DS 5^* : samedi 13 janvier

4h sans calculatrice

Le candidat encadrera ou soulignera les résultats, il numérotera aussi ses pages.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (sur les matrices compagnon : d'après CCP MP 2001 Maths 2).

Dans cet exercice \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , n un entier naturel, et χ_A le polynôme caractéristique de la matrice $A \in \mathcal{M}_n(\mathbb{K})$. On considère le polynôme $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ de $\mathbb{K}_n[X]$ et C_P sa matrice compagnon associée, c'est-à dire la matrice de $\mathcal{M}_n(\mathbb{K})$ définie par :

$$C_P = \begin{pmatrix} 0 & 0 & . & . & 0 & -a_0 \\ 1 & 0 & . & . & 0 & -a_1 \\ 0 & 1 & 0 & . & 0 & -a_2 \\ . & . & . & . & . & . \\ 0 & . & 0 & 1 & 0 & -a_{n-2} \\ 0 & . & . & 0 & 1 & -a_{n-1} \end{pmatrix}$$

(ie la matrice $C_P = (c_{i,j})$ est définie par $c_{i,j} = 1$ pour i - j = 1, $c_{i,n} = -a_{i-1}$ et $c_{i,j} = 0$ dans les autres cas).

- 1° Montrer que C_P est inversible si et seulement si $P(0)\neq 0$.
- 2° Calculer le polynôme caractéristique de la matrice C_P et déterminer une constante k telle que $\chi_{C_p} = kP$.
- 3° Soit Q un polynôme de $\mathbb{K}_n[X]$, déterminer une condition nécessaire et suffisante pour qu'il existe une matrice A de $\mathcal{M}_n(\mathbb{K})$ telle que $\chi_A = Q$.
- 4° On note C_P^{\top} la transposée de la matrice C_P .
 - a) Justifier la proposition : $\operatorname{Sp}(C_P) = \operatorname{Sp}(C_P^\top)$.
 - b) Soit λ élément de $\operatorname{Sp}(C_P^\top)$, déterminer (ie. l'écrire avec un Vect) le sous-espace propre de C_P^\top associé à λ .
 - c) Montrer que C_P^{\top} est diagonalisable si et seulement si P est scindé sur \mathbb{K} et a toutes ses racines simples.
 - d) On suppose que P admet n racines $\lambda_1, \lambda_2, \ldots, \lambda_n$ deux à deux distinctes, montrer que C_P^{\top} est diagonalisable

On suppose que P admet n racines $\lambda_1, \lambda_2, \ldots, \lambda_n$ seem et en déduire que le déterminant de Vandermonde det $\begin{pmatrix} 1 & 1 & \ldots & 1 \\ \lambda_1 & \lambda_2 & \ldots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \ldots & \lambda_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \ldots & \lambda_n^{n-1} \end{pmatrix} \text{ est non nul.}$

e) (rajout) Question de cours : Donner (sans démonstration) l'expression factorisée du déterminant de VANDER-MONDE.

Correction:

1° On développe par rapport à la première ligne et on trouve $\det C_P = (-1)^{n+1}(-a_0) = (-1)^n a_0 = (-1)^n P(0)$, d'où le résultat.

2° On développe par rapport à la dernière colonne et on trouve :

$$\chi_{C_{P}}(X) = \begin{vmatrix}
X & 0 & \dots & 0 & a_{0} \\
-1 & X & \ddots & 0 & a_{1} \\
0 & -1 & X & \ddots & a_{2} \\
\vdots & \ddots & \ddots & \ddots & 0 & \vdots \\
0 & 0 & -1 & X & a_{n-2} \\
0 & \dots & 0 & -1 & X + a_{n-1}
\end{vmatrix}$$

$$= (X + a_{n-1}) \begin{vmatrix}
X & 0 & \dots & 0 \\
-1 & X & \ddots & \\
0 & \ddots & \ddots & \\
\vdots & & & & \\
0 & \dots & & -1 & X
\end{vmatrix} - a_{n-2} \begin{vmatrix}
X & 0 & \dots & 0 \\
-1 & X & \ddots & \\
\vdots & & & & \\
0 & \dots & -1 & X & 0 \\
0 & \dots & 0 & -1
\end{vmatrix} + \dots$$

et on reconnaît $X^{n} + a_{n-1}X^{n-1} + ... + a_{0} = P(X)$. Donc k = 1

- 3° Il faut et il suffit que Q soit unitaire de degré n. En effet un polynôme caractéristique est toujours unitaire de degré n, cette condition est donc nécessaire, et à la question précédente on a montré que la question était suffisante.
- 4° a) Ce résultat n'est pas spécifique à C_p , il est vrai pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, en effet les valeurs propres sont les racines de χ_A qui se calcule par un déterminant, or le déterminant est invariant par transposition, de plus la transposition est linéaire, ainsi on a $XI_n - A^{\top} = XI_n - A^{\top}$ ce qui montre que $\chi_A = \chi_{A^{\top}}$ et donc l'égalité des spectres (car le spectre de A est l'ensemble des racines de χ_A).

b) on a
$$C_P^{\top} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \\ -a_0 & -a_1 & \dots & -a_{n-1} \end{pmatrix}$$
, soit $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$. Ainsi X est vecteur propre de valeur propre X is et seulement si il vérifie le système suivant X .

$$\begin{cases} x_2 &= \lambda x_1 \\ x_3 &= \lambda x_2 \\ \vdots & \iff \begin{cases} x_i = \lambda^{i-1} x_1, \ \forall i \in [1, n] \\ (-a_0 - a_1 \lambda - \dots - a_{n-1} \lambda^{n-1}) x_1 &= \lambda^n x_1 \\ -a_0 x_1 & -\dots - a_{n-1} x_n = \lambda x_n \end{cases}$$

Donc, comme x_1 ne peut être nul (un vecteur propre n'est pas nul), on a donc que λ est racine de P et tout

vecteur propre est multiple de
$$X_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{pmatrix}$$
, ie $E_{\lambda}\left(C_{p}^{\top}\right) = \operatorname{Vect}\left(X_{\lambda}\right)$.

