Mécanique — chapitre 5

Correction du TD d’application

o I | Mouvements simples de particules chargées

On considére une particulg) ponctuelle, de charge q et d_q masse m, de vitesse initiale 73 & I’entrée d’une zone ot
régnent un champ électrique E' ou un champ magnétique B. On suppose ces champs uniformes et indépendants du
temps, et on néglige toute autre force que celles provoquées par ces champs.

On suppose dans un premier temps que la particule décrit une droite et posséde une accélération constante a.

Déterminer la direction et la norme du ou des champs qui provoquent cette trajectoire.

Réponse

On étudie la particule M de masse m et de charge ¢ assimilée & un point matériel dans le référentiel du laboratoire
supposé galiléen. Cette particule est soumise a la force de LORENTZ

F=q¢E+7TAD)
La trajectoire est rectiligne et uniformément accélérée, soit

—
dv — —> —

— =d=cte = TV=at+v
dt 0

La norme de ¥ varie, donc 1’énergie cinétique aussi. Or, seule la force électrique travaille ', le champ est un
donc champ électrique. De plus, pour que la trajectoire soit rectiligne, il faut, d’aprés 'expression de U (t), que @
soit colinéaire & vg. Or,

—

i="1E

3=

=1 e s e . —
donc E est colinéaire a vg.

&

Déterminer la position OM du point en fonction du temps. On notera O—M)o la position initiale.

Réponse

On note O Dorigine du repére. On intégre 1'expression de la vitesse pour avoir la position OM de la particule :

OM = L2 E + 1w+ OM,
2m

&

La particule décrit maintenant une trajectoire circulaire de rayon Ry, dans un plan xOy.

Déterminer la direction du ou des champs qui provoquent cette trajectoire.

Réponse

La trajectoire circulaire est celle d'une charge dans un champ magnétique perpendiculaire a la vitesse initiale. On en
déduit que B est suivant Oz et que vy est dans le plan z0Oy.

&

Déterminer ’équation de la trajectoire et la relation entre la norme du champ, vy et Rg. On suggére d’utiliser les
coordonnées polaires.

Réponse

La trajectoire étant circulaire, la vitesse en coordonnées polaires a pour expression ¥ = Rof(t)ug et accélération se
réduit & _ B

@ = —Ro0(t)*u, + Rob(t)ug
Le principe fondamental de la dynamique, appliqué a la charge ¢ dans le référentiel d’étude que ’on supposera
galiléen, s’écrit :

Or, B = Bu.. Par conséquent, qu A

1. La force de LOrRENTZ magnétique g(U A B)) est perpendiculaire & ¥ donc & la trajectoire
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2 Mécanique — chapitre 5. Correction du TD d’application

Sl qUAB = ¢BRyO(t) uy

En projetant le PFD sur la base polaire (u,.,ug), il vient :
—mRof(t)* = qRof(t) B
Roﬁ(t) 0

On obtient alors

) B B
0t)= - =cte = 00)=-LCt 40,
m m

Si la charge est positive, elle tourne dans le sens anti-trigonométrique (horaire) par rapport a Oz. Puisque G(t) est
constante, le mouvement et circulaire uniforme et vy = Ro‘ﬁ(t)| (c’est une norme donc nécessairement positive!) d’out

muvg

Ry = B

&

II | Filtre de vitesse

Y

Un ion de masse m et de charge ¢ pénétre dans un filtre par £ o fE Py
la fente F; avec un vecteur vitesse U = voug. 1l y régne un (&—> (o) x
champ électrique E = Eu, et un champ magnétique B — z B

Bu, uniformes et stationnaires.

FIGURE M5.1 — Schéma du filtre de vitesse.

Ecrire la force de LORENTZ alors ressentie par ion.

