DNS 2 : pour le mercredi 8 octobre

Le candidat encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (Problème : Séries de Pile ou Face).

Soit $n \in \mathbb{N}^*$. On effectue une succession infinie de lancers indépendants d'une pièce donnant pile avec la probabilité $p \in]0,1[$ et face avec la probabilité q=1-p. On va s'intéresser dans ce problème aux successions de lancers amenant un même côté. Pour décrire la succession de n lancers, on introduit la notion de séries de lancers amenant un même côté et on parle de longueur d'une série. Ainsi, la première série est de longueur $m \in [1, n-1]$ si les m premiers lancers ont amené le même côté de la pièce et le (m+1)-ième l'autre côté, et de longueur n si les n lancers ont amené le même côté de la pièce. Si la longueur de la première série est égale à m < n, la deuxième série commence au (m+1)-ième lancer et se termine au lancer précédant un changement de côté s'il y a au moins un deuxième changement de côté au cours des n lancers, sinon on dit qu'elle est de longueur n-m. On peut définir de même les séries suivantes.

 Ω_n désigne l'ensemble des successions de pile ou face au bout de n lancers. Pour $i \in \mathbb{N}^*$, on note P_i l'événement « le i-ième lancer amène pile » et F_i l'événement contraire.

Les parties sont indépendantes.

Partie A : Étude des longueurs de séries

On considère dans cette sous-partie que $m \in \mathbb{N}^*$ et $k \in \mathbb{N}^*$.

- A.1) On note L_1 la longueur de la première série.
 - a) Déterminer $L_1(\Omega_n)$ (ensemble des valeurs prises par L_1).
 - b) On suppose que m < n. Exprimer l'événement $(L_1 = m)$ à l'aide des événements P_i et F_i pour i entier naturel variant entre 1 et m+1. En déduire la probabilité de l'événement $(L_1=m)$.
 - c) On suppose maintenant que m=n. Exprimer l'événement $(L_1=n)$ à l'aide des événements P_i et F_i pour i entier naturel variant entre 1 et n. En déduire la probabilité de l'événement $(L_1 = n)$.
 - d) Vérifier que $\sum_{m=1}^{n} \mathbb{P}(L_1 = m) = 1$.
- A.2 On note L_2 la longueur de la deuxième série, s'il y en a une, et on pose $L_2 = 0$ s'il n'y a pas de deuxième série.
 - a) Déterminer $L_2(\Omega_n)$.
 - b) On suppose que m+k < n. Exprimer l'événement $(L_1 = m) \cap (L_2 = k)$ à l'aide des événements P_i et F_i pour i entier naturel variant entre 1 et m+k+1. En déduire la probabilité de l'événement $(L_1=m)\cap (L_2=k)$.
 - c) On suppose que m+k=n. Exprimer l'événement $(L_1=m)\cap (L_2=k)$ à l'aide des événements P_i et F_i pour i entier naturel variant entre 1 et n. En déduire la probabilité de l'événement $(L_1 = m) \cap (L_2 = k)$.
 - d) En déduire la valeur de $\mathbb{P}(L_2 = k)$ pour $k \in [1, n-1]$.
 - e) Calculer $\mathbb{P}(L_2=0)$

Partie B : Étude du nombre de séries lors de n lancers

On considère dans toute cette sous-partie que la pièce est équilibrée, c'est-à-dire que p=1/2. On suppose que l'on effectue $n \ (n \ge 3)$ lancers indépendants et on note N_k le nombre de séries lors des k premiers lancers $(k \le n)$.

Par exemple, si on prend n=11 et si les lancers successifs donnent : FFPPPFFPPP (F désignant face et P pile), on a pour une telle succession $\omega \in \Omega_{11}: N_1(\omega) = N_2(\omega) = 1, N_3(\omega) = \ldots = N_6(\omega) = 2, N_7(\omega) = N_8(\omega) = 3$ et $N_9(\omega) = \ldots = N_{11}(\omega) = 4$. On admettra que pour tout $k \in [1, n]$, N_k est une variable aléatoire sur Ω_n .