- c) On vient de constater que les espaces propres sont des droites, si la matrice C_P^{\top} est diagonalisable alors la somme des dimensions des sous-espaces propres vaut n, comme tous les sep sont de dimension 1 il doit donc y en avoir n, ie P possède n racines distinctes (elles sont donc toutes simples).
 - Réciproquement si P est scindé à racines simples alors le polynôme caractéristique de C_P^{\top} l'est aussi, ainsi C_P^+ est diagonalisable.
- d) Si P est scindé à racines simples, comme on vient de le voir une matrice de passage qui diagonalise C_P^{\top} est

$$V = \begin{pmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_n \\ \vdots & & & \\ \lambda_1^{n-1} & \dots & \lambda_n^{n-1} \end{pmatrix}, \text{ qui est inversible puisque matrice de passage!}$$

e) C'est :
$$\prod_{0 \le i < j \le n} \lambda_j - \lambda_i.$$

Exercice 2 (CENTRALE PC 2015, sans IV.F ni V).

Dans ce problème, $\mathbb K$ désigne le corps $\mathbb R$ ou le corps $\mathbb C$ et E est un $\mathbb K$ -espace vectoriel non nul.

Si f est un endomorphisme de E, pour tout sous-espace F de E stable par f on note f_F l'endomorphisme de F induit par f, c'est-à-dire défini sur F par $f_F(x) = f(x)$ pour tout x dans F.

Pour tout endomorphisme f d'un \mathbb{K} -espace vectoriel E on définit la suite $(f^n)_{n\in\mathbb{N}}$ des puissances de f par

$$\begin{cases} f^0 = \mathrm{Id}_E, \\ f^{k+1} = f \circ f^k = f^k \circ f \text{ pour tout } k \text{ dans } \mathbb{N}. \end{cases}$$

On note $\mathbb{K}[X]$ l'espace vectoriel sur \mathbb{K} des polynômes à coefficients dans \mathbb{K} et, pour tout n de \mathbb{N} , $\mathbb{K}_n[X]$ le sous-espace de $\mathbb{K}[X]$ des polynômes de degré au plus égal à n.

Pour $n \ge 1$, $\mathcal{M}_n(\mathbb{K})$ est l'espace des matrices carrées à n lignes et à éléments dans \mathbb{K} et $\mathcal{M}_{n,1}(\mathbb{K})$ est l'espace des matrices colonnes à n lignes et à éléments dans \mathbb{K} .

I Première partie

Dans cette partie, f est un endomorphisme d'un \mathbb{K} -espace vectoriel E.

I.A – Montrer qu'une droite F engendrée par un vecteur u est stable par f si et seulement si u est un vecteur propre de f.

I.B -

- I.B.1) Montrer qu'il existe au moins deux sous-espaces de E stables par f et donner un exemple d'un endomorphisme de \mathbb{R}^2 qui n'admet que deux sous-espaces stables.
- I.B.2) Montrer que si E est de dimension finie $n \ge 2$ et si f est non nul et non injectif, alors il existe au moins trois sous-espaces de E stables par f et au moins quatre lorsque n est impair. Donner un exemple d'endomorphisme de \mathbb{R}^2 qui n'admet que trois sous-espaces stables.

I.C -

- I.C.1) Montrer que tout sous-espace engendré par une famille de vecteurs propres de f est stable par f. Préciser l'endomorphisme induit par f sur tout sous-espace propre de f.
- I.C.2) Montrer que si f admet un sous-espace propre de dimension au moins égale à 2 alors il existe une infinité de droites de E stables par f.
- I.C.3) Que dire de f si tous les sous-espaces de E sont stables par f?
- I.D Dans cette sous-partie, E est un espace de dimension finie.
 - I.D.1) Montrer que si f est diagonalisable alors tout sous-espace de E admet un supplémentaire dans E stable par f. On pourra partir d'une base de F et d'une base de E constituée de vecteurs propres de f.
 - I.D.2) Montrer que si $\mathbb{K} = \mathbb{C}$ et si tout sous-espace de E stable par f admet un supplémentaire dans E stable par f, alors f est diagonalisable. Qu'en est-il si $\mathbb{K} = \mathbb{R}$?

Correction:

I.A $-\operatorname{Si} F = \operatorname{Vect}(u)$ est stable par $f, f(u) \in \operatorname{Vect}(u)$ donc il existe $\lambda \in \mathbb{K}$ tel que $f(u) = \lambda u$. Puisque F est une droite vectorielle engendré par u, u est non nul donc u est bien un vecteur propre de f. Réciproquement si u est un vecteur propre de f associé à une valeur propre $\lambda \in \mathbb{K}$. $u \neq 0_E$ donc $\operatorname{Vect}(u)$ est une droite vectorielle. De plus, si $v \in \operatorname{Vect}(u)$, il existe $k \in \mathbb{K}$ tel que v = ku. Par suite, $f(v) = \lambda ku$ donc $f(v) \in \operatorname{Vect}(u)$. Vect(u) est donc stable par f.

I.B -

I.B.1) Les sous-espaces $\{0_E\}$ et E sont clairement stables par F, il y a donc au moins deux sous-espaces stables par F.

Considérons l'endomorphisme f de \mathbb{R}^2 dont la matrice représentative dans la base canonique de \mathbb{R}^2 est $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Sì F est un sous-espace vectoriel stable autre que $\{0_E\}$ et E alors $\dim(F) = 1$. D'après I.A, f admet alors un vecteur propre associé à une valeur propre réelle.

Le polynôme caractéristique de f est X^2+1 . Celui-ci n'a pas de racines réelles, f n'admet donc pas de valeurs propres réelles puisqu'elles sont racines du polynôme caractéristique.

f n'a donc que $\{0_E\}$ et E comme sous-espaces propres stables.