Réponse

Dans le référentiel du laboratoire, le systéme {ion} repéré par son point matériel M de masse m et de charge ¢ dans
un repére cartésien (F,u,,u,,u,) est soumis & la force de LORENTZ, telle que

FZ(](E‘FU/\E)
= qEuy + qBvg (ug A u?)
| P

—
=T Uy

@F:q(E—BUO)E;

&

A quelle condition I'ion peut-il avoir une trajectoire rectiligne ’amenant & passer a travers la fente Fb ?

Réponse

Pour avoir une trajectoire rectiligne sur u, il faut que la somme des forces s’appliquant sur 'ion soit nulle. Ainsi, en
négligeant le poids devant la force de LORENTZ, il faut que la force de LORENTZ soit nulle.

Exprimer en fonction de F et B la vitesse vy lui permettant d’atteindre la fente Fy. Justifier le nom du dispositif.

Réponse
La condition précédente avec I’équation de la premiére question améne a

E
E—-—vypwB=0& 'UOZE

Ainsi, si le vecteur vitesse de la particule n’est pas égal & vyt alors elle sera déviée et ne passera pas par la fente
F5 : on filtre effectivement les vitesses.
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III. Déviation d’'un électron 3

e | III | Déviation d’un électron

Un électron pénétre en A avec une vitesse initig)le vy dans
la zone grisée ou régne un champ magnétique B uniforme
et stationnaire. On suppose que la zone ou régne le champ
magnétique est trés grand de telle sorte que la particule ne
peut que ressortir par les cotés AC ou AD.

FiIGURE M5.2 — Schéma de la situation.

Quelle est la trajectoire de la particule dans la zone grisée 7 On précisera les caractéristiques de cette trajectoire.

Réponse

La part_igule arrive dans un champ magnétique uniforme et stationnaire B = cte avec une vitesse vy = vge, orthogo-
nale & B. La trajectoire est donc un cercle de rayon R = mug/(qBy), avec By = IBI. La force en A est dirigée vers
le bas, on en déduit la position du centre C; de la trajectoire.

D v
“/r\ .
= B
_ 3 E1C ®
Vo
—_— - -3
e ‘ —
B E YF
€y \_(y
€y C

FiGURE M5.3 — Trajectoire dans la zone.

&

Par quelle face ressort la particule ? Quelle est la direction de la vitesse ?

Réponse

La particule ressort par la face AC en E, avec une vitesse selon e, car le triangle AC1E est isocele et rectangle en

Cr.
&

Que se passe-t-il ensuite 7 Quel nom donneriez-vous a ce dispositif ?

Réponse

En dehors de la zone grisée, la particule est isolée, donc elle est animée d’un mouvement rectiligne uniforme
(U = voe, = cte) dans le référentiel du laboratoire supposé galiléen.

La particule entre a nouveau dans le zone ol régne le champ magnétique par la face AD, avec une vitesse U = vgé,,.
La trajectoire est alors circulaire de méme rayon R (car la vitesse est la méme en norme). On représente la force
magnétique en G, et on en déduit le position Cy du centre de la trajectoire. La particule arrive en A avec la vitesse
T = —vpe, et sort de la zone grisée.

Au final, la particule a subi une déviation de 7w, comme si elle avait été réfléchie par un miroir. On pourrait donc
appeler ce dispositif un miroir magnétique.

(? Vérifiez que D'effet miroir est maintenu si la particule incidente n’arrive plus en A. On constate en revanche
que la particule n’emprunte plus le méme chemin qu’a 'aller.

&
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Mécanique — chapitre 5. Correction du TD d’application

IV | Imprimante jet d’encre

Dans un dispositif d’impression industriel, les goutte-
lettes d’encre sont chargées puis déviées de maniére
controlée par un déflecteur électrostatique avant d’at-
teindre le support d’impression.

Un gouttelette de volume V = 10pL, de charge ¢ =
3,4 x 10714 C et de vitesse vg = 20m-s~! sur u, entre
en O dans le déflecteur, constitué de deux électrodes
planes portées aux potentiels électriques V; et Vo et
générant un champ électrostatique uniforme £ = Eu,
avec £ =5,0 x 10°V-m~1.