- B.1) Déterminer les lois de N_1 , N_2 et N_3 et donner leurs espérances.
- B.2) Déterminer $N_n(\Omega_n)$, puis calculer les valeurs de $\mathbb{P}(N_n=1)$ et $\mathbb{P}(N_n=n)$.
- B.3) Fonctions génératrices de N_n

On pose, pour
$$n \in \mathbb{N}^*$$
 et pour $s \in [0,1]$, $G_n(s) = \sum_{k=1}^n \mathbb{P}(N_n = k)s^k$.

- a) Pour $s \in [0, 1]$, comparer l'espérance de la variable aléatoire s^{N_n} avec $G_n(s)$.
- b) Que représente $G'_n(1)$.

c) Montrer que pour tout $n \geq 2$ et pour tout $k \in [1, n]$ on a :

$$\mathbb{P}((N_n = k) \cap P_n) = \frac{1}{2} \mathbb{P}((N_{n-1} = k) \cap P_{n-1}) + \frac{1}{2} \mathbb{P}((N_{n-1} = k - 1) \cap F_{n-1}).$$

On admet que l'on obtiendrait de même :

$$\mathbb{P}((N_n = k) \cap F_n) = \frac{1}{2} \mathbb{P}((N_{n-1} = k) \cap F_{n-1}) + \frac{1}{2} \mathbb{P}((N_{n-1} = k - 1) \cap P_{n-1}).$$

Montrer alors que $\mathbb{P}(N_n = k) = \frac{1}{2}\mathbb{P}(N_{n-1} = k) + \frac{1}{2}\mathbb{P}(N_{n-1} = k - 1).$

- d) Soit $n \ge 2$. Montrer que $G_n(s) = \frac{1+s}{2}G_{n-1}(s)$. Calculer $G_1(s)$ et en déduire que $G_n(s) = \left(\frac{1+s}{2}\right)^{n-1}s$.
- e) Déterminer le nombre moyen de séries dans les n lancers.

Correction: C'est le problème 2 de CENTRALE TSI 2015

A.1) a) On a : $L_1(\Omega_n) = \{1, \dots, n\}.$

- b) Cas où m < n: On a $(L_1 = m) = (P_1 \cap \cdots \cap P_m \cap F_{m+1}) \cup (F_1 \cap \cdots \cap F_m \cap P_{m+1})$. $(L_1 = m)$ est la réunion de deux évènements incompatibles. Donc la probabilité de $(L_1 = m)$ est la somme des probabilités de ces deux évènements. Les lancers étant indépendants, on a $\mathbb{P}(P_1 \cap \cdots \cap P_m \cap F_{m+1}) = p^m q$ et $\mathbb{P}(F_1 \cap \cdots \cap F_m \cap P_{m+1}) = q^m p$. Donc $\mathbb{P}(L_1 = m) = p^m q + q^m p$.
- c) On a $(L_1 = n) = (P_1 \cap \cdots \cap P_n) \cup (F_1 \cap \cdots \cap F_n)$. Avec les mêmes arguments on a $\mathbb{P}(L_1 = n) = p^n + q^n$.

d)
$$\sum_{m=1}^{n} \mathbb{P}(L_1 = n) = \sum_{m=1}^{n-1} p^m q + \sum_{m=1}^{n-1} q^m p + p^n + q^n = pq \frac{1 - p^{n-1}}{1 - p} + pq \frac{1 - q^{n-1}}{1 - q} + p^n + q^n = p(1 - p^{n-1}) + q(1 - q^{n-1} + pp^{n-1} + qq^{n-1}) = p + q = 1.$$

