DS 4 : samedi 2 décembre

4h sans calculatrice

Le candidat numérotera ses pages, il encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (proche du cours et/ou des TDs).

- 1° On considère l'application f définie sur $E = \mathbb{R}^3$ par f(x,y,z) = (3x+4z, -2x-y-2z, -2x-3z).
 - (a) Donner la matrice M de f dans la base canonique de \mathbb{R}^3 .
 - (b) Déterminer le noyau de f, puis en déduire son image.
 - (c) Déterminer les réels λ tels que $\det(M \lambda I_3) = 0$. On note λ_1 et λ_2 les deux réels trouvés.
 - (d) Déterminer, pour $i \in \{1, 2\}$, les sev $E_{\lambda_i} = \text{Ker}(f \lambda_i \text{Id})$ (on en donnera des bases).
 - (e) Montrer que $E = E_{\lambda_1} \oplus E_{\lambda_2}$
 - (f) Donner la matrice D de f dans une base "sympathique".
 - (g) Reconnaitre l'application linéaire f.
 - (h) Pour $n \in \mathbb{N}$, donner explicitement M^n .

$$2^{\circ} \text{ Pour } n \in \mathbb{N}^{\star} \text{ on considère la matrice } C_n \in \mathcal{M}_n(\mathbb{R}) \text{ définie par } C_n = \begin{pmatrix} 5 & 3 & 0 & \dots & \dots & 0 \\ 2 & 5 & 3 & 0 & & \vdots \\ 0 & 2 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 3 & 0 \\ \vdots & & 0 & 2 & 5 & 3 \\ 0 & \dots & \dots & 0 & 2 & 5 \end{pmatrix} \text{ et on pose}$$

 $c_n = \det(C_n)$.

- (a) Calculer c_1 et c_2 .
- (b) Pour tout $n \in \mathbb{N}^*$, déterminer une relation de récurrence entre c_{n+2} , c_{n+1} et c_n .
- (c) En déduire, pour tout $n \in \mathbb{N}^*$, l'expression de c_n en fonction de n.
- 3° Étudier la convergence et calculer $\int_0^{+\infty} \exp(-t) \sin t \, dt$.
- 4° Justifier de l'éventuelle existence des intégrales suivantes :

(a)
$$\int_{-\infty}^{+\infty} \sin t \exp(-t^2) \, \mathrm{d}t \, ;$$

(b)
$$\int_{1}^{+\infty} \frac{\ln t}{\sqrt{t}} dt$$

(c)
$$\int_0^{+\infty} \frac{\mathrm{d}t}{\sqrt{t(t+1)}}.$$

Correction:

$$1^{\circ} \text{ (a) } M = \begin{pmatrix} 3 & 0 & 4 \\ -2 & -1 & -2 \\ -2 & 0 & -3 \end{pmatrix}.$$

- (b) On trouve $\ker(f) = \{0\}$, on en déduit $\operatorname{Im}(f) = \mathbb{R}^3$ et que f est un isomorphisme.
- (c) On cherche λ tel que $\det(M \lambda I_3) = 0$, le polynôme caractéristique est $\chi_M(\lambda) = (\lambda 1)(\lambda + 1)^2$. Ainsi $\operatorname{Sp}(f) = \{\pm 1\}$.
- (d) On trouve $E_1 = \text{Vect}(a)$ et $E_{-1} = \text{Vect}(b,c)$ où a = (2, -1, -1), b = (1, 0, -1) et c = (0, 1, 0)