La longueur du déflecteur est L; = 5,0 cm. Le support
d’impression se trouve a la distance Ly = 20 cm de la sor-
tie du déflecteur. L’encre est essentiellement constituée
d’eau, de masse volumique p = 1,0 x 103kg-m 3.

FIGURE M5.4 — Schéma du déflecteur.

Quel est le signe de la tension V; — V5 pour que la gouttelette d’encre soit effectivement déviée dans le sens des y

croissants ?

Réponse

La gouttelette est chargée positivement, et subit la force électrique F)e = gE . Pour aller dans le sens des y croissants,
il faut que E soit selon i, comme indiqué dans 1'énoncé. Or, E = —grad V, donc E va des hauts potentiels vers

les bas potentiels; il faut donc Vi > V5, soit

&

Calculer la masse m de la gouttelette et montrer que 'on peut négliger son poids devant la force électrique de

LORENTZ.

Réponse

La gouttelette a un volume V' et une masse volumique p. On en déduit

m=pV | avec

p=1,0x10>kgm™3

V =10pL = 10 x 10712 (dm)*

=1,0 x 10711 (10~ "m)?
=1,0x 1074 m3

AN. ¢ |m=10x10""kg|

Soit |F. =g ~1,7x108N et [Pl =

mg~1,0x1071°N  soit ||| F.| ~ 200 x [Pl

On peut donc négliger le poids devant la force de LORENTZ.

&

Appliquer la deuxiéme loi de NEWTON a la gouttelette entre les électrodes et déterminer ’équation de sa trajectoire.

En déduire le déplacement Y; en sortie du déflecteur.

Réponse

On applique le PFD a la gouttelette dans le référentiel de la salle d’impression, supposé galiléen, avec un repére

cartésien tel qu’indiqué sur le schéma :
mx =0
ma = qﬁ =<¢(mij=0
mzZ=qF

T =g z(t) = vot

= E = E
j= 12 (t) = =42

m 2m

en intégrant une premiére fois avec ©(0) = vy et §(0) = 0, en ignorant le mouvement en z, puis en intégrant une
seconde fois, avec 2(0) = 0 = y(0). On trouve alors ’équation de la trajectoire :

y()

&,
T
2mv02

qui est I’équation d’une parabole. Ainsi, on trouve Y;

=y(L1) :

Vi =53x10m=53mm|

&
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IV. Imprimante jet d’encre 5

Caractériser la trajectoire de la gouttelette aprés sa sortie du déflecteur, en négligeant son poids.

Réponse

Aprés étre sortie du déflecteur, la gouttelette n’est soumise a aucune action sauf son poids, que ’on ignore sur la
durée du trajet restant (vg = 20m-s™1) : sa trajectoire est donc rectiligne et uniforme.

&

Exprimer puis calculer la déflexion angulaire #. En déduire le déplacement Y5.

Réponse

On trouve l'angle de sortie en prenant

ang = 0 _ ) _aBL_ Y,

de — &#(Ly)  mee? Iy

L’angle trouvé étant petit (6 = 0,21rad), tanf =~ 6 ~ sinf. Or, on a

YQ :n+LQSiH0

I Y =53x10"'cm
=Y, =V (1 + 2L2) avec L =5,0cm
1 Ly = 20cm

O
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Mécanique — chapitre 5

Correction du TD d’entrainement

R ‘ | |Séparation isotopique

Le spectrométre de DEMPSTER permet, entre autres, de
séparer les différents isotopes chargés d’un élément dans
un échantillon.

P P!
Chambre | I
d'ionisation |

Considérons un faisceau de particules chargées, consti-
tué des ions de deux isotopes de mercure : “30Hg>* et
20%Hg?* | notés respectivement (1) et (2). Ce faisceau sort
de la chambre d’ionisation avec une vitesse négligeable,
puis accéléré par une tension Upps appliquée entre les
deux plaques P et P’. Les ions traversent ensuite une
zone de déviation ou régne un champ magnétique trans-

versal uniforme, tel que B = Bu,.

