DNS 11: pour le vendredi 29 mars

Correction

Exercice 1 (exercice 1 E3A PSI 2018).

Correction:

- 1. Si on identifie $\mathcal{M}_1(\mathbb{R})$ à \mathbb{R} , alors l'application $(X,Y) \mapsto X^\top Y$ n'est rien d'autre que le produit scalaire canonique sur $\mathcal{M}_{n,1}(\mathbb{R})$. On note $\|\cdot\|$ la norme euclidienne associée.
 - Montrons (1) \Rightarrow (2). Soit $\lambda \in \operatorname{Sp}(A)$. Soit $X \in E_{\lambda}(A)$. On a $X^{\top}AX = \lambda X^{\top}X = \lambda \|X\|^2 \geqslant 0$, et donc $\lambda \geqslant 0$ puisque $\|X\|^2 > 0$.
 - Montrons (2) \Rightarrow (3). D'après le théorème spectral (A est symétrique réelle) il existe $P \in O_n(\mathbb{R})$ tel que $A = P^{\top} \operatorname{diag}(\lambda_1, \ldots, \lambda_n) P$, où $\lambda_1, \ldots, \lambda_n$ sont les valeurs propres de A. Si ces valeurs propres sont positives, alors on peut poser $B = P^{\top} \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n}) P$, ainsi on a $B \in \mathcal{S}_n(\mathbb{R})$ et $B^2 = A$.
 - Montrons (3) \Rightarrow (1). Soit $B \in \mathcal{S}_n(\mathbb{R})$ est tel que $B^2 = A$. Pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$ on a $X^\top A X = X^\top B^2 X = X^\top B^\top B X = (BX)^\top B X = \|BX\|^2 \geqslant 0$.

Ce qui montre l'équivalence de ces trois propositions.

2. 2.1. J est de rang 1 donc (théorème du rang) 0 est valeur propre et $\dim E_0(J) = n-1$, comme $\operatorname{tr}(J) = n$

on en déduit que $\mathrm{Sp}(J)=\{0,n\}$. De plus $E_0(J)=\ker(J)$ est l'hyperplan d'équation $\sum_{k=1}^n x_k=0$ et

 $E_n(J) = \ker(J - nI_n)$ la droite dirigée par le vecteur colonne $U \in \mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients valent 1.

Remarque: On peut aussi donner une base de $\ker(J)$, ce sont les n-1 vecteurs colonnes avec un 1 en premier coefficient, un -1 sur un autre coefficients (qui peut être sur le deuxième, troisième, ..., n-ième) et des 0 ailleurs.

Or pour tous $\lambda \in \mathbb{R}$ et $X \in \mathcal{M}_{n,1}(\mathbb{R})$, on a $JX = \lambda X \iff MX = (\alpha + 1 - \lambda)X$. D'où $\operatorname{Sp}(M) = \{\alpha + 1, \alpha + 1 - n\}$, avec $\ker(M - (\alpha + 1)I_n) = \ker(J)$ et $\ker(M - (\alpha + 1 - n)I_n) = \ker(J - nI_n)$.

- **2.2.** En utilisant la question précédente et la caractérisation (2) de **1.** : $M \in \mathcal{S}_n^+(\mathbb{R}) \iff \alpha \geqslant n-1$. La question précédente permet d'avoir :
 - si $\alpha > n-1$, alors 0 n'est pas valeur propre de M, donc $\operatorname{rg}(M) = n$.
 - si $\alpha = n 1$, alors $\ker(M) = \ker(J nI_n)$ est de dimension 1, donc $\operatorname{rg}(M) = n 1$.

Dans tous les cas, on a donc bien $rg(M) \ge n - 1$.

- 3. 3.1. La matrice de A relativement à une BON est symétrique donc a est un endomorphisme symétrique, ainsi le théorème spectral assure que a est diagonalisable en base orthonormale, d'où l'existence demandée.
 - **3.2.** Par définition de b, sa matrice dans la base orthonormale \mathcal{B} est symétrique (et même diagonale), donc b est un endomorphisme symétrique.
 - **3.3.** La base \mathcal{B} est une base de diagonalisation de b, ainsi pour tout $i \in [1, n]$ on a $E_{\lambda_i}(a) = E_{\sqrt{\lambda_i}}(b)$, d'où l'égalité des deux noyaux.
- **4. 4.1.** Remarquons que l'on a $a=b^2$, puisque ces deux endomorphismes coïncident sur la base \mathcal{B} de **3.1**. Ainsi puisque b est symétrique (**3.2**), on a \forall $(i,j) \in [1,n^2]$, $\langle z_i,z_j\rangle = \langle b(e_i),b(e_j)\rangle = \langle e_i,b^2(e_j)\rangle = \langle e_i,a(e_j)\rangle = a_{i,j}$.