- (e) Soit $x \in E_1 \cap E_{-1}$, on a f(x) = x et f(x) = -x, ainsi x = -x, ie. 2x = 0, ce qui montre bien que x = 0. On a montré que $E_1 \cap E_{-1} = \{0\}$. De plus E_1 est de dimension 1 et E_{-1} est de dimension 2, comme 1 + 2 = 3 il en résulte que : $E = E_1 \oplus E_{-1}$
- (f) (a,b,c) est la base sympathique (base par concaténation de bases de deux sev supplémentaires) et $D=\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.
- (g) C'est la symétrie par rapport à E_1 et parallèlement à E_{-1}
- (h) On a : $M = PDP^{-1}$, ainsi $M^n = PD^nP^{-1}$. Or D^n vaut I_3 si n est pair et D si n est impair, on a donc $M^n = I_3$ si n est pair et $M^n = M$ si n est impair. Remarque: C'est une symétrie, c'est donc normal d'avoir $M^2 = I_3$, les autres puissances suivent.
- 2° (a) On trouve $c_1 = 5$ et $c_2 = 25 6 = 19$.
 - (b) On développe par rapport à la dernière colonne puis par rapport à la dernière ligne ce qui donne $c_{n+2} = 5c_{n+1} 6c_n$
 - (c) Ainsi (c_n) est suite récurrente linéaire d'ordre 2, son équation caractéristique est X^2-5X+6 qui admet 2 et 3 comme racine, ainsi il existe $(\alpha,\beta)\in\mathbb{R}^2$ tel que pour tout $n\in\mathbb{N}^\star$, $c_n=\alpha 3^n+\beta 2^n$, or les valeurs calculées en a) donnent : $3\alpha+2\beta=5$ et $9\alpha+4\beta=19$, on en déduit donc que $3\alpha=9$ et $-2\beta=4$, ie $(\alpha,\beta)=(3,-2)$, on en déduit donc que : $\forall n\in\mathbb{N}^\star, c_n=3^{n+1}-2^{n+1}$.
- 3° L'intégrale n'est généralisée qu'en $+\infty$, or pour tout t, $|\exp(-t)\sin t| \le e^{-t}$, comme $\int_0^{+\infty} e^{-t} dt$ converge l'intégrale converge. Pour le calcule on procède par double IPP (on a convergence des crochets : à rédiger proprement), et on trouve $\int_0^{+\infty} \exp(-t)\sin t \, dt = \frac{1}{2}$. On peut aussi remarquer que $\frac{-1}{2}(\cos(t) + \sin(t)) \exp(-t)$ est une primitive de ce qui est sous l'intégrale.
- 4° (a) La fonction $t \mapsto \sin t \exp(-t^2)$ est continue sur \mathbb{R} , ainsi l'intégrale n'est généralisée qu'en $+\infty$ et $-\infty$. Cette fonction étant impaire on peut se contenter d'étudier l'intégrabilité en $+\infty$. Étude en $+\infty$: On a, pour $t \ge 1$, $|\sin(t)e^{-t^2}| \le e^{-t^2} \le e^{-t}$, or $\int_1^{+\infty} e^{-t} dt$ est convergente. L'intégrale est donc absolument convergente donc convergente. On a aussi la convergence en $-\infty$ par parité.
 - (b) C'est une intégrale de Bertrand divergente. Attention toutefois, les intégrales (comme les séries) de Bertrand étant HP, il faut le démontrer. La fonction $t\mapsto \frac{\ln t}{\sqrt{t}}$ est continue sur $[1,+\infty[$, l'intégrale n'est généralisée qu'en $+\infty$. De plus $\frac{1}{\sqrt{t}}=\frac{1}{t}$ est continue $\frac{1}{\sqrt{t}}=\frac{1}{t}$

et $\int_1^{+\infty} \frac{1}{\sqrt{t}} dt$ est une intégrale de Riemann divergente, il en va de même pour $\int_1^{+\infty} \frac{\ln t}{\sqrt{t}} dt$.

(c) La fonction $t \mapsto \frac{1}{\sqrt{t}(t+1)}$ est continue sur $]0, +\infty[$, l'intégrale n'est donc généralisée qu'en 0 et en $+\infty$. En $+\infty$, on a $\frac{1}{\sqrt{t}(t+1)} \sim \frac{1}{t^{3/2}}$, ainsi $\int_1^{+\infty} \frac{dt}{\sqrt{t}(t+1)}$ est convergente par comparaison avec une intégrale de Riemann convergente (et elle est de signe constant).

En 0, on a $\frac{1}{\sqrt{t(t+1)}} \underset{t\to 0}{\sim} \frac{1}{t^{1/2}}$ ainsi $\int_0^1 \frac{dt}{\sqrt{t(t+1)}}$ est convergente par comparaison avec une intégrale de Riemann convergente (et elle est de signe constant).

En conclusion $\int_0^{+\infty} \frac{dt}{\sqrt{t(t+1)}}$ est convergente

Exercice 2 (Intégrale de Gauss d'après E3A PSI 2012). 1° Étudier la convergence de l'intégrale $I=\int_{\mathbb{D}} \mathrm{e}^{-x^2} \mathrm{d}x = \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \mathrm{d}x.$

2° Pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$ on pose $f_n(x) = \left(1 - \frac{x^2}{n}\right)^n$ si $|x| < \sqrt{n}$ et $f_n(x) = 0$ sinon.

- (a) Donner, sur un même schéma, l'allure des représentations graphiques de f_1 et f_4 .
- (b) Étudier la convergence pour tout réel x de la suite $(f_n(x))_{n\in\mathbb{N}^*}$ on notera f(x) la limite éventuelle.
- (c) Montrer que si $n \in \mathbb{N}^*$ et si u est un réel strictement supérieur à -n alors $\left(1 + \frac{u}{n}\right)^n \leq e^u$.
- (d) Prouver l'existence de $u_n = \int_{-\infty}^{+\infty} f_n(x) dx$.
- (e) On admet (les 5/2 peuvent le démontrer) que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers $I=\int_{\mathbb{R}}\mathrm{e}^{-x^2}\mathrm{d}x$.
- 3° On pose, pour tout $k \in \mathbb{N}, J_k = \int_0^{\pi/2} \cos^k(t) dt$.

- (a) Calculer J_0, J_1 et J_2 .
- (b) Trouver une relation de récurrence reliant J_k et J_{k+2}

(c) Montrer:
$$\forall n \in \mathbb{N}^*, J_{2n+1} = \prod_{k=1}^n \frac{2k}{2k+1} = \frac{2 \cdot 4 \cdot 6 \cdot 8 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdot 7 \cdots (2n+1)}$$

- (d) En déduire une expression de J_{2n+1} faisant intervenir $(n!)^2$ et (2n+1)!.
- (e) Rappeler la formule de Stirling et déduire de ce qui précède un équivalent de J_{2n+1} lorsque $n \to +\infty$.
- 4° À l'aide d'un changement de variable 1, donner, pour tout $n \in \mathbb{N}^*$, une relation simple entre J_{2n+1} et u_n
- 5° En déduire la valeur de $\int_{-\infty}^{+\infty} e^{-x^2} dx$.