O%

Y

L
A
O x 2!

FiGURE M5.1 — Schéma du dispositif

bh H&Qﬁelgzcmnudéon = 1,67 x 10727 kg, Malectron négligeable devant muucicon, |Upp/| = 10kV, B = 0,10T et e =

Quel doit étre le signe de Upps pour que les ions soient effectivement accélérés entre P et P’ 7

Réponse

Les ions étant positifs, ils subissent la force F e = qE dans le méme sens que E. 1l faut donc que E soit selon . Or,
— —— — —
E = —grad V indique que F va des hauts potentiels aux bas potentiels (grad indique le sens des grandes variations,
—grad indique linverse) : on veut donc que Vp soit plus grand que Vp/, soit

Upp =Vp —Vp: >0

&

Exprimer les vitesses vy et vy des isotopes suite & 1’accélération.

Réponse

L’ion, assimilable & un point matériel M;, de masse m;, est soumis dans le référentiel du laboratoire supposé galiléen
a la force électrique qui est conservative. Donc le systéme est conservatif : &,,(P) = &,,(P’). L’énergie potentielle
électrique s’écrit &, = gV (on prend la constante nulle), on part & vitesse nulle et on accélére jusqu’a P’, d’ou

1 2qUppr
qV(P) = §mwi2 +qV(P) = |v= \/?

&

Déterminer les trajectoires des ions dans la zone de déviation. Exprimer les rayons R; et Ry des trajectoires.

Réponse

B =B
Systéme et référentiel : {particule} masse m charge ¢ dans Riapo supposé galiléen.

Repére et repérage :

& Repére : (M(t), a7, uy) avec DB =DBu, avec B Lug

q>0
un(0)

Or, P(Fr) =0 E,(t) = cte

<& Repérage : m(o)
FiGUure M5.2 —
T(t) =v(t)ur ;
— —> 2 t — : — 2 —
a(t) = o(t)ur + 1;%((]5)) uN 3 Donc  U(t) =vour et (t) = ;%}(Et) uN
BDF : Fo=aq(F() A B) = qBuo (i A @)
— = muvg —s — , —> muvy —» — , —>
PFD : ma(t):FmﬁmuquBy((uT/\uz)ﬁﬁtguNqu(uT/\uz)
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8 Mécanique — chapitre 5. Correction du TD d’entrainement

uy =ur Au, soit uny Aus vt En reprenant le PFD en norme, on a
Autrement dit, (#7(0),un(0)) donne le plan de la tra- R(t) 19| B

jectoire Vt : la trajectoire de M(t) s’effectue dans

le plan constant perpendiculaire a B!

Or, ur Luy donc wup Lu, vt [
3 La trajectoire est donc un cercle de rayon constant R..

&

On recueille les particules sur une plaque photographique sous P’ aprés leur demi-tour. Exprimer puis calculer la
distance d entre les deux traces observées.

Réponse

: : 2v2 U
Graphiquement, d = 2(Ry — Ry), soit d= 5 —(v/m2 — y/mq)
q
&

II CYClOtI'Ol’l Inspiré CCP PC 2014, oral banque PT

Un cyclotron est formé de deux enceintes demi-cylindriques Dy et Do, appelées dees en anglais, séparées d’une
zone étroitﬁ d’épaisseur a. Les dees sont situés dans I’entrefer d’un électroaimant qui fournit un champ magnétique
uniforme B = Be, de norme B = 1,5T. Une tension sinusoidale d’amplitude U,, = 200kV est appliquée entre les
deux extrémités de la bande intermédiaire, si bien qu’il y régne en champ électrique orienté selon .

On injecte des protons de masse m = 1,7 x 10727 kg au sein de la zone intermédiaire avec une vitesse initiale

négligeable. a

s
Uy
z Dy
FiGUuRE M5.4 — Photon du cyclotron de I'université de
FIGURE M5.3 — Schéma de principe. RUTGERS, mesurant ~ 30 cm en diametre.