En particulier si $i \neq j$, alors $\langle z_i, z_j \rangle < 0$ par hypothèse sur A.

4.1.1. Posons $I_1 = \{i \in \llbracket 1, n-1 \rrbracket \mid \gamma_i \geqslant 0\}$ et $I_2 = \{i \in \llbracket 1, n-1 \rrbracket \mid \gamma_i < 0\}$, de sorte que I_1 et I_2 forment une partition de $\llbracket 1, n-1 \rrbracket$ telle que pour tout $i \in I_1$, $\gamma_i = |\gamma_i|$, et que pour tout $i \in I_2$, $\gamma_i = -|\gamma_i|$.

L'égalité
$$\sum_{i=1}^{n-1} \gamma_i z_i = 0_E$$
 s'écrit alors $\sum_{i \in I_1} |\gamma_i| z_i - \sum_{i \in I_2} |\gamma_i| z_i = 0_E$, ie $\sum_{i \in I_1} |\gamma_i| z_i = \sum_{i \in I_2} |\gamma_i| z_i$. Posons z ce dernier élément, on a $\langle z, z \rangle = \langle \sum_{i \in I_1} |\gamma_i| z_i, \sum_{i \in I_2} |\gamma_i| z_i \rangle = \sum_{(i,j) \in I_1 \times I_2} |\gamma_i| |\gamma_j| \langle z_i, z_j \rangle$.

Or $\langle z,z\rangle\geqslant 0$ et puisque I_1 et I_2 sont disjoints, on a pour $(i,j)\in I_1\times I_2$, que (b est symétrique d'après ${\bf 3.2}:\langle z_i,z_j\rangle=\langle b(e_i),b(e_j)\rangle=\langle e_i,b^2(e_j)\rangle=\langle e_i,a(e_j)\rangle=a_{i,j}<0$, donc $|\gamma_i||\gamma_j|\langle z_i,z_j\rangle\leqslant 0$.

D'où nécessairement $\langle z, z \rangle = 0$, ie $z = 0_E$, et ainsi $\sum_{i=1}^{n-1} |\gamma_i| z_i = \sum_{i \in I_1} |\gamma_i| z_i + \sum_{i \in I_2} |\gamma_i| z_i = z + z = 0_E$.

- **4.1.2.** On a alors $\langle \sum_{i=1}^{n-1} | \gamma_i | z_i, z_n \rangle = \langle 0_E, z_n \rangle = 0$ mais par linéarité, $\langle \sum_{i=1}^{n-1} | \gamma_i | z_i, z_n \rangle = \sum_{i=1}^{n-1} | \gamma_i | \langle z_i, z_n \rangle$ est une somme de termes négatifs. Donc $\forall i \in [1, n-1], | \gamma_i | \langle z_i, z_n \rangle = 0$, i.e. $\gamma_i = 0$ puisque $\langle z_i, z_n \rangle < 0$. On a montré que $\sum_{i=1}^{n-1} \gamma_i z_i = 0_E \Longrightarrow \forall i \in [1, n-1], \ \gamma_i = 0$, i.e. que la famille (z_1, \dots, z_{n-1}) est
- **4.2.** On vient de montrer que la famille $(b(e_1), \ldots, b(e_{n-1}))$ est libre, donc que $rg(b) \ge n-1$. Or par **3.3** et le théorème du rang, on a rg(b) = rg(a). Donc $rg(a) = rg(A) \ge n - 1$.

Exercice 2 (exercice 1, E3A PC 2 2018).