- $1^{\circ} x \mapsto \exp(-x^2)$ est continue sur \mathbb{R} et paire donc I n'est généralisée qu'en $\pm \infty$. Or $0 < \exp(-x^2) \le \exp(-x)$ pour x > 1 et $x \to e^{-x}$ est intégrable sur $[1, +\infty[$ donc $x \mapsto \exp(-x^2)$ également. La parité permet d'avoir que
- (a) On a, pour $x \in]-1,1[$, que $f_1(x)=1-x^2$ sur]-1,1[donc on représente l'arc de parabole tourné vers le bas avec son sommet en (0,1) et « passant » par (-1,0) et (1,0) (ces points appartiennent bien à \mathcal{C}_{f_1}). De même pour $x \in]-2, 2[$, on a $f_4(x) = (1-x^2/4)^4$ avec son sommet en (0,1)...
 - (b) On fixe $x \in \mathbb{R}$, pour $n > x^2$ on a $f_n(x) = \left(1 \frac{x^2}{n}\right)^n = \exp\left(n\ln\left(1 \frac{x^2}{n}\right)\right) = \exp\left(-x^2 + o(1)\right) \xrightarrow[n \to +\infty]{}$ $e^{-x^2} = f(x).$
 - (c) On considère la fonction $g: v \mapsto \ln(1+v) v$ qui est \mathcal{C}^1 sur $]-1, +\infty[$, on a pour v>-1 que $g'(v)=\frac{1}{1+v}-1=\frac{-v}{1+v}$, ainsi cette fonction g qui est décroissante puis croissante, possède un minimum en 0, comme g(0)=0 on en déduite que : $\forall v>-1$, $\ln(1+v)\leq v$.

On applique ce résultat à $v = \frac{u}{n}$ où u > -n (ainsi v > -1: $\ln(1 + \frac{u}{n}) \le \frac{u}{n}$, d'où $n \ln(1 + \frac{u}{n}) \le u$, il ne reste plus qu'à composer par exp (qui est croissante) pour avoir le résultat demandé.

- (d) Par définition de f_n , $u_n = \int_{-\sqrt{n}}^{\sqrt{n}} f_n(x) dx$ or, sur $]-\sqrt{n}, \sqrt{n}[$ la fonction f_n est continue et prolongeable par continuité trivialement en $\pm \sqrt{n}$ en posant $f_n(\pm \sqrt{n}) = 0$. Et u_n existe comme intégrale d'une fonction continue sur un segment.
- (e) (pour les 5/2) On va utiliser le théorème de convergence dominée :
 - Les f_n sont continues sur \mathbb{R} et (f_n) converge simplement sur \mathbb{R} vers $x \mapsto e^{-x^2}$ elle même continue sur
 - $\forall n \in \mathbb{N}, \forall x \in]-\sqrt{n}, \sqrt{n}[$, on a $0 \le f_n(x) \le e^{-x^2}$ (d'après 2° .(c) avec $u=-x^2>-n$), cet encadrement est vrai pour $x \in \mathbb{R}$, ainsi $|f_n(x)| \le e^{-x^2}$ et la fonction dominante est intégrable sur \mathbb{R} .

Ainsi le TCD s'applique et donne : $\lim_{n \to +\infty} u_n = \int_{\mathbb{R}} e^{-x^2} dx$.

- 3° (a) On trouve $J_0 = \frac{\pi}{2}$, $J_1 = 1$ et $J_2 = \int_0^{\pi/2} \frac{1}{2} (\cos(2t) + 1) dt = \frac{\pi}{4}$.
 - (b) Une IPP (on "primitive" cos et on dérive \cos^{k+1}) permet de trouver que $J_{k+2} = \frac{k+1}{k+2} J_k$.
 - (c) Une récurrence immédiate avec la relation précédente compte tenu de $J_1 = 1$.
 - (d) Le classique déjà vu, on multiplie au numérateur et au dénominateur par 2.4....(2n) : J_{2n+1} $\frac{(2 \times 4 \times \dots \times 2n)^2}{(2n+1)!} = \frac{2^{2n}(n!)^2}{(2n+1)!}$

(e) La formule de Stirling assure de
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
. On l'applique deux fois pour avoir :
$$J_{2n+1} \sim \frac{(2n)^{2n} \times 2\pi n \times e^{2n+1}}{\sqrt{2\pi}\sqrt{2n+1}(2n+1)^{2n+1}e^{2n}} \sim \left(\frac{2n}{2n+1}\right)^{2n} \times \frac{e^{n\sqrt{2\pi}}}{(2n+1)^{3/2}} \sim \frac{\sqrt{\pi}}{2\sqrt{n}}.$$

Le dernier équivalent découle de $\left(\frac{2n}{2n+1}\right)^{2n} = \exp\left(-2n\ln\left(1+\frac{1}{2n}\right)\right) \to e^{-1}$.