Montrer qu’a l'intérieur d’un dee, la norme de la vitesse des protons est constante.

Réponse

<& Systéme : proton, assimilé & un point matériel de masse m et de charge q.

< Reéférentiel : lié au cyclotron, donc référentiel du laboratoire supposé galiléen.

<& BDF :
Poids négligeable devant I
Force de LORENTZ F= e(E + T A E)

A Dintérieur des dees, seule la force magnétique Fm = eU A D existe. Ainsi, d’aprés le TPC,

dngeB’/\E@’zO soit mv@:() d’ou d—U:O
a LS ar at
=0

&

En déduire le rayon de courbure R de la trajectoire des protons ayant une vitesse v ainsi que le temps que passe un
proton dans un dee.

Réponse
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II. Cyclotron Inspiré CCP PC 2014, oral banque P9

La trajectoire d’un proton dans un champ magnétique est un arc de cercle,
parcouru a vitesse constante. Utilisons un repérage polaire, centré sur le
centre de ’arc de cercle :

e

OM(t) = Ru,
T(t) = RO(t)ug = —ving
— A 2 U2 —
a(t)y=—RO(t) = —glr u,
En effet, § < 0 car le proton tourne dans le sens horaire avec B vers le haut uz

(a retrouver par la cohérence des signes en appliquant le PFD ou par dessin
de la force sur le schéma). De plus, d’aprés la deuxiéme loi de NEWTON,

N
ma =ev AB

2
vt — —> —
soit m (—u,) = evB (—ug Nu,) = —evBe,
R —>
=u,
Finalement B don |R= Y
inalement, — =cv oll = —
R eB

La trajectoire dans un des dee est ainsi un demi-cercle, de longueur 7R et, puisque la vitesse est constante,
parcourue en un temps

R
Atd:ﬂ-—:m:22ns
v eB

On remarque ainsi que Aty ne dépend pas de la vitesse du proton, mais seulement du champ appliqué dans le dee
(en plus des variables intrinséques au proton, e et m).

Quelle doit étre la fréquence f de la tension pour que le proton soit accéléré de fagcon optimale & chaque passage
entre les dee 7 Pour simplifier on pourra supposer a < R. Justifier le choix d’une tension harmonique au lieu, par
exemple, d’une tension créneau.

Réponse

Pour que le proton soit accéléré de fagcon optimale a chaque passage entre les dees, il faut que la force électrique qu’il
subit soit alternativement orientée selon +u, lorsqu’il passe de Dy & Dj, et selon —u, en passant de Dy & Do. En
négligeant le temps de passage dans 'espace entre les dees (a < mR), il faut donc qu'une demi-période de la tension
appliquée soit égale & Aty, soit pour une période entiére :

2 B
T=2Atg= T2 ot |f=-"" —923MHz
eB m

Utiliser une tension harmonique plutot qu'une tension créneau a l'intérét de regrouper tous les protons pour que leur
passage dans les dees soit en phase avec la tension. Regrouper les protons permet aux impulsions du faisceau d’étre
plus puissantes. De plus, en pratique, un tension créneau requiert beaucoup d’harmoniques qu’il peut ne pas étre
simple d’imposer a de telles fréquences.

&

Exprimer en fonction de n la vitesse v, puis le rayon R,, de la trajectoire d’un proton aprés n passages dans la zone
d’accélération. Le demi-cercle n = 1 est celui qui suit la premiére phase d’accélération.