Correction:

- 1. Soit $\vec{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$, on a $:\vec{x}\in F\iff \langle \vec{x},\vec{u}\rangle=0\iff \sum_{i=1}^n x_i\times 1=0\iff \sum_{i=1}^n x_i=0$, ce qui montre bien le résultat demandé.
- 2. On peut utiliser la question 1 en introduisant $f: \vec{x} \mapsto \sum_{i=1}^n x_i$ qui est une application linéaire de \mathbb{R}^n dans \mathbb{R} , son image est inclue dans \mathbb{R} et comme $f(u) = n \neq 0$ son image est égale à \mathbb{R} , elle est donc de dimension 1, le théorème du rang permet d'en déduire que son noyau, qui n'est rien d'autre que F, est de dimension

Alternative: On a $F = \text{Vect}(\vec{u})^{\perp}$, or un espace vectoriel et son orthogonal sont supplémentaire (on est en dimension finie), en particulier $\dim(\mathbb{R}^n) = \dim(F) + \dim(\operatorname{Vect}(\vec{u}))$, ainsi $\dim(F) = n - 1$

3. Théorème spectrale: Toute matrice symétrique réelle est diagonalisable dans une base orthonormale. La matrice A_n est symétrique réelle, dont il existe une matrice P orthogonale et une matrice diagonale $D \in \mathcal{M}_n(\mathbb{R})$ telles que $A_n = PDP^{\perp}$.

4. Comme
$$\vec{x} \in F$$
 on a $\sum_{i=1}^{n} x_i = 0$. On a donc : $A_n X = \begin{pmatrix} \sum_{i=2}^{n} x_i \\ \vdots \\ \sum_{\substack{i=1 \ i \neq j}}^{n} x_i \\ \vdots \\ \sum_{i=1}^{n-1} x_i \end{pmatrix} = \begin{pmatrix} -x_1 \\ \vdots \\ -x_j \\ \vdots \\ -x_n \end{pmatrix} = -X$.

Dit autrement F est inclus (en identifiant \mathbb{R}^n et $\mathcal{M}_{n,1}(\mathbb{R})$, ie en identifiant X et \vec{x}) dans l'espace propre $E_{-1}(A_n)$.

5. On a -1 valeur propre de multiplicité au moins n-1, il ne manque donc qu'une seule valeur propre (qui, a priori, peut être -1) notons la α (existe nécessairement, car A_n est diagonalisable), comme le polynôme caractéristique est scindé (car A_n est diagonalisable) sa trace vaut la somme des valeurs propre, ainsi $0 = -(n-1) + \alpha$, ainsi $\alpha = n-1$ (Alternative : Calculer le polynôme caractéristique de A_n). En conclusion $Sp(A_n) = \{-1, n-1\}$. Déterminons maintenant les sous-espaces propres.

Notons $(E_i)_{i\in[1,n]}$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$, pour $j\in[2,n]$, on a $E_j-E_1\in E_{-1}(A_n)$, or cette famille d'éléments de $E_{-1}(A_n)$ est libre (car échelonnée) et à autant d'élément que la dimension de cet espace, on

a donc
$$E_{-1}(A_n) = \text{Vect}(E_2 - E_1, \dots, E_{n-1} - E_1)$$
. On peut remarquer que $A_n U = (n-1)U$, où $U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$,

ainsi $E_{n-1}(A_n) = \text{Vect}(U)$.

Alternative: On peut tout d'abord remarquer que comme A_n est diagonalisable (car A_n symétrique réelle) alors $\dim(E_{-1}(A_n)) = n-1$, or on a montré à la question précédente que $F \subset E_{-1}(A_n)$, donc $F = E_{-1}(A_n)$. De plus, comme A_n est symétrique réelle, les sous-espaces propres sont deux à deux orthogonaux, comme il n'y en a que deux, on en déduit que $E_{n-1}(A_n) = F^{\perp}$, or $F^{\perp} = \text{Vect}(U)$.

Alternative 2 : Résoudre à la main $A_nX = (n-1)X$.

- 6. Comme le polynôme caractéristique de A_n est scindé, son déterminant vaut le produit des valeurs propres, ie $\det(A_n) = (-1)^{n-1}(n-1)$.
- 7. On a : $B_n^{\top} = \begin{pmatrix} A_n^{\top} & I_n^{\top} \\ I_n^{\top} & A_n^{\top} \end{pmatrix} = \begin{pmatrix} A_n & I_n \\ I_n & A_n \end{pmatrix} = B_n$, ainsi B_n est symétrique réelle, donc diagonalisable.

2 / 3 LJB Maths - DNS11

8. Soit α une valeur propre de la matrice B_n et $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ un vecteur propre associé, écrit par bloc, on a $X \neq 0$ et $B_n X = \alpha X$.

On a aussi $B_nX=\begin{pmatrix}A_nX_1+X_2\\X_1+A_nX_2\end{pmatrix}$, ainsi on a : $\begin{cases}A_nX_1+X_2=\alpha X_1\\X_1+A_nX_2=\alpha X_2\end{cases}$. En sommant les lignes on a $(A_n+I_n)(X_1+X_2)=\alpha(X_1+X_2)$ et en prenant la différence $(A_n-I_n)(X_1-X_2)=\alpha(X_1-X_2)$. Si $X_1+X_2\neq 0$ alors α est valeur propre de A_n+I_n .