4° Le changement de variable proposé est licite car il est de classe \mathcal{C}^1 sur $]-\sqrt{n},\sqrt{n}[$ et est bijectif. Les nouvelles bornes sont $\lim_{h\to\pm 1} \arcsin(h) = \pm \frac{\pi}{2}$ et le nouvel élément différentiel est $\frac{\mathrm{d}x}{\sqrt{n}\sqrt{1-x^2/n}} = \mathrm{d}u$.

D'où
$$u_n = \int_{-\pi/2}^{\pi/2} \sqrt{n} \sqrt{1 - \sin^2 u} (1 - \sin^2 u)^n du = 2\sqrt{n} \int_0^{\pi/2} \cos^{2n+1}(u) du = 2\sqrt{n} J_{2n+1}.$$

5° Puisque $\lim u_n = I$ alors $2\sqrt{n}J_{2n+1} \sim I$ d'où avec 3.(e) : $I \sim \sqrt{\pi}$ donc $I = \sqrt{\pi}$.

1. Indication: $x \mapsto \arcsin(x/\sqrt{n})$

3 / 8LJB Maths - DS4-cor

Exercice 3 (Problème d'algèbre linéaire : BANQUE PT 2017 Maths A (sans la partie 3)).

Pour tous entiers strictement positifs n, p, $\mathcal{M}_{n,p}(\mathbb{R})$ désigne l'ensemble des matrices à n lignes et p colonnes à coefficients réels. Pour tout entier $n \geq 1$, on note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels. I_n désigne la matrice identité d'ordre n.

Pour une matrice A, tA désigne sa matrice transposée

Partie I

Soit A la matrice de $\mathcal{M}_3(\mathbf{R})$ définie par

$$A = \left(\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{array}\right).$$

- 1° On pose $P_A(X) = \det(XI_3 A)$, déterminer les deux racines de ce polynôme P_A . Déterminer (ie trouver des bases) les deux sous espaces $\ker(A - \lambda I_3)$ où λ est une racine de P_A . 2.
- 2° Des trois vecteurs trouvés à la question précédente, en déduire une matrice P inversible telle que $A = PDP^{-1}$ où D est une matrice diagonale à déterminer. 3 .
- 3° Déterminer une relation entre A^2 , A et I_n . En déduire une relation entre A^{n+1} , A^n et A^{n-1} pour tout entier $n \ge 1$.
- 4° Montrer par récurrence qu'il existe deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, \quad A^n = \left(\begin{array}{ccc} u_n & v_n & v_n \\ v_n & u_n & v_n \\ v_n & v_n & u_n \end{array}\right)$$

qui vérifient la relation de récurrence

$$\forall n \ge 1, \quad \left\{ \begin{array}{lcl} u_{n+1} & = & u_n + 2u_{n-1} \\ v_{n+1} & = & v_n + 2v_{n-1} \end{array} \right.$$

5° Déterminer, pour tout entier naturel n, l'expression de u_n et v_n en fonction de n.

Correction:

Remarque: j'ai inversé les questions 1° et 2° par rapport au sujet originel, en effet la matrice étant une matrice symétrique réel, on a directement (via le théorème spectral qu'on verra plus tard) qu'elle est diagonalisable (et même avec une base de diagonalisation orthonormal).

1º Pour calculer le spectre de A on calcule son polynôme caractéristique $P_A(X) = \det{(XI_3 - A)}$

$$P_{A}(X) = \det \begin{pmatrix} X - 1 & 1 & 1 \\ 1 & X - 1 & 1 \\ 1 & 1 & X - 1 \end{pmatrix} = \det \begin{pmatrix} X + 1 & 1 & 1 \\ X + 1 & X - 1 & 1 \\ X + 1 & 1 & X - 1 \end{pmatrix}$$

$$= \det \begin{pmatrix} X + 1 & 1 & 1 \\ X + 1 & 1 & X - 1 \end{pmatrix}$$

$$= \det \begin{pmatrix} X + 1 & 1 & 1 \\ 0 & X - 2 & 1 \\ 0 & 0 & X - 2 \end{pmatrix} = (X + 1)(X - 2)^{2}$$

On en déduit que le spectre de A est $\{-1,2\}$ dont les multiplicités respectives sont $m_1=1$ et $m_{-2}=2$. Le calcul

des sous-espaces propres de A donne d'une part $E_{-1}(A) = \text{Vect}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}\right\}$ et $E_{2}(A) = \text{Vect}\left\{\begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\-2 \end{pmatrix}\right\}$

 2° Le polynôme caractéristique est scindé et les sous-espaces propres ont bien comme dimension la multiplicité des valeurs propres. La matrice A est donc diagonalisable.

3° Si on note
$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, comme $D^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = D + I_3$, on en déduit que l'on a $A^2 = A + 2I_3$ vu que A est semblable à D (pour être plus précis : soit P la matrice inversible and $P = P = 1$.

déduit que l'on a $A^2 = A + 2I_3$ vu que A est semblable à D (pour être plus précis : soit P la matrice inversible telle que $A = PDP^{-1}$, on multiplie $D^2 = D + 2I_3$ par P à gauche et par P^{-1} à droite et on utilise que $A^2 = PD^2P^{-1}$).