I.B.2) Ici $n \geq 2$. Si f est non nul, $\operatorname{Ker}(f) \neq E$ et si f est non injective $f \neq \{0_E\}$. De plus, $f(\operatorname{Ker}(f)) = \{0_E\}$ donc $\operatorname{Ker}(f)$ est stable par f. Ainsi f admet au moins trois sous-espaces stables, $\{0_E\}$, E et $\operatorname{Ker}(f)$. Remarque: $n \geq 2$ est nécessaire car sinon on a $\operatorname{Ker}(f) = \{0_E\}$ ou $\operatorname{Ker}(f) = E$. Supposons de plus n impair. On a $f(\operatorname{Im}(f)) = \{f(f(u)); u \in E\} \subset \operatorname{Im}(f)$, $\operatorname{Im}(f)$ est donc stable

par f. Comme f est non injective, f étant un endomorphisme sur un espace de dimension finie f est non surjective donc $\operatorname{Im}(f) \neq E$. f est non nul donc $\operatorname{Im}(f) \neq \{0_E\}$. D'après le théorème du rang $n = rg(f) + \dim(\operatorname{Ker}(f))$. Par suite, si $\operatorname{Im}(f) = \operatorname{Ker}(f)$ on a n = 2rg(f) et donc n est pair. Ce n'est pas le cas donc $\operatorname{Im}(f) \neq \operatorname{Ker}(f)$. Ainsi, $\operatorname{Im}(f)$ est un quatrième sous-espace propre qui s'ajoute au trois autres.

Considérons l'endomorphisme f de \mathbb{R}^2 dont la matrice représentative dans la base canonique (e_1, e_2) de \mathbb{R}^2 est $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

f est non nul, non injective car $\text{Ker}(f) = \text{Vect}(e_1)$ donc f admet au moins trois sous-espaces stables. Supposons que F soit un autre sous-espace stable par f. On a alors $\dim(F) = 1$ et de I.A. F est engendré par un vecteur propre de f. Le polynôme caractéristique de f est X^2 . f admet donc comme seule valeur propre 0 donc F = Ker(f). Il n'y a donc que trois sous-espaces stables par f.

I.C -

I.C.1) Soient (u_1, u_2, \dots, u_k) une famille de k vecteurs propres de f associés respectivement à des valeurs propres $(\lambda_1, \lambda_2, \dots, \lambda_k)$ et $F = \text{Vect}(u_1, u_2, \dots, u_k)$.

Soit
$$u \in F$$
. Il existe $(\alpha_1, \alpha_2, \dots, \alpha_k) \in \mathbb{K}^k$ tel que $u = \sum_{i=1}^k \alpha_i u_i$. On a alors $f(u) = \sum_{i=1}^k \alpha_i \lambda_i u_i$ donc $f(u) \in F$. Ainsi F est stable par f .

L'endomorphisme induit par f sur un sous-espace propre F associé à la valeur propre $\lambda \in \mathbb{K}$ est λId_F .

- **I.C.2)** Soit F un sous-espace stable de f de dimension au moins 2. Soit (u, v) une famille libre de F. On vérifie alors que pour tout $(a, b) \in (K^*)^2$ avec $a \neq b$, la famille (u + av, u + bv) est libre. La famille $(\text{Vect}(u + av))_{a \in \mathbb{K}^*}$ est donc une famille de droites vectorielles deux à deux distinctes, il y en a donc une infinité. De plus, u est v sont des vecteurs propres donc, d'après I.C.1) Vect(u + av) est stable par f pour tout $a \in \mathbb{K}^*$. Ainsi, f admet une infinité de droites vectorielles stables par f.
- I.C.3) Si tout sous-espace vectoriel de f est stable par f toute droite vectorielle l'est aussi et donc tout vecteur de E est vecteur propre de f. Montrons que f admet une seule valeur propre. Soit, pour tout $u \in E$, $\lambda_u \in \mathbb{K}$ tel que $f(u) = \lambda_u u$. Soit $(u, v) \in E^2$.

Supposons (u, v) libre. On a $f(u+v) = \lambda_{u+v}(u+v) = \lambda_u u + \lambda_v v$ donc $(\lambda_{u+v} - \lambda_u)u + (\lambda_{u+v} - \lambda_v)v = 0_E$. La liberté de (u, v) impose $\lambda_{u+v} = \lambda_u = \lambda_v$.

Supposons (u, v) liée. Si $u = 0_E$, on a $f(u) = \lambda_v 0_E$ et on peut convenir que $\lambda_u = \lambda_v$. On peut conclure la même chose si $v = 0_E$.

Si $u \neq 0_E$ et $v \neq 0_E$, il existe $\alpha \in \mathbb{K}^*$ tel que $v = \alpha u$. Par suite, $f(v) = \alpha f(u) = \alpha \lambda_u u$ et $f(v) = \lambda_v v = \alpha \lambda_v u$. Comme $u \neq 0_E$, $\alpha \lambda_u = \alpha \lambda_v$ et comme $\alpha \neq 0$, $\lambda_u = \lambda_v$.

Ainsi, f n'admet qu'une seule valeur propre et comme tout vecteur de E est vecteur propre f est une homothétie vectorielle de rapport cette valeur propre.

I.D -

- **I.D.1)** Soit (e_1, \ldots, e_p) une base de F (où $p = \dim(F)$, si $F = \{0\}$ alors E est un supplémentaire stable par f, de même avec $\{0\}$ si F = E, on suppose donc $p \in [\![1, n-1]\!]$). Comme f est diagonalisable il existe une base (u_1, \cdots, u_n) de E constituée de vecteurs propres de f.

 D'après le théorème de la base incomplète (dans sa version forte), on peut compléter la famille libre (e_1, \ldots, e_p) (car c'est une base de F) en une base de E avec des vecteurs de (u_1, \cdots, u_n) , quitte à changer l'ordre on peut supposer que c'est (u_1, \ldots, u_{n-p}) . Ainsi $G = \operatorname{Vect}(u_1, \ldots, u_{n-p})$ est un supplémentaire de F dans E (car la concaténation des deux bases donne une base de E) et comme il est engendré par
- I.D.2) Ici $\mathbb{K} = \mathbb{C}$. D'après le théorème de De d'Alembert-Gauss, le polynôme caractéristique de f admet au moins une racine dans \mathbb{C} donc f admet au moins un vecteur propre. Soit F la somme directe des sous-espaces propres de f. $F \neq \{0_E\}$ d'après ce qui précède. Supposons $F \neq E$. F admet un supplémentaire G stable par G et $G \neq \{0_E\}$ car $F \neq E$. L'endomorphisme $f_{|G}$ a aussi un polynôme caractéristique scindé dans \mathbb{C} et donc un vecteur propre u. u est alors immédiatement vecteur propre de f et est donc dans F. Or, F et G sont supplémentaires donc $u = 0_E$ ce qui est contradictoire avec u vecteur propre. Ainsi F = E et donc f est diagonalisable.

une famille de vecteurs propres, G est stable par f.