Si $X_1+X_2=0$, alors nécessairement $X_1-X_2\neq 0$ (en effet sinon on en déduirait $X_1=X_2=0$ et donc que X=0, ce qui n'est pas le cas) et dans ce cas α est valeur propre de A_n-I_n .

- 9. Soit $X \in \mathcal{M}_n(\mathbb{R})$, si X est vecteur propre de valeur propre β de A_n alors $(A_n + I_n)X = (\beta + 1)X$ et donc X est vecteur propre de valeur propre $\beta + 1$ de $A_n + I_n$, comme A_n est diagonalisable, il existe une base de vecteur propres de A_n , c'est donc aussi une base de vecteur propre de $A_n + I_n$, ainsi $Sp(A_n + I_n) =$ $\{\beta + 1, \beta \in \operatorname{Sp}(A_n)\} = \{0, n\}$. De même on a $\operatorname{Sp}(A_n - I_n) = \{\beta - 1, \beta \in \operatorname{Sp}(A_n)\} = \{-2, n - 2\}$. Avec la question précédente on a bien $Sp(B_n) \subset \{-2, 0, n-2, n\}$.
- 10. Soit $\lambda \in \operatorname{Sp}(A_n)$ et X_1 un vecteur propre de A_n de valeur propre λ , ie $X_1 \neq 0$ et $A_n X_1 = \lambda X_1$, posons Solt $\lambda \in \operatorname{Sp}(A_n)$ et X_1 un vector properties X_1 $X_2 = \begin{pmatrix} X_1 \\ X_1 \end{pmatrix}$, on a $B_n X = \begin{pmatrix} A_n X_1 + X_1 \\ X_1 + A_n X_1 \end{pmatrix} = (\lambda + 1) \begin{pmatrix} X_1 \\ X_1 \end{pmatrix} = (\lambda + 1) X$, ainsi $\lambda + 1$ est valeur properties B_n , de même en prenant $X = \begin{pmatrix} X_1 \\ -X_1 \end{pmatrix}$ on a $\lambda - 1$ valeur propre de B_n . Ce qui montre que $\{-2, 0, n-2, n\} \subset \operatorname{Sp}(B_n)$ et donc l'égalité.
- 11. On peut procéder comme en 8 et 10 pour avoir $\operatorname{Sp}(U_M) = \operatorname{Sp}(M + I_n) \cup \operatorname{Sp}(M I_n) = \{\alpha_i \pm 1, i \in [1, r]\},$ en effet on a uniquement utilisé que A_n était diagonalisable (pas qu'elle était symétrique).
- 12. Comme M est diagonalisable, il existe $P \in \mathcal{M}_n(\mathbb{R})$ inversible et D diagonale telles que $M = PDP^{-1}$. Les colonnes de P sont des vecteurs propres de M, or la démonstration de 8 nous dit que si $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ est vecteur propre de M alors $\begin{pmatrix} X_1 \\ X_1 \end{pmatrix}$ et $\begin{pmatrix} X_1 \\ -X_1 \end{pmatrix}$ sont des vecteurs propres de U_M , ce qui nous pousse à poser la matrice par blocs $Q = \begin{pmatrix} P & P \\ P & -P \end{pmatrix}$ (car ses colonnes sont des vecteurs propres de U_M), pour conclure quand au fait que U_M est diagonalisable il suffit donc de montrer que Q est inversible, or c'est le cas, pour cela il suffit de remarquer que la matrice $R = \frac{1}{2} \begin{pmatrix} P^{-1} & P^{-1} \\ P^{-1} & -P^{-1} \end{pmatrix}$ est telle que $QR = I_{2n}$, elle est donc son inverse. On a donc montré l'existence d'une matrice inversible dont les vecteurs colonnes sont des vecteurs propres de U_M (version matricielle de : il existe une base constituée de vecteurs propre) donc U_M est diagonalisable. Alternative: On peut poser la même matrice Q, donner Q^{-1} et calculer $Q^{-1}U_MQ$ pour voir qu'elle est diagonale (c'est $\begin{pmatrix} D+I_n & 0\\ 0 & D-I_n \end{pmatrix}$.

3 / **3** LJB Maths - DNS11