Pour tout entier $n \ge 2$ en multipliant l'identité $A^2 = A + 2I_3$ par A^{n-1} à gauche on obtient la relation $A^{n+1} = A^n + 2A^{n-1}$. Le cas n = 1 découle directement de la question précédente.

LJB Maths - DS4-cor 4 / 8

^{2.} La question était : Déterminer les valeurs propres et les sous-espaces propres de ${\cal A}$

^{3.} La question était : Montrer que la matrice A est diagonalisable

 4° Pour tout entier $n \geq 0$, on pose (on peut aussi procéder par récurrence double):

$$\mathcal{P}_n: \forall k \in [0, n], \exists (u_k, v_k) \in \mathbb{R}^2 / A^k = \begin{pmatrix} u_k & v_k & v_k \\ v_k & u_k & v_k \\ v_k & v_k & u_k \end{pmatrix}.$$

Démontrons dans un premier temps cette formule par récurrence forte.

- La relation \mathcal{P}_1 est vraie en prenant $u_0 = 1$ et $v_0 = 1$ puis $u_1 = 1, v_1 = -1$.
- Si on suppose que l'on a un entier $n \in \mathbb{N}^*$ tel que \mathcal{P}_n est vraie, alors \mathcal{P}_{n+1} l'est aussi. En effet, pour tout entier k tel que $1 \le k \le n+1$, on a :
 - Si $k \leq n$, cela découle du fait que \mathcal{P}_n est vrai. i
 - Si k = n + 1, cela découle du fait que l'on a $A^{n+1} = A^n + 2A^{n-1}$ car il vient que

$$\begin{pmatrix} u_n & v_n & v_n \\ v_n & u_n & v_n \\ v_n & v_n & u_n \end{pmatrix} + 2 \begin{pmatrix} u_{n-1} & v_{n-1} & v_{n-1} \\ v_{n-1} & u_{n-1} & v_{n-1} \\ v_{n-1} & v_{n-1} & u_{n-1} \end{pmatrix} = \begin{pmatrix} u_n + 2u_{n-1} & v_n + 2v_{n-1} & v_n + 2v_{n-1} \\ v_n + 2v_{n-1} & u_n + 2u_{n-1} & v_n + 2v_{n-1} \\ v_n + 2v_{n-1} & v_n + 2v_{n-1} & u_n + 2u_{n-1} \end{pmatrix}$$

est de la forme voulue en posant $u_{n+1} = u_n + 2u_{n-1}$ et $v_{n+1} = v_n + 2v_{n-1}$.

Ce qui montre non seulement l'existence de ces suites, mais aussi les relations de récurrence.

 5° On sait que les suites récurrentes linéaires d'ordre deux $(X_n)_{n\in\mathbb{N}}$ solutions de :

$$\forall n \in \mathbb{N}, \, X_{n+2} = X_{n+1} + 2X_n$$

forment un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ de dimension deux dont une base est donnée par les suites $(2^n)_{n\in\mathbb{N}}$ et $((-1)^n)_{n\in\mathbb{N}}$: on peut donc en déduire qu'il existe quatre réels $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$ tels que pour tout $n \in \mathbb{N}$: $u_n = \alpha 2^n + \beta (-1)^n$ et $v_n = \gamma 2^n + \delta (-1)^n$. La prise en compte des conditions initiales $u_0 = u_1 = 1$ permet de conclure que

$$u_n = \frac{1}{3} \left(2^{n+1} + (-1)^n \right)$$

alors que la contrainte $v_0 = 0$, $v_1 = -1$ permet d'avoir :

$$v_n = \frac{1}{3} \left((-1)^n - 2^n \right).$$

Partie II

Dans toute cette partie, on se fixe un entier $n \geq 1$. Soit A une matrice de $\mathcal{M}_n(\mathbf{R})$. On suppose qu'il existe deux matrices U, V de $\mathcal{M}_n(\mathbf{R})$ et deux réels λ et μ tels que $\lambda \mu \neq 0$ et $\lambda \neq \mu$ vérifiant :

$$A = \lambda U + \mu V \tag{1}$$

$$A^2 = \lambda^2 U + \mu^2 V \tag{2}$$

$$A^3 = \lambda^3 U + \mu^3 V. (3)$$

1° Exprimer U et V en fonction de A et A^2 . En déduire que

$$A^3 = (\lambda + \mu) A^2 - \lambda \mu A.$$

 2° Montrer que, pour tout entier $p \geq 1$,

$$A^p = \lambda^p U + \mu^p V.$$

- 3° Soit f l'endomorphisme de \mathbb{R}^n dont A est la matrice dans la base canonique. On note $f^p = f \circ \cdots \circ f$ la $p^{\text{ième}}$ composée de f. Soit $p \in \mathbb{N}^*$.
 - a) Montrer que Ker $f \subset \text{Ker } f^p$.
 - b) Montrer que pour tout $x \in \mathbb{R}^n$,

$$\lambda \mu f^{p-1}(x) = (\lambda + \mu) f^{p}(x) - f^{p+1}(x).$$

- c) En déduire que Ker $f^p \subset \text{Ker } f$.
- d) Montrer que $\operatorname{rg}(A) = \operatorname{rg}(A^p)$.