A.2 a) On a: $L_2(\Omega_n) = \{0, 1, \dots, n-1\}.$

- b) Cas où m + k < n. On a $(L_1 = m) \cap (L_2 = k) = (P_1 \cap \cdots \cap P_m \cap F_{m+1} \cap \cdots \cap F_{m+k} \cap P_{m+k+1}) \cup (F_1 \cap \cdots \cap F_m \cap P_{m+1} \cap \cdots \cap P_{m+k} \cap F_{m+k+1})$. Ainsi (mêmes arguments qu'en A.1.b)) on a : $\mathbb{P}((L_1 = m) \cap (L_2 = k)) = p^m q^k p + q^m p^k q = p^{m+1} q^k + q^{m+1} p^k$.
- c) Cas où m+k=n. On a $(L_1=m)\cap (L_2=k)=(P_1\cap\cdots\cap P_m\cap F_{m+1}\cap\cdots\cap F_{m+k})\cup (F_1\cap\cdots\cap F_m\cap P_{m+1}\cap\cdots\cap P_{m+k})$. Ainsi (idem) : $\mathbb{P}((L_1=m)\cap (L_2=k))=p^mq^k+q^mp^k$.
- d) Les évènements $(L_1 = m)$ pour m variant entre 1 et n forment un système complet d'évènements. La formule des probabilités totales donne alors : $\mathbb{P}(L_2 = k) = \sum_{m=1}^n \mathbb{P}((L_1 = m) \cap (L_2 = k))$.

Si m + k > n alors $\mathbb{P}((L_1 = m) \cap (L_2 = k)) = 0$.

Si m + k = n, ie si m = n - k alors $\mathbb{P}((L_1 = m) \cap (L_2 = k)) = p^m q^k + q^m p^k = p^{n-k} q^k + q^{n-k} p^k$.

Si m + k < n, ie si m < n - k alors $\mathbb{P}((L_1 = m) \cap (L_2 = k)) = p^{m+1}q^k + q^{m+1}p^k$.

On a donc $\mathbb{P}(L_2 = k) = \sum_{m=1}^{n-k-1} p^{m+1} q^k + q^{m+1} p^k + p^{n-k} q^k + q^{n-k} p^k = p^2 q^k \frac{1-p^{n-k-1}}{1-p} + q^2 p^k \frac{1-q^{n-k-1}}{1-q} + p^{n-k} q^k + q^{n-k} p^k = p^2 q^{k-1} (1-p^{n-k-1}) + q^2 p^{k-1} (1-q^{n-k-1}) + p^{n-k} q^k + q^{n-k} p^k = p^2 q^{k-1} - p^{n-k+1} q^{k-1} + q^2 p^{k-1} - q^{n-k+1} p^{k-1} + p^{n-k} q^k + q^{n-k} p^k = p^2 q^{k-1} - p^{n-k+1} q^{k-1} + q^2 p^{k-1} + p^{n-k} q^k + q^{n-k} p^k = p^2 q^{k-1} - p^{n-k} q^k + q^{n-k} p^k = p^2 q^{k-1} - q^{n-k} p^k + q^{n-k$

e) On a $\mathbb{P}(L_2 = 0) = \mathbb{P}(L_1 = n) = p^n + q^n$

Remarque On peut vérifier que $\sum_{k=0}^{n-1} P(L_2 = k) = 1$.

B.1) On a $N_1(\Omega_1) = \{1\}$ et $\mathbb{P}(N_1 = 1) = 1$, ainsi $\mathbb{E}(N_1) = 1$.

On a $N_2(\Omega_2) = \{1,2\}$ et $\mathbb{P}(N_2 = 1) = \mathbb{P}((P_1 \cap P_2) \cup (F_1 \cap F_2)) = p^2 + q^2 = \frac{1}{2}$ et $\mathbb{P}(N_2 = 2) = P((P_1 \cap F_2) \cup (F_1 \cap P_2)) = pq + qp = 2pq = \frac{1}{2}$ (on peut vérifier que $p^2 + q^2 + 2pq = (p+q)^2 = 1$). Ainsi $\mathbb{E}(N_2) = \frac{1}{2} + 2\frac{1}{2} = \frac{3}{2}$.

