À l’inverse, pour l’électron la trajectoire est à gauche et se fait
dans le sens direct, mais avec un rayon beaucoup plus petit
puisque proportionnel à m.

⋄
Les frottements du liquide sont maintenant modélisés par la force

#»

F = −λ #»v P avec λ une constante positive. On
pose α = λ/m.

3 Établir les nouvelles équations différentielles du mouvement (avec les paramètres ω et α). Montrer que le mouvement
reste plan.

Réponse
On réemploie le PFD :

m #»a = q #»v ∧ #»

B − λ #»v ⇔


mẍ = +qBẏ − λẋ

mÿ = −qBẋ− λẏ

mz̈ = −λż
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12 Mécanique – chapitre 5. Correction du TD d’entraînement

soit 
ẍ = +ωẏ − αẋ

ÿ = −ωẋ− αẏ

z̈ = −αż

(M5.4)
(M5.5)
(M5.6)

Le mouvement reste plan, puisque la solution de l’équation M5.6 est ż(t) = D exp(−αt), mais que ż(0) = 0 ⇒ D = 0,
soit z = cte = 0 .

⋄
4 Déterminer complètement les équations horaires de P. On pourra poser la variable complexe u = x+jy, et déterminer

tout d’abord u̇.
Réponse

En posant, comme suggéré, u = x+ jy, on combine (M5.4)+ j(M5.5) pour avoir

ü+ (α+ jω)u̇ = 0

qui est une équation différentielle d’ordre 2 sans ordre 0, donc d’ordre 1 en u̇ : on trouve donc les solutions
avec une simple exponentielle :

u̇(t) = A exp(−(α+ jω)t)

avec u̇(0) = 0 + jv0 = A soit u̇(t) = jv0 exp(−(α+ jω)t)

ainsi u(t) =
jv0

−(α+ jω)
exp(−(α+ jω)t) +B or u(0) = 0 ⇔ B =

jv0
α+ jω

finalement u(t) =
jv0

α+ jω
(1− exp(−(α+ jω)t))

En mettant la fraction avec un dénominateur réel et en séparant les exponentielles :

u(t) =
jv0α+ v0ω

α2 + ω2
(1− exp(−αt) exp(−jωt))

puis en prenant la partie réelle pour obtenir x(t) et la partie imaginaire pour obtenir y(t) (attention à bien
distribuer la fraction),

x(t) =
v0ω

α+ω2
(1− exp(−αt) cos(ωt))− v0α

α2 + ω2
exp(−αt) sin(ωt)

y(t) =
v0ω

α+ω2
exp(−αt) sin(ωt) +

v0α

α2 + ω2
(1− exp(−αt) cos(ωt))

⋄
5 Déterminer les coordonnées du point asymptotique P+∞ = P(t → ∞). Représenter sur un schéma la trajectoire d’un

proton.
Réponse

Pour t → ∞, le point d’asymptote est

P∞ =


v0ω

α2 + ω2

v0α

α2 + ω2

0



La particule tourne toujours à cause des facteurs sinusoïdaux, mais le
rayon de courbure diminue exponentiellement : la trajectoire est une spirale,
tournant toujours vers la droite pour un proton, et s’enroulant autour du
point P∞.

⋄
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