Réponse

Jusqu’a présent, nous avons relié le rayon a la vitesse du proton. Il faut donc maintenant relier la vitesse du proton au
nombre de passage dans les dees, ou plutdot au nombre de passage dans la zone accélératrice. Comme on ne s’intéresse
qu’a la norme, le théoréeme de I’énergie cinétique est le plus adapté. Appliquons ce théoréme sur une trajectoire
entre la sortie d'un dee et 'entrée de 'autre, en supposant que le passage du proton se fait au moment ou la tension
atteint son maximum (justifié par la question précédente), et en supposant aussi que la durée de passage dans la zone
accélératrice est négligeable devant la période de la tension, ce qui permet de supposer que la tension est presque
constante égale a U,,. Sous ces hypothéses, on trouve :

1 1 - Un
§mvn+12 — §mvn2 =W(F,) = e—=a

En raisonnant par récurrence, on obtient

1 1 1 2nel,
Zmuy? — —mug? & —mwu,? = nel,, soit v, = \/ m
2 2 2 m
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10 Mécanique — chapitre 5. Correction du TD d’entrainement

et en utilisant le résultat d’une question précédente,

m  [2neU,, . 2nmU,,
n — 5 t n —
R B - soi R \/ B2,

&

Calculer numériquement le rayon de la trajectoire aprés un tour (donc un passage dans chaque dee), puis aprés dix
tours.

Réponse

Remarquons bien que n compte le nombre de passages dans la zone accélératrice, faire un tour complet revient donc
a passer de n & n + 2. Aprés un seul tour, n = 2, et

46Um mUm
t =2
m ¢ e eB?

Vg = =6,1cm

Aprés dix tours, n = 20 et

‘Rgo =V10R, = 19cm‘
O

Le rayon de la derniére trajectoire décrite par les protons accélérés avant de bombarder une cible est Ry = 35 cm.

@ Déterminer ’énergie cinétique du proton avant le choc contre la cible proche du cyclotron, puis le nombre de tours
parcourus par le proton.

Réponse
Avec Ry = 35cm, la vitesse finale vaut
BR 2B2RyN?
Vin = N dott | Eepin = N =21 x 10712 ] = 14 MeV
m 2m
puis
N 80 fin
8cin = NeU,, dou N=——=33
’ eUp,

ce qui correspond & 16 tours et demi au sein du cyclotron.

&

& | IIT | Chambre a bulles

La chambre a bulles est un dispositif mis au point en 1952 par Donald Arthur GLASER (prix NOBEL 1960), et destiné
a visualiser des trajectoires de particules subatomiques. Il s’agit d’une enceinte remplie d’un liquide (généralement
du dihydrogéne) a une température légérement supérieure a celle de vaporisation : le passage d’une particule chargée
déclenche la vaporisation et les petites bulles formées ainsi matérialisent la trajectoire de la particule.

L’ensemble est plongé dans un champ magnétique uniforme et stationnaire, qui courbe les trajectoires et permet
ainsi d’identifier les particules (& partir de leur masse et de leur charge).

Oun étudie ici une particule P de masse m, de charge ¢ (positive ou négative), introduite a ¢ = 0 dans la chambre a
bulles ot régne le champ B= Be; (avec B > 0). Sa position initiale est 1'origine O du repére, et sa vitesse initiale est
15 = voe, (avec vy > 0). Le poids de la particule est négligé dans tout le probléme. Le référentiel du laboratoire est
supposé galiléen.

Dans un premier temps, on suppose que les frottements du liquide sur la particule P sont négligeables.

Etablir les équations différentielles du mouvement de P. On posera w = ¢B/m.

Réponse

Dans le référentiel terrestre supposé galiléen, la particule P n’est soumise qu’a la force magnétique F= qu A B , en
négligeant le poids devant cette force. Avec le principe fondamental de la dynamique, on trouve

mi—gins | F0 =0
A FORE -0
" 5(t) =0
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III. Chambre a bulles 11

soit
Z(t) = fwy(t) (M5.1)
J(t) = —wi(t) (M5.2)
5(t) = 0 (M5.3)

&

En déduire les équations horaires de P et indiquer précisément la nature de sa trajectoire. Représenter sur un méme
schéma les trajectoires d’un proton (charge ¢ = +e et masse m,) et d’un électron (¢ = —e et me <K my).

Réponse
L’équation M5.3 donne successivement Z = cte = 0 puis : le mouvement a donc lieu dans le plan (Ozy).