On a enfin $N_3(\tilde{\Omega}_3) = \{1, 2, 3\}$ et $\mathbb{P}(N_3 = 1) = \mathbb{P}((P_1 \cap P_2 \cap P_3) \cup (F_1 \cap F_2 \cap F_3)) = p^3 + q^3 = \frac{1}{4}$, $\mathbb{P}(N_3 = 2) = \mathbb{P}((P_1 \cap P_2 \cap F_3) \cup (F_1 \cap F_2 \cap P_3) \cup (P_1 \cap F_2 \cap F_3) \cup (F_1 \cap P_2 \cap P_3)) = 2p^2q + 2q^2p = \frac{1}{2}$ et $\mathbb{P}(N_3 = 3) = \mathbb{P}((P_1 \cap F_2 \cap P_3) \cup (F_1 \cap P_2 \cap F_3)) = p^2q + q^2p = \frac{1}{4}$ (on peut vérifier que $p^3 + q^3 + 2p^2q + 2q^2p + p^2q + q^2p = p^3 + 3p^2q + 3pq^2 + q^3 = (p+q)^3 = 1$). Ainsi $\mathbb{E}(N_3) = \frac{1}{4} + 2\frac{1}{2} + 3\frac{1}{4} = 2$.

- B.2) On a $N_n(\Omega_n) = \{1, \dots, n\}$. Ainsi $\mathbb{P}(N_n = 1) = p^n + q^n = \frac{1}{2^{n-1}}$, on a aussi que $\mathbb{P}(N_n = n) = p^{\lfloor \frac{n}{2} \rfloor} q^{n-\lfloor \frac{n}{2} \rfloor} + q^{\lfloor \frac{n}{2} \rfloor} p^{n-\lfloor \frac{n}{2} \rfloor} = \frac{1}{2^{n-1}}$ (on peut aussi séparer en n paire/impaire).
- B.3) a) Le théorème de transfert dit que si X est une variable aléatoire de valeurs distinctes x_k , k variant de 1 à p et f une fonction définie sur l'image de X alors $\mathbb{E}(f(X)) = \sum_{k=1}^{p} f(x_k) \mathbb{P}(X = x_k)$. Prenons $X = N_n$, $x_k = k$, k variant de 1 à n et $f: x \mapsto s^x$. Il vient : $\mathbb{E}(s^{N_n}) = \mathbb{E}(f(X)) = \sum_{k=1}^{n} f(x_k) \mathbb{P}(X = x_k) = \sum_{k=1}^{n} s^k \mathbb{P}(N_n = k)$.

Ainsi, pour $s \in [0,1]$, $G_n(s) = \mathbb{E}(s_n^N)$.

- b) Pour $s \in [0,1]$ on a $(G_n$ est polynômiale donc dérivable) : $G'_n(s) = \sum_{k=1}^n \mathbb{P}(N_n = k)ks^{k-1}$ donc $G'_n(1) = \sum_{k=1}^n kP(N_n = k) = \mathbb{E}(N_n)$.
- c) On a $(N_n = k) \cap P_n = ((N_n = k \cap P_n \cap P_{n-1}) \cup ((N_n = k \cap P_n \cap F_{n-1}), \text{ réunion de deux évènements incompatibles } (P_{n-1} \text{ et } F_{n-1} \text{ formant un système complet}). Donc <math>\mathbb{P}((N_n = k) \cap P_n) = \mathbb{P}((N_n = k \cap P_n \cap P_{n-1}) + \mathbb{P}((N_n = k \cap P_n \cap F_{n-1})))$

Montrons que $(N_n = k) \cap P_n \cap P_{n-1} = (N_{n-1} = k) \cap P_{n-1} \cap P_n$:

- Si $\omega \in (N_n = k) \cap P_n \cap P_{n-1}$ alors les deux derniers lancers dans ω étant identiques, ils font partie de la même série. Donc avant le lancer n, il y a le même nombre de séries qu'après le lancer n, donc $N_{n-1}(w) = k$, donc $\omega \in (N_{n-1} = k) \cap P_{n-1} \cap P_n$.
- Réciproquement, si $\omega \in (N_{n-1} = k) \cap P_{n-1} \cap P_n$ alors les deux derniers lancers étant identiques, le nombre de séries ne changent pas entre le lancer n-1 et le lancer n, donc $X_n(\omega) = k$, donc $\omega \in (N_n = k) \cap P_n \cap P_{n-1}$.