Alternative: On peut construire à la main une base de vecteurs propres (de manière récurrente): comme on est dans \mathbb{C} et comme $n \geq 1$, on a $\operatorname{Sp}(f) \neq \emptyset$, prenons $\lambda_1 \in \operatorname{Sp}(f)$, ainsi il existe un vecteur propre e_1 de valeur propre λ_1 , comme $e_1 \neq 0$ alors $F_1 = \operatorname{Vect}(e_1)$ est un sous-espace de dimension 1 de E, il possède donc un supplémentaire G_1 (de dimension n-1) stable par f, notons f_1 l'endomorphisme induit par f sur G_1 . On répète l'opération (si $n-1 \geq 1$, sinon on a terminé): il existe un vecteur propre e_2 de valeur propre λ_2 de f_1 dans G_1 , c'est donc aussi un vecteur propre de f de valeur propre λ_2 , comme F_1 et G_1 sont en somme directe, la famille (e_1, e_2) est libre. On pose alors $F_2 = \operatorname{Vect}(e_1, e_2)$ qui est un sev de E de dimension 2, donc il

possède un supplémentaire G_2 , de dimension n-2, stable par f et on note f_2 l'endomorphisme induit par f sur G_2 , on réitère n fois, ie jusqu'à avoir $F_n = \text{Vect}(e_1, \dots, e_n)$ et donc $G_n = \{0\}$, la famille (e_1, \ldots, e_n) ainsi construite est une base de diagonalisation de de f, ainsi f est diagonalisable.

Si $\mathbb{K} = \mathbb{R}$, on ne peut pas conclure que f est diagonalisable dans \mathbb{R} . Prenons par exemple l'endomorphisme de la question I.B.1) pour lequel les seuls sous-espaces stables sont $\{0_E\}$ et E et donc tout sous-espace stable admet un supplémentaire stable et cet endomorphisme n'est pas diagonalisable dans \mathbb{R} .

II Deuxième partie

Dans cette partie, n et p sont deux entiers naturels au moins égaux à 2, f est un endomorphisme diagonalisable d'un K-espace vectoriel E de dimension n, qui admet p valeurs propres distinctes $\{\lambda_1,\ldots,\lambda_p\}$ et, pour tout i dans $[\![1,p]\!]$, on note E_i le sous-espace propre de f associé à la valeur propre λ_i .

- II.A Il s'agit ici de montrer qu'un sous-espace F de E est stable par f si et seulement si $F = \bigoplus_{i=1}^{p} (F \cap E_i)$.
 - II.A.1) Montrer que tout sous-espace F de E tel que $F = \bigoplus_{i=1}^{p} (F \cap E_i)$ est stable par f.
 - II.A.2) Soit F un sous-espace de E stable par f et x un vecteur non nul de F. Justifier l'existence et l'unicité de $(x_i)_{1 \leq i \leq p}$ dans $E_1 \times \cdots \times E_p$ tel que $x = \sum_{i=1}^p x_i$.
 - II.A.3) Si on pose $H_x = \{i \in [1, p] \mid x_i \neq 0\}$, H_x est non vide et, quitte à renuméroter les valeurs propres (et les sous-espaces propres), on peut supposer que $H_x = [1, r]$ avec $1 \le r \le p$. Ainsi on a $x = \sum_{i=1}^r x_i$ avec $x_i \in E_i \setminus \{0\}$ pour tout i de [1, r]. On pose $V_x = \text{Vect}(x_1, \dots, x_r)$.

Montrer que $\mathcal{B}_x = (x_1, \dots, x_r)$ est une base de V_x .

- II.A.4) Montrer que pour tout j de [1, r], $f^{j-1}(x)$ appartient à V_x et donner la matrice de la famille $(f^{j-1}(x))_{1 \le j \le r}$ dans la base \mathcal{B}_x .
- II.A.5) Montrer que $(f^{j-1}(x))_{1 \leq j \leq r}$ est une base de V_x .
- II.A.6) En déduire que pour tout i de [1, r], x_i appartient à F et conclure.
- II.B Dans cette sous-partie, on se place dans le cas où p = n.
 - II.B.1) Préciser la dimension de E_i pour tout i dans [1, p].
 - II.B.2) Combien y a-t-il de droites de E stables par f?
 - II.B.3) Si $n \ge 3$ et $k \in [2, n-1]$, combien y a-t-il de sous-espaces de E de dimension k et stables par f?
 - II.B.4) Combien y a-t-il de sous-espaces de E stables par f dans ce cas? Les donner tous.

Correction:

II.A) -

II.A.1) Soit
$$u \in F$$
. Il existe $(u_i)_{i \in \{1, \dots, p\}} \in \prod_{i=1}^p F \cap E_i$ tel que $u = \sum_{i=1}^p u_i$.

Par suite, $f(u) = \sum_{i=1}^{p} \lambda_i u_i$. Comme, pour tout $i \in \{1, \dots, p\}$, F et E_i sont des sous-espaces vectoriels $F \cap E_i$ l'est aussi et donc $\lambda_i u_i \in F \cap E_i$.

Ainsi $f(u) \in \bigoplus_{i=1}^{p} F \cap E_i$. $F = \bigoplus_{i=1}^{p} F \cap E_i$ est donc stable par f.

II.A.2) Les valeurs propres $(\lambda_i)_{i \in \{1,\dots,p\}}$ dont deux à deux distinctes donc les sous-espaces vectoriels

 $(E_i)_{i\in\{1,\cdots,p\}}$ sont en somme directe. De plus, f est diagonalisable donc $E=\bigoplus_{i=1}^r E_i$. Par conséquent, il

existe
$$(x_i)_{1 \le i \le p} \in \prod_{i=1}^p E_i$$
 unique tel que $x = \sum_{i=1}^p x_i$.

II.A.3) (x_1, \dots, x_r) est une famille de vecteurs propres associés à des valeurs propres distinctes donc c'est une famille libre. De plus, (x_1, \dots, x_r) est immédiatement une famille génératrice de $\text{Vect}(x_1, \dots, x_r)$ donc (x_1, \cdots, x_r) est une base de V_x .