Pour les équations horaires, on intégre une fois les deux premiéres équations M5.1 et M5.2 :

{i(t) = wy(t) - {a;«(t) =wy(t) + K

§(t) = —wi(t) () = —wa(t) + K’
Conditions initiales : 2(0)=0 or #(0)=wy(0)+K =K donc K =0
| M
=0
et 9(0)=v9 or y(0)=-wxz(0)+K' =K donc K’ =uy
=
- (t) = wy(t)
it 1500 =22t +
#(t) + w?z(t) = wyg
On inject y dans M5.1 et inversement : . 5
i(t) +wy(t) =0
. Vo Yo .
D’ou les solutions xz(t) = — (1 —cos(wt))| et |y(t) = — sin(wt)
w w
, . L, . Vg \ 2 2 U
Donnant ’équation cartésienne : (m — —) +y° = (—)
w w

FiGUurE M5.5 — Trajectoires pour un proton et un électron.

Pour un proton, % = ”;}”30 > 0, donc la trajectoire est a droite,

et le mouvement se fait dans le sens horaire.

> A D’inverse, pour Pélectron la trajectoire est & gauche et se fait
X dans le sens direct, mais avec un rayon beaucoup plus petit
puisque proportionnel a m.

électron

&

Les frottements du liguide sont maintenant modélisés par la force F= — AT p avec A une constante positive. On
pose a = \/m.

Etablir les nouvelles équations différentielles du mouvement (avec les paramétres w et ). Montrer que le mouvement
reste plan.

Réponse

On réemploie le PFD :
mi = +qBy — Az
ma@ =qUAB— AT & { mjj=—qBi — \j

mz = —M\2
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12 Mécanique — chapitre 5. Correction du TD d’entrainement
soit

i = +wy — ai (M5.4)

J=—wi— oy (M5.5)

i=—az (M5.6)

Le mouvement reste plan, puisque la solution de 1’équation M5.6 est 2(t) = D exp(—at), mais que 2(0) = 0= D =0,

soit [s = cte = 0]

&

Déterminer complétement les équations horaires de P. On pourra poser la variable complexe u = x + jy, et déterminer
tout d’abord .

Réponse

En posant, comme suggéré, u = = + jy, on combine (M5.4)+ j(M5.5) pour avoir
i+ (a+jw)i =0

qui est une équation différentielle d’ordre 2 sans ordre 0, donc d’ordre 1 en % : on trouve donc les solutions
avec une simple exponentielle :

u(t) = Aexp(—(a+ jw)t)

avec  u(0)=0+4juvp=A soit u(t) = jugexp(—(a+ jw)t)
o Jvo . Juo
)= —2 oxp(— )+ B 0)=0eB=-1°_
ainsi  w(t) P exp(—(a + jw)t) + or u(0) & P
Jvo .
final t t)y=—F(1— — t
nalement | u(¥) P (1 —exp(—(a + jw)t))

En mettant la fraction avec un dénominateur réel et en sép

arant les exponentielles :

jvoa + vow

u(t) =

o? 4+ w?

(1 — exp(—at) exp(—jwt))

puis en prenant la partie réelle
distribuer la fraction),

2(t) = a”f; (1 — exp(—at) cos(wt)) — % exp(—at) sin(wt)
y(t) = O[U'EZQ exp(—at) sin(wt) + ﬁ (1 — exp(—at) cos(wt))

pour obtenir z(t) et la partie imaginaire pour obtenir y(¢) (attention a bien

&

Déterminer les coordonnées du point asymptotique Py, = P(t — 00). Représenter sur un schéma la trajectoire d’un

proton.
Réponse
Pour ¢t — o0, le point d’asymptote est
Vow
o
Poo _ Vo
a? + w?
0
y
La particule tourne toujours & cause des facteurs sinusoidaux, mais le
rayon de courbure diminue exponentiellement : la trajectoire est une spirale, .
tournant toujours vers la droite pour un proton, et s’enroulant autour du Vo (') P
point P. 7 >
ol =

&
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