Par un raisonnement analogue on a $(N_n = k) \cap P_n \cap F_{n-1} = (N_{n-1} = k-1) \cap F_{n-1} \cap P_n$ (si les deux derniers lancers sont différents alors une nouvelle série se créé).

On en déduit donc (indépendance des lancers) : $\mathbb{P}((N_n=k)\cap P_n\cap P_{n-1})=\mathbb{P}((N_{n-1}=k)\cap P_{n-1}\cap P_n)=\mathbb{P}((N_{n-1}=k\cap P_{n-1})\mathbb{P}(P_n)$ et de même $\mathbb{P}((N_n=k)\cap P_n\cap F_{n-1})=\mathbb{P}((N_{n-1}=k-1)\cap F_{n-1}\cap P_n)=\mathbb{P}((N_{n-1}=k-1)\cap F_{n-1})\mathbb{P}(P_n)$.

Ainsi $\mathbb{P}((N_n = k) \cap P_n) = \frac{1}{2}\mathbb{P}((N_{n-1} = k) \cap P_{n-1}) + \frac{1}{2}\mathbb{P}((N_{n-1} = k - 1) \cap F_{n-1}).$

On utilise la formule des probabilités totales (avec le système complet d'évènements (F_n, P_n) et avec le sce (F_{n-1}, P_{n-1})) : $\mathbb{P}(N_n = k) = \mathbb{P}((N_n = k) \cap P_n) + \mathbb{P}((N_n = k) \cap F_n) = (\frac{1}{2}\mathbb{P}((N_{n-1} = k) \cap P_{n-1}) + \frac{1}{2}\mathbb{P}((N_{n-1} = k - 1) \cap F_{n-1})) + (\frac{1}{2}\mathbb{P}((N_{n-1} = k) \cap F_{n-1}) + \frac{1}{2}\mathbb{P}((N_{n-1} = k - 1) \cap P_{n-1})) = \frac{1}{2}(\mathbb{P}((N_{n-1} = k) \cap P_{n-1}) + \mathbb{P}((N_{n-1} = k - 1) \cap P_{n-1}))$

Ainsi: $\mathbb{P}(N_n = k) = \frac{1}{2}(N_{n-1} = k) + \frac{1}{2}\mathbb{P}(N_{n-1} = k - 1).$

d) Soit $n \ge 2$. On a $G_n(s) = \sum_{k=1}^n \mathbb{P}(N_n = k) s^k = \frac{1}{2} \left(\sum_{k=1}^n \mathbb{P}(N_{n-1} = k) s^k + \sum_{k=1}^n \mathbb{P}(N_{n-1} = k - 1) s^k \right)$. Comme $\mathbb{P}(N_{n-1}) = n$ = 0, on a $\sum_{k=1}^n \mathbb{P}(N_{n-1} = k) s^k = \sum_{k=1}^{n-1} \mathbb{P}(N_{n-1} = k) s^k = G_{n-1}(s)$. Comme $\mathbb{P}(N_{n-1} = 0) = 0$, on $\sum_{k=1}^n \mathbb{P}(N_{n-1} = k - 1) s^k = \sum_{k=2}^n \mathbb{P}(N_{n-1} = k - 1) s^k = \sum_{j=1}^n \mathbb{P}(N_{n-1} = k - 1$

Donc $G_n(s) = \frac{1}{2}G_{n-1}(s) + \frac{1}{2}sG_{n-1}(s) = \frac{1+s}{2}G_{n-1}(s)$.

Ainsi $G_1(s) = P(N_1 = 1)s = s$.