- II.A.4) On a, pour tout $j \in \{1, \dots, r\}$, $f^{j-1}(x) = \sum_{i=1}^r \lambda_i^{j-1} x_i \in V_x$. La matrice de $(f^{j-1}(x))_{j \in \{1, \dots, r\}}$ dans la base \mathcal{B}_x est $\begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \dots & \lambda_1^{r-1} \\ 1 & \lambda_2 & \lambda_2^2 & \dots & \lambda_2^{r-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \lambda & \lambda^2 & & \lambda^{r-1} \end{pmatrix}.$
- II.A.5) Le déterminant de la matrice de $(f^{j-1}(x))_{j\in\{1,\cdots,r\}}$ dans la base \mathcal{B}_x est un déterminant de Vendermonde qui vaut : $\prod_{1\leq i< j\leq n} (\lambda_j-\lambda_i).$ Comme $(\lambda_i)_{i\in \llbracket 1,r\rrbracket}$ est une famille de scalaires deux à deux distincts, ce déterminant est non nul. Par suite, la famille $(f^{j-1}(x))_{j\in\{1,\cdots,r\}}$ est libre et étant de cardinal à égal à r, dimension de V_x , c'est une base de V_x .
- II.A.6) Soit $i \in [1, p]$. D'après II.A.5) il existe $(\alpha_{i,j})_{j \in \{1, \dots, r\}}$ tel que $x_i = \sum_{j=1}^r \alpha_{i,j} f^{j-1}(x)$. Comme F est stable par f, F est de façon immédiate stable par f^k pour tout $k \in \mathbb{N}$. Comme $x \in F$, on a donc $f^{j-1}(x) \in F$ pour tout $j \in \{1, \dots, r\}$. Par suite, $\sum_{j=1}^r \alpha_{i,j} f^{j-1}(x) \in F$ et donc $x_i \in F$, ceci pour tout $i \in \{1, \dots, p\}$. On a donc $x \in \bigoplus_{i=1}^p F \cap E_i$, ceci étant aussi immédiatement vrai pour 0_E , on déduit que $F \subset \bigoplus_{i=1}^p F \cap E_i$ puis par double inclusion immédiate on a $F = \bigoplus_{i=1}^p F \cap E_i$.
- II.B) -
 - II.B.1) Soit $i \in \{1, \dots, p\}$. Comme p = n et que $(\lambda_j)_{j \in [\![1, p]\!]}$ sont deux à deux distincts, λ_i est une valeur propre d'ordre de multiplicité un. Par suite, $\dim(E_i) = 1$.
 - II.B.2) D'après II.B.1), pour tout $i \in \{1, \dots, n\}$, E_i est engendré par un vecteur propre et donc d'après I.A E_i est stable par f. De plus, si D est une droite vectorielle stable par f, elle est engendrée par un vecteur propre d'après encore I.A et est donc l'un des sous-espaces propres E_i puisque pour tout $i \in \{1, \dots, n\}$, $\dim(E_i) = \dim(D) = 1$. Par conséquent, E_1, E_2, \dots, E_n sont les seules droite vectorielles stables par f. Il y en a donc n.
 - II.B.3) Montrons que F est stable par f et $\dim(F) = k$ si et seulement si il existe $H \subset \{1, \dots, n\}$ avec $\operatorname{Card}(H) = k$ tel que $F = \bigoplus_{i \in H} E_i$. Soit $H \subset \{1, \dots, n\}$ avec $\operatorname{card}(H) = k$. Soit, pour tout $i \in \{1, \dots, n\}$, un vecteur propre $u_i \in E$ tel que $E_i = \operatorname{Vect}(u_i)$. On a donc $\bigoplus_{i \in H} E_i = \operatorname{Vect}((u_i)_{i \in H})$. D'après I.C-1), $\operatorname{Vect}((u_i)_{i \in H})$ est stable par f

donc $\bigoplus_{i \in H} E_i$ l'est aussi.

Soit F un sous-espace de dimension k et stable par f. D'après II.A.6), $F = F \subset \bigoplus_{i=1}^p F \cap E_i$. Soit $i \in \{1, \cdots, n\}$. Comme $\dim(E_i) = 1$, on a ou bien $F \cap E_i = E_i$ ou bien $F \cap E_i = \{0_E\}$. Soit $H = \{i \in [1, n]; F \cap E_i = E_i\}$. On a donc $F = \bigoplus_{i \in H} E_i$. De plus, $\dim(F) = \dim(\bigoplus_{i \in H} E_i) = \sum_{i \in H} \dim(E_i) = \operatorname{card}(H)$, donc $\operatorname{card}(H) = k$. F est donc stable par f et $\dim(F) = k$ si et seulement si il existe $H \subset \{1, \cdots, n\}$ avec $\operatorname{card}(H) = k$ tel que $F = \bigoplus_{i \in H} E_i$.

On déduit que le nombre de sous-espaces stables par f et de dimension k est le nombre de k-combinaisons de $\{1,\ldots,n\}$ c'est-à-dire, $\binom{n}{k}$.

II.B.4) Si n=2, d'après II.B.2), Les sous-espaces stables sont $\{0_E\}$, E, E_1 et E_2 . Si $n\geq 3$, d'après II.B.2) et II.B.3), il y a $1+\binom{n}{1}+\sum_{k=2}^{n-1}\binom{n}{k}+1=\sum_{k=0}^{n}\binom{n}{k}=2^n$, cette formule étant d'ailleurs valable pour n=2 et n=1. Les sous-espaces stables de f sont $\{0_E\}$, E_i , $i\in [\![1,n]\!]$ et $\bigoplus_{i\in H}E_i$, avec $H\subset \{1,\cdots,n\}$ $2\leq \operatorname{Card}(H)\leq n-1$.