LJB Maths - DS4-cor 5 / 8

1° Il suffit de faire $(2) - \lambda(1)$ et $(2) - \mu(1)$ pour obtenir U et V, et comme $\lambda \mu \neq 0$ et $\lambda \neq \mu$ on a $\lambda (\mu - \lambda) \neq 0$ et ainsi:

$$U = \frac{1}{\lambda (\mu - \lambda)} (\mu A - A^2) \text{ et } V = \frac{1}{\mu (\mu - \lambda)} (-\lambda A + A^2).$$

Comme enfin $A^3 = \lambda^3 U + \mu^3 V$, on a:

$$A^{3} = \frac{\lambda^{2}}{\mu - \lambda} (\mu A - A^{2}) + \frac{\mu^{2}}{\mu - \lambda} (-\lambda A + A^{2}) = (\lambda + \mu) A^{2} + (-\lambda \mu) A$$

2° Procédons par récurrence double

Initialisation c'est initialisé pour p=1, p=2 (et même p=3) par hypothèse.

Hérédité On suppose que pour un certain $p \ge 2$ on a $A^p = \lambda^p U + \mu^p V$ et $A^{p-1} = \lambda^{p-1} U + \mu^{p-1} V$. Montrons le au rang suivant, on a que $A^{p+1} = \lambda^{p+1} U + \mu^{p+1} V$ à montrer. Comme $p \ge 2$ on a $A^{p+1} = A^{p-2} A^3$ donc d'après la question précédente $A^{p+1} = A^{p-2} \left((\lambda + \mu) A^2 - \lambda \mu A \right) = 0$

Comme $p \ge 2$ on a $A^{p+1} = A^{p-2}A^3$ donc d'après la question précédente $A^{p+1} = A^{p-2}\left((\lambda + \mu)A^2 - \lambda\mu A\right) = (\lambda + \mu)A^p - \lambda\mu A^{p-1}$, ainsi par hypothèse de récurrence on a $A^{p+1} = (\lambda + \mu)(\lambda^p U + \mu^p V) - \lambda\mu(\lambda^{p-1}U + \mu^{p-1}V) = \lambda^{p+1}U + \mu^{p+1}V$. Ce qui termine l'hérédité

On a bien montré, pour tout $p \in \mathbb{N}^{\star}$, que $A^p = \lambda^p U + \mu^p V$.

3° a) Soit $\vec{x} \in \mathbb{R}^n$ tel que $f(\vec{x}) = \vec{0}$, en prenant la convention standard $f^0 = Id_{\mathbb{R}^n}$, on a $f^p(\vec{x}) = f^{p-1}(f(\vec{x})) = f^{p-1}(\vec{0}) = \vec{0}$. On conclue que

$$\ker f \subset \ker f^p, \, \forall p \in \mathbb{N}^*.$$

b) C'est une conséquence de la question 2 et du fait que l'application qui à un endomorphisme de \mathbb{R}^n associe sa matrice relativement à la base canonique est un isomorphisme qui en plus transforme une composée en produit. Ainsi pour tout $p \in \mathbb{N}^*$:

$$\forall \vec{x} \in \mathbb{R}^n, \ \lambda \mu f^{p-1}(\vec{x}) = (\lambda + \mu) f^p(\vec{x}) - f^{p+1}(\vec{x})$$

- c) Si $\vec{x} \in \ker f^p$, on a deux cas de figures :
 - Si p = 1, le résultat désiré est immédiat.
 - Si $p \geq 2$, on note $p_0 \geq 1$ le plus petit entier $p \geq 1$ tel que $f^p(\vec{x}) = \vec{0}$: si on avait $p_0 > 1$, du fait que l'on ait simultanément $f^{p_0}(\vec{x}) = f^{p_0+1}(\vec{x}) = \vec{0}$ d'après la question 3.a, on aurait une contradiction car la question précédente permet de dire que $\lambda \mu f^{p_0-1}(\vec{x}) = \vec{0}$ avec $\lambda \mu \neq 0$. L'absurde vient d'avoir supposé que $p_0 > 1$.

Dans tous les cas, $f(\vec{x}) = \vec{0}$. On en déduit que

$$\ker f^p \subset \ker f$$

d) Si on utilise les questions 3.a et 3.c, on peut déduire que ker $f = \ker f^p$ pour tout entier $p \ge 1$; on peut donc dire que dim ker $f = \dim \ker f^p$ pour tout $p \in \mathbb{N}^*$ puisque \mathbb{R}^n est de dimension finie. La formule du rang, donnant pour tout $k \in \mathbb{N}$, $rg(A^k) = \dim Im(f^k) = n - \dim \ker f^k$, l'égalité qu'on vient d'établir permet de conclure que $rg(A)^k = rg(A)$ pour tout $k \in \mathbb{N}^*$ ce qui est le résultat demandé.

Exercice 4 (Intégration d'après E3A PC, Maths B, 2010).