La suite $(G_n(s))_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{1+s}{2}$. Donc $\forall n\in\mathbb{N}^*$, $G_n(s)=s\left(\frac{1+s}{2}\right)^{n-1}$

e) Soit $n \geq 2$. Cette question demande de calculer $\mathbb{E}(N_n)$ ie, d'après B.3).b), de calculer $G'_n(1)$. D'après la question précédente, $G'_n(s) = \left(\frac{1+s}{2}\right)^{n-1} + s(n-1)\frac{1}{2}\left(\frac{1+s}{2}\right)^{n-2}$. Ainsi $G'_n(1) = 1 + (n-1)\frac{1}{2} = \frac{n+1}{2}$.

Remarque: Pour n=2, on retrouve bien $\mathbb{E}(N_2)=\frac{3}{2}$ et $\mathbb{E}(N_3)=2$ de la question B.1).

Exercice 2 (Fonction de répartition).

On étudie dans cet exercice la fonction de répartition d'une var X sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Définition: La fonction de répartition de X est la fonction $F_X : \mathbb{R} \to \mathbb{R}$ définie par $F_X(x) = \mathbb{P}(X \le x)$.

- 1º Résultats généraux (X suit une loi discrète quelconque). Démontrer les assertions suivantes.
 - a) F_X est croissante.
 - b) $\lim_{x \to -\infty} F_X(x) = 0$ et $\lim_{x \to +\infty} F_X(x) = 1$.
 - c) F_X est continue à droite en chaque réel.
 - d) F_X possède une limite à gauche et à droite en tout $x_0 \in \mathbb{R}$ et $\lim_{x \to x_0^+} F_X(x) \lim_{x \to x_0^-} F_X(x) = \mathbb{P}(X = x_0)$.
- 2° Propriété fondamentale de la fonction de répartition.
 - a) Que dire de F_X et F_Y lorsque X et Y ont même loi?
 - b) Montrer que $(F_X = F_Y)$ implique que X et Y ont même loi.
- 3° Une utilisation de la fonction de répartition : la loi du max de deux var indépendantes.
 - a) Soit X et Y deux var indépendantes sur (Ω, \mathcal{A}, P) . On pose $Z = \max(X, Y)$. Démontrer que Z est une var.
 - b) Déterminer F_Z en fonction de F_X et F_Y .
 - c) Déterminer F_X puis F_Z et enfin la loi de Z lorsque $X \sim \mathcal{G}(p_1)$ et $Y \sim \mathcal{G}(p_2)$.

LJB Maths - DNS2-cor 3 / 5

Correction:

- 1° a) Conséquence immédiate de la croissance de $\mathbb P$ par rapport à l'inclusion puisque $(x \le y) \Rightarrow (X \le x) \subset (X \le y)$.
 - b) Tout d'abord l'existence de ces limites : d'après a) F_X est croissante et, comme est bornée puisqu'à valeurs dans [0,1], les limites de cette fonction existe par convergence monotone.

Pour le calcul on utilise le critère séquentiel : $\lim_{n \to +\infty} F_X = \lim_{n \to +\infty} F_X(n)$. Or $(X \le n)_{n \in \mathbb{N}}$ est une suite croissante

d'événements donc, par continuité croissante, $\lim_{n\to +\infty} F_X(n) = \mathbb{P}\left(\bigcup_{n=0}^{+\infty} (X\leq n)\right) = 1 \text{ car } \bigcup_{n=0}^{+\infty} (X\leq n) = \Omega.$

Pour la limite en $-\infty$ on procède de même mais avec la suite décroissante des événements $(X \le -n)_{n \in \mathbb{N}}$.

c) Soit $x_0 \in \mathbb{R}$. Montrer la continuité à droite de F_X en x_0 c'est justifier l'égalité $\lim_{x \to x_0^+} F_X(x) = F_X(x_0)$.

On sait que $F_X(x_0^+)$ existe (car F_X est monotone et bornée), Ainsi de part le critère séquentiel $\left(F_X(x_0+\frac{1}{n})\right)$ converge vers $F_X(x_0^+)$. Or la suite des événements $\left(X \leq x_0+\frac{1}{n}\right)$ est décroissante donc par continuité

décroissante de \mathbb{P} on a $\lim_{n \to +\infty} \mathbb{P}(X \le x_0 + \frac{1}{