III Troisième partie

- III.A On considère l'endomorphisme D de dérivation sur $\mathbb{K}[X]$ défini par D(P) = P' pour tout P dans $\mathbb{K}[X]$.
 - III.A.1) Vérifier que pour tout n de \mathbb{N} , $\mathbb{K}_n[X]$ est stable par D et donner la matrice A_n de l'endomorphisme induit par D sur $\mathbb{K}_n[X]$ dans la base canonique de $\mathbb{K}_n[X]$.
 - III.A.2) Soit F un sous-espace de $\mathbb{K}[X]$, de dimension finie non nulle, stable par D.
 - a) Justifier l'existence d'un entier naturel n et d'un polynôme R de degré n tels que $R \in F$ et $F \subset \mathbb{K}_n[X]$.
 - b) Montrer que la famille $(D^i(R))_{0 \le i \le n}$ est une famille libre de F.
 - c) En déduire que $F = \mathbb{K}_n[X]$.
 - III.A.3) Donner tous les sous-espaces de $\mathbb{K}[X]$ stables par D.
- III.B On considère un endomorphisme f d'un \mathbb{K} -espace vectoriel E de dimension $n \geqslant 2$ tel que $f^n = 0$ et $f^{n-1} \neq 0$.
 - III.B.1) Déterminer l'ensemble des vecteurs u de E tels que la famille $\mathcal{B}_{f,u} = (f^{n-i}(u))_{1 \leq i \leq n}$ soit une base de E.
 - III.B.2) Dans le cas où $\mathcal{B}_{f,u}$ est une base de E, quelle est la matrice de f dans $\mathcal{B}_{f,u}$?
 - III.B.3) Déterminer une base de E telle que la matrice de f dans cette base soit A_{n-1} .
 - III.B.4) Donner tous les sous-espaces de E stables par f. Combien y en a-t-il? Donner une relation simple entre ces sous-espaces stables et les noyaux $\ker(f^i)$ pour i dans [0, n].

Correction:

III.A) -

III.A.1) Soit $n \in \mathbb{N}$. Soit $P \in \mathbb{K}_n[X]$. Si $deg(P) \leq 0$, P' = 0 et donc $D(P) \in \mathbb{K}_n[X]$. Si $deg(P) \geq 1$, de(P') = deg(P) - 1 donc $D(P) \in \mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est donc stable par D.

On a
$$A_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & n \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$
.

III.A.2)

a) Soit $L = \{p \in \mathbb{N} : \exists P \in F \text{ avec } deg(P) = p\}$. Cet ensemble est non vide vu que F est de dimension non nulle, il contient un polynôme non nul dont le degré est dans L. Supposons L non majorée. En ce cas, il existe une suite $(P_i)_{i \in \mathbb{N}}$ de polynômes tous non nuls de F et de degré strictement croissant. Cette famille est donc de degré echelonné donc est libre. Ce qui impose F de dimension infinie. Or, $\dim(F)$ est finie, donc L est majorée. $L \subset \mathbb{N}$ donc L admet un plus grand élément. Soit n celui-ci. Par suite, il existe $R \in F$ tel que deg(R) = n. De plus, pour tout $P \in F$, $deg(P) \leq n$ donc $F \subset \mathbb{K}_n[X]$.

Alternative: F est de dimension finie non nulle, notons la k, ainsi il existe une base (P_1, \ldots, P_k) de F, notons n le plus grand élément de l'ensemble (fini) $\{\deg(P_1), \ldots, \deg(P_k)\}$ et ℓ un entier entre 1 et k tel que $\deg(P_\ell) = n$ Notons $R = P_\ell$. Par définition du maximum, pour tout $i \in [1, k]$ on a $\deg(P_i) \leq n$, ainsi si $P \in F$, comme P est combinaison linéaire de P_1, \ldots, P_k on a $\deg(P) \leq n$, ce qui montre $F \subset \mathbb{K}_n[X]$ et on a bien montré l'existence d'un $R \in F$ tel que $\deg(R) = n$.

- b) Pour tout $i \in \{0, \dots, n\}$, on montre par récurrence que $deg(D^i(R)) = n i$. Or, pour tout $i \in \{0, \dots, n\}$, $0 \le n i \le n$. Par suite, $(D^i(R))_{0 \le i \le n}$ est une famille de polynômes tous non nuls et de degré échelonné donc $(D^i(R))_{0 \le i \le n}$ est libre.
- c) La famille $(D^i(R))_{0 \le i \le n}$ est libre d'après la question précédente. Elle possède n+1 éléments qui sont tous dans $\mathbb{K}_n[X]$ et $\dim(\mathbb{K}_n[X]) = n+1$ donc c'est une base de $\mathbb{K}_n[X]$ donc $\mathbb{K}_n[X] = \operatorname{Vect}(D^i(R))_{0 \le i \le n}$. Par suite, $\mathbb{K}_n[X] \subset F$. De l'inclusion de III.A.1.a), on a $F = \mathbb{K}_n[X]$.
- III.A.3) D'après III.A.1) et III.A.2) F est un sous-espace de dimension finie stable par D si et seulement si $F = \{0_{\mathbb{K}[X]}\}$ ou bien il existe $n \in \mathbb{N}$ tel que $F = \mathbb{K}_n[X]$. Soit à présent F un sous espace stable par D de dimension infinie. Montrons que $D = \mathbb{K}[X]$.

Soit $P \in \mathbb{K}[X]$. Si P est nul, $P \in D$. Supposons P non nul. Comme F est de dimension infinie il existe $Q \in F$ avec deg(Q) > deq(P). En effet, dans le cas contraire, on aurait $F \subset K_p[X]$, où p = deg(P) et F serait de dimension finie. Soit q = deg(Q). Comme F et $\mathbb{K}_q[X]$ sont stables, $F \cap \mathbb{K}_q[X]$ l'est aussi. De plus, $\mathbb{K}_q[X] \cap F$ est de dimension finie donc il existe $r \in \mathbb{N}$ tel que $\mathbb{K}_q[X] \cap F = \mathbb{K}_r[X]$. On a donc $\mathbb{K}_r[X] \subset \mathbb{K}_q[X]$ donc $r \leq q$. De plus, $Q \in \mathbb{K}_q[X] \cap F$ donc $Q \in \mathbb{K}_r[X]$ donc $q \leq r$. Ainsi r = q donc $\mathbb{K}_q[X] \cap F = \mathbb{K}_q[X]$. Or, deq(P) < deq(Q) donc $P \in \mathbb{K}_q[X]$ donc $P \in F$. Ainsi $\mathbb{K}[X] \subset F$ et par double inclusion immédiate, $F = \mathbb{K}[X]$.

Les sous espaces stables de $\mathbb{K}[X]$ par D sont donc les sous-espaces $0_{\mathbb{K}[X]}$, $\mathbb{K}_n[X]$, $n \in \mathbb{N}$ et $\mathbb{K}[X]$.