- 1° a) Montrer que pour tout $x \in \mathbb{R}$, $\sin(3x) = -4\sin^3(x) + 3\sin(x)$.
 - b) Soit $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ telle que : $\forall x \in \mathbb{R}^*, f(x) = \frac{\sin(x)}{x^2} \frac{1}{x}$.
 - (i) Montrer que f admet un prolongement continue sur \mathbb{R} ; on notera φ ce prolongement.
 - (ii) Montrer que φ est de classe \mathcal{C}^1 sur \mathbb{R} .
- 2° On pose $I = \int_0^{+\infty} \frac{\sin^3(x)}{x^2} dx$.
 - a) Montrer que I existe.
 - b) Pour tout $a \in \mathbb{R}_+^*$, on pose : $I(a) = \int_a^{+\infty} \frac{\sin^3(x)}{x^2} dx$.
 - i) Montrer, et justifier leur convergence, que : $\int_a^{+\infty} \frac{\sin(3x)}{x^2} dx = 3 \int_{3a}^{+\infty} \frac{\sin(x)}{x^2} dx.$

- ii) Montrer qu'il existe deux constantes C et D que l'on déterminera telles que : $I(a) = C \int_a^{3a} \varphi(x) dx + D$ où φ est la fonction définie en 1° b)i).
- iii) En déduire la valeur de I.

- 1° a) Pour $x \in \mathbb{R}$ on a : $\sin(3x) = \sin(2x)\cos(x) + \cos(2x)\sin(x) = 2\sin(x)\cos^2(x) + (\cos^2(x) \sin^2(x))\sin(x)$ puis $\cos^2(x) = 1 \sin^2(x)$ et l'on simplifie pour avoir $\sin(3x) = -4\sin^3(x) + 3\sin(x)$. Alternative : $\sin(3x)$ est la partie imaginaire de e^{3ix} , il ne reste plus qu'à utiliser la formule de Moivre et le binôme de Newton pour avoir $e^{3ix} = (\cos(x) + i\sin x)^3 = \cos^3 x + 3i\cos^2(x)\sin(x) 3\cos(x)\sin^2(x) \sin^3(x)$, ainsi $\sin(3x) = 3\cos^2(x)\sin(x) \sin^3(x) = 3\sin(x) 4\sin^3(x)$.
 - b) i) On sait que $\sin(x) = x \frac{x^3}{6} + \frac{o}{x \to 0}(x^4)$, ainsi $f(x) = \frac{1}{x} \frac{x}{6} + \frac{o}{x \to 0}(x^2) \frac{1}{x} = -\frac{x}{6} + \frac{o}{x \to 0}(x^2) \xrightarrow[x \to 0]{} 0$. Ainsi f se prolonge par continuité en f en posant g(0) = 0.
 - ii) φ est continue sur \mathbb{R} et est \mathcal{C}^1 sur \mathbb{R}^* . Pour $x \neq 0$ on a $\varphi'(x) = \frac{\cos(x)x^2 2x\sin(x)}{x^4} + \frac{1}{x^2} = \frac{x\cos(x) 2\sin(x) + x}{x^3} = \frac{1}{x^3} \left(x(1 \frac{x^2}{2} + \underset{x \to 0}{o}(x^3)) 2(x \frac{x^3}{6} + \underset{x \to 0}{o}(x^4)) + x \right) = -\frac{1}{6} + \underset{x \to 0}{o}(x) \xrightarrow[x \to 0]{} \frac{-1}{6}.$

Ainsi, d'après le théorème de prolongement des fonctions de classe $\mathcal{C}^1:\varphi$ est \mathcal{C}^1 sur \mathbb{R} et $\varphi'(0)=-\frac{1}{6}$.