III.B. –

III.B.1) Soit $M = \{u \in E ; \mathcal{B}_{f,u} \text{ est un base de } E\}$. Montrons que $M = E \setminus \text{Ker}(f^{n-1})$. Si $\mathcal{B}_{f,u}$ est une base de E, $f^{n-1}(u) \neq 0_E$ donc $u \in E \setminus \mathrm{Ker}(f^{n-1})$. L'inclusion $M \subset E \setminus \mathrm{Ker}(f^{n-1})$ s'en déduit. Soit $u \in E \backslash \operatorname{Ker}(f^{n-1})$. Montrons que $\mathcal{B}_{f,u}$ est libre.

Soit
$$(a_1, \dots, a_n) \in \mathbb{K}^n$$
 tel que $\sum_{i=1}^n a_i f^{n-i}(u) = 0_E$. Supposons a_1, \dots, a_n non tous nuls. Soit alors $i_0 = max\{i \in [1, n]; a_i \neq 0\}$. On a donc $\sum_{i=1}^{i_0} a_i f^{n-i}(u) = 0_E$. Comme $f^n = 0$, $f^k = 0$ pour tout $k \geq n$,

en composant par f^{i_0-1} à chaque membre de l'égalité précédente, on obtient donc $a_{i_0}f^{n-1}(u)=0_E$. Comme $f^{n-1}(u) \neq 0_E$, $a_{i_0} = 0$ ce qui contredit $a_{i_0} \neq 0$. Par suite, pour tout $i \in \{1, \dots, n\}$, $a_i = 0$ et donc $\mathcal{B}_{f,u}$ est libre. Il s'agit d'une famille de n vecteurs et comme $\dim(E) = n$, $\mathcal{B}_{f,u}$ est une base de E. Ainsi $E \setminus \operatorname{Ker}(f^{n-1}) \subset M$ et par double inclusion $M = E \setminus \operatorname{Ker}(f^{n-1})$.

III.B.2) La matrice de
$$f$$
 dans $\mathcal{B}_{f,u}$ est : $\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & & 0 \end{pmatrix}$.

- III.B.3) Soit $u \in E$ tel que $\mathcal{B}_{f,u}$ soit une base de E. Soit $\mathcal{B}'_{f,u} = ((i-1)!f^{n-i}(u))_{1 \leq i \leq n}$. $\mathcal{B}'_{f,u}$ est alors clairement aussi une base de E. De plus, pour tout $i \in \{2, \cdots, n\}, f((i-1)!f^{n-i}(u)) = (i-1)\left(((i-1)-1)!f^{n-(i-1)}(u)\right) \text{ et pour } i = 1, f((i-1)!f^{n-i}(u)) = 1, f(($ 0_E . Par conséquent, la matrice de f dans $\mathcal{B}'_{f,u}$ est bien A_{n-1} .
- III.B.4) Tout d'abord, pour $i \in [0,n]$ et $x \in \text{Ker}(f^i)$ on a $f^i(f(x)) = f^{i+1}(x) = f(f^i(x)) = f(0) = 0$ donc $\operatorname{Ker}(f^i)$ est stable par f (on a aussi montré $\operatorname{Ker}(f^i) \subset \operatorname{Ker}(f^{i+1})$). Or les inclusions sont strictes, en effet si pour $i \in [0, n-1]$ on a $\operatorname{Ker}(f^i) = \operatorname{Ker}(f^{i+1})$, alors $\operatorname{Ker}(f^{i+1}) = \operatorname{Ker}(f^{i+2})$ (car si $x \in \operatorname{Ker}(f^{i+2})$) alors $f(x) \in \text{Ker}(f^{i+1})$ donc $f(x) \in \text{Ker}(f^i)$ donc $x \in \text{Ker}(f^{i+1})$ ainsi $\text{Ker}(f^{i+2}) \subset \text{Ker}(f^{i+1})$ et l'autre inclusion a déjà été démontrée) donc par récurrence direct $Ker(f^{n-1}) = Ker(f^n)$, ce qui est absurde puisque $f^{n-1} \neq 0$ et $f^n = 0$.

En conclusion on a trouvé n+1 sous-espaces stables par f: les $\mathrm{Ker}(f^i)$ pour $i\in [\![0,n]\!]$. Reste à Montrer que ce sont les seules.

Soit $u \in E$ tel que $\mathcal{B}_{f,u}$ soit une base de E. D'après III.B.3), f et $D_{|_{\mathbb{K}_{n-1}[X]}}$ ont la même matrice représentative dans respectivement les bases $(X^{i-1})_{1 \leq i \leq n}$ et $\mathcal{B}'_{f,u} = (u_{i-1})_{1 \leq i \leq n}$, où on a noté, $u_{i-1} = (i-1)! f^{n-i}(u)$ pour tout $i \in [1, n]$.

Dit autrement f et $D_{|_{\mathbb{K}_{n-1}[X]}}$ sont semblable. On introduit l'application linéaire g de E dans $\mathbb{K}_{n-1}[X]$ telle que pour tout $i \in \{1, \dots, n\}, g(X^{i-1}) = u_{i-1}, \text{ alors comme } g \text{ transforme une base en une base}$ c'est un isomorphisme et on a ainsi : $f=g\circ D_{|_{\mathbb{K}_{n-1}[X]}}og^{-1}$. Ainsi $g^{-1}\circ f=D_{|_{\mathbb{K}_{n-1}[X]}}og^{-1}$.

Soit F un sous-espace de E, montrons que F est stable par F si et seulement si $g^{-1}(F)$ est stable par $D_{|_{\mathbb{K}_{n-1}[X]}}$.

- Si F est stable par f alors $g^{-1}(f(F)) \subset g^{-1}(F)$. Et donc $D_{|_{\mathbb{K}_n \to [X]}}(g^{-1}(F)) \subset g^{-1}(F)$ donc $g^{-1}(F)$ est stable par $D_{|_{\mathbb{K}_{n-1}[X]}}$.
- Si $g^{-1}(F)$ soit stable par $D_{|\mathbb{K}_{n-1}[X]}$, on a $D_{|\mathbb{K}_{n-1}[X]}(g^{-1}(F)) \subset g^{-1}(F)$ donc $g^{-1}(f(F)) \subset g^{-1}(F)$ donc $g^{-1}(f(F)) \subset g^{-1}(F)$ donc $gog^{-1}((f(F)) \subset g(g^{-1}(F))$ donc $f(F) \subset F$ donc F est stable par f.