- 2° a) $g: x \mapsto \frac{\sin^3(x)}{x^2}$ est continue sur $]0, +\infty[$, elle n'est généralisée qu'en 0 et en $+\infty$. En 0: g est prolongeable par continuité en 0 en posant g(0) = 0 donc I est faussement généralisée en 0. Comme, pour $x \ge 1$, $|g(x)| \le \frac{1}{x^2}$ et $x \mapsto \frac{1}{x^2}$ est l'intégrande d'une intégrale Riemann convergente en $+\infty$, g est intégrable sur $[1, +\infty[$. Il en résulte que I existe.
 - b) i) L'intégrale de gauche est convergente par le même raisonnement qu'en a). On lui applique le changement de variable y=3x, affine donc licite, qui mène à une intégrale elle aussi convergente et qui vaut . . .celle du membre de droite.
 - ii) $I(a) = -\frac{1}{4} \int_a^{+\infty} \frac{\sin(3x)}{x^2} \mathrm{d}x + \frac{3}{4} \int_a^{+\infty} \frac{\sin(x)}{x^2} \mathrm{d}x \ \mathrm{d'après} \ 1^\circ \ \mathrm{a}) \ \mathrm{et} \ \mathrm{la lin\'earit\'e pour \ des int\'egrales \ convergentes.}$ $\mathrm{Donc} \ I(a) = -\frac{3}{4} \int_{3a}^{+\infty} \frac{\sin(x)}{x^2} \mathrm{d}x + \frac{3}{4} \int_a^{+\infty} \frac{\sin(x)}{x^2} \mathrm{d}x \ \mathrm{gr\^{a}ce} \ \grave{a} \ \mathrm{b}) \ \mathrm{i}). \ \mathrm{D'où} \ I(a) = \frac{3}{4} \int_a^{3a} \frac{\sin(x)}{x^2} \mathrm{d}x \ \mathrm{par}$ $\mathrm{la \ relation \ de \ Chasles. \ Il \ s'ensuit} \int_a^{3a} \varphi = I(a) \frac{3}{4} \int_a^{3a} \frac{\mathrm{d}x}{x} = I(a) \frac{3}{4} \left(\ln(3a) \ln a\right) \ \mathrm{donc} \ : \ I(a) = \frac{3}{4} \int_a^{3a} \varphi + \frac{3}{4} \ln(3), \ C = \frac{3}{4} \ \mathrm{et} \ D = \frac{3}{4} \ln(3)$
 - iii) Comme φ est continue sur $\mathbb R$ elle possède, d'après le théorème fondamental, une primitive Φ , cette dernière est de classe $\mathcal C^1$, en particulier continue, ainsi $\lim_{a\to 0}\Phi(a)=\Phi(0)$ et $\lim_{a\to 0}\Phi(3a)=\Phi(0)$, d'où $\lim_{a\to 0}\int_a^{3a}\varphi=0$ (alternative pour montrer cette limite : utiliser que φ est continue sur $\mathbb R$ donc bornée, disons par M, sur [-3,3], ainsi pour $a\in [-1,1]$ on a : $\left|\int_a^{3a}\varphi\right|\leq 2|a|M$, ce qui permet de conclure). On a donc $I=\lim_{a\to 0}I(a)=\frac{3}{4}\ln(3)$.

Exercice 5 (calcul d'intégrales généralisées).

On pose $I = \int_0^{\pi/2} \ln(\sin(t)) dt$ et $J = \int_0^{\pi/2} \ln(\cos(t)) dt$.

- 1° (a) Montrer que $\ln(\sin(t)) \sim \ln(t)$.
 - (b) En déduire la convergence de I.
- 2° Déterminer un changement de variable de classe \mathcal{C}^1 , strictement décroissant afin de montrer que I=J.
- 3° Après avoir rappelé la formule de duplication du sinus (ie. sin(2a) = ...), montrer que (on pourra utiliser le changement de variable u = 2t) : $I + J = \frac{1}{2} \int_0^{\pi} \ln(\sin(u)) du \frac{\pi}{2} \ln(2)$.

- $4^{\circ} \text{ Montrer, à l'aide du changement de variable } v = \pi u \text{, que } \int_{\pi/2}^{\pi} \ln(\sin(u)) \mathsf{d}u = \int_{0}^{\pi/2} \ln(\sin(v)) \mathsf{d}v.$
- $5\,^{\rm o}\,$ En déduire I.

- 1° (a) On a $\ln(\sin(t)) = \ln(t + o_{t\to 0}(t^2)) = \ln(t) + \ln(1 + o_{t\to 0}(t))$. Ainsi $\ln(\sin(t)) \sim \ln(t)$.
 - (b) $t \mapsto \ln(\sin(t))$ est continue sur $]0, \frac{\pi}{2}]$, de signe constant (négatif), d'après la règle des équivalents I est donc de même nature que $\int_0^1 \ln(t) dt$ qui converge. Ainsi I est convergente.
- 2° Le changement de variable $t=\frac{\pi}{2}-u$ est bien de classe \mathcal{C}^1 et strictement décroissant, ainsi $I=\int_0^{\pi/2}\ln(\sin(t))\mathrm{d}t=\int_{\pi/2}^0-\ln(\sin(\frac{\pi}{2}-u))\mathrm{d}u=J.$
- 3° On sait que $\sin(2a) = 2\sin(a)\cos(a)$ pour tout $a \in \mathbb{R}$. On a $I + J = \int_0^{\pi/2} \ln(\sin(x)\cos(x))dx = \int_0^{\pi/2} \ln(\frac{1}{2}\sin(2x))dx = \int_0^{\pi/2} \ln(\sin(2x)) \ln(2)dx = \int_0^{\pi/2} \ln(\sin(2x))dx \frac{\pi}{2}\ln(2)$. On applique le changement de variable u = 2t (qui est bien de classe \mathcal{C}^1 et strictement croissant) : $I + J = \frac{1}{2} \int_0^{\pi} \ln(\sin(u))du \frac{\pi}{2}\ln(2)$.
- 4° Le changement de changement de variable $v=\pi-u$ est bien de classe \mathcal{C}^1 et strictement décroissant, ainsi on a : $\int_{\pi/2}^{\pi} \ln(\sin(u)) du = \int_{\pi/2}^{0} -\ln(\sin(\pi-v)) dv = \int_{0}^{\pi/2} \ln(\sin(v)) dv = I.$
- 5° Si on combine 2°, 3° (où on y applique la relation de Chasles dans l'intégrale du membre de droite) et 4° on trouve $2I = \frac{1}{2}(2I) \frac{\pi}{2}\ln(2)$, ie. $I = -\frac{\pi}{2}\ln(2)$.

LJB Maths - DS4-cor