Comme g est un isomorphisme on a donc autant de sous-espaces stable par f que de sous-espaces stables par $D_{|\mathbb{K}_{n-1}[X]}$. Comme on a montré en III.A.3 qu'il y en avait n+1 ($\{0\}$ et les $\mathbb{K}_i[X]$ pour $i \in [0, n-1]$). Il n'y a donc pas de sous-espaces stable par f en plus des n+1 trouvés.

En conclusion les sous-espaces stables par f sont les $Ker(f^i)$ pour $i \in [0, n]$, et il y en a n+1.

IV Quatrième partie

Dans cette partie, n est un entier naturel non nul, M est dans $\mathcal{M}_n(\mathbb{R})$ et f est l'endomorphisme de $E = \mathcal{M}_{n,1}(\mathbb{R})$ défini par f(X) = MX pour tout X de E.

8 / 9 LJB Maths - DS5e-cor

IV.A – Si on pose
$$X_i = \begin{pmatrix} \delta_{1,i} \\ \vdots \\ \delta_{n,i} \end{pmatrix}$$
 où $\delta_{k,\ell} = \begin{cases} 1 & \text{si } k = \ell, \\ 0 & \text{si } k \neq \ell \end{cases}$ et $\mathcal{B}_n = (X_i)_{1 \leqslant i \leqslant n}$ la base canonique de E , quelle est la matrice de f dans \mathcal{B}_n ?

- IV.B Montrer que si n est impair, alors f admet au moins une valeur propre réelle.
- IV.C Dans cette question, $\lambda = \alpha + i\beta$, avec (α, β) dans \mathbb{R}^2 , est une valeur propre non réelle de M et Z de $\mathcal{M}_{n,1}(\mathbb{C})$, non nul est tel que $MZ = \lambda Z$.

Si $M=(m_{i,j})_{1\leqslant i,j\leqslant n}$, on pose $\overline{M}=(m'_{i,j})_{1\leqslant i,j\leqslant n}$ avec $m'_{i,j}=\overline{m_{i,j}}$ (conjugué du nombre complexe $m_{i,j}$) pour

tout
$$(i,j)$$
 de $[\![1,n]\!]^2$ et si $Z=\begin{pmatrix}z_1\\\vdots\\z_n\end{pmatrix}$, on pose $\overline{Z}=\begin{pmatrix}z'_1\\\vdots\\z'_n\end{pmatrix}$ avec $z'_i=\overline{z_i}$ pour tout i de $[\![1,n]\!]$.

On pose $X=\frac{1}{2}(Z+\overline{Z})$ et $Y=\frac{1}{2i}(Z-\overline{Z})$.

- IV.C.1) Vérifier que X et Y sont dans E et montrer que la famille (X,Y) est libre dans E.
- IV.C.2) Montrer que le plan vectoriel F engendré par X et Y est stable par f et donner la matrice de f_F dans la base (X,Y).
- IV.D Que penser de l'affirmation : « tout endomorphisme d'un espace vectoriel réel de dimension finie admet au moins une droite ou un plan stable » ?
- IV.E Existe-t-il un endomorphisme de $\mathbb{R}[X]$ n'admettant ni droite ni plan stable?

Correction:

- IV.A $-MX_i$ étant la colonne i de M, par définition de la matrice d'un endomorphisme dans une base, la matrice de f dans \mathcal{B}_n est M.
- IV.B Le polynôme caractéristique χ_f de f étant unitaire de degré n, il tend vers $-\infty$ en $-\infty$ et $+\infty$ en $+\infty$; comme il change de signe et est une fonction continue réelle, il admet au moins une racine réelle donc f a au moins une valeur propre.

IV.C -

- IV.C.1) X et Y sont bien des vecteurs de \mathbb{R}^n puisque pour tout $i, x_i = \Re e(z_i)$ et $y_i = \Im m(z_i)$. Soient (a,b) un couple de réels tels que aX + bY = 0 ce qui équivaut à $(a-ib)Z + (a+ib)\overline{Z} = 0$. comme $MZ = \lambda Z, M\overline{Z} = \overline{\lambda Z}$. Z et \overline{Z} sont des vecteurs propres de M associés à deux valeurs propres distinctes (car $\lambda \notin \mathbb{R}$), ils forment une famille libre donc a-ib=a+ib=0 ce qui équivaut à a=b=0 ce qui prouve que (X,Y) est libre.
- IV.C.2) On a immédiatement :

$$\begin{cases} 2MX = MZ + M\overline{Z} = 2\Re e\left((\alpha + i\beta)(X + iY)\right) = 2(\alpha X - \beta Y) \\ 2MY = \frac{1}{i}\left(MZ - M\overline{Z}\right) = 2\Im m\left((\alpha + i\beta)(X + iY)\right) = 2(\beta X + \alpha Y) \end{cases}$$

ce qui prouve que le plan vectoriel F est stable par f et la matrice de f_F dans la base (X,Y) est $M_F = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$

- IV.D Soit E un espace vectoriel de **dimension** n **non nulle** et un endomorphisme f de E admet de matrice M dans une base \mathcal{B} donnée de E. Si f a une valeur propre réelle λ , tout vecteur propre de f associé à λ engendre une droite stable par f.
 - Si f n'a pas de valeur propre réelle, sa matrice M admet au moins une valeur propre complexe λ $(n \neq 0)$. En reprenant les notations de la question C, les vecteurs x et y de E de matrices X et Y dans la base \mathcal{B} engendrent un plan stable par E.Ainsi:
 - tout endomorphisme d'un espace vectoriel réel de dimension finie non nulle admet une droite ou un plan stable.
- IV.E Soit l'endomorphisme de $\mathbb{R}[X]$ défini par f(P) = PX. Si P est non nul, $\deg(f(P)) = \deg(P) + 1$ donc f(P) ne peut pas être colinéaire à P; de plus $P, f(P), f^2(P)$ est une famille libre (car étagée en degré) donc P ne peut pas appartenir à un plan stable.
 - L'endomorphisme de $\mathbb{R}[X]$ défini par f(P) = PX n'admet ni droite ni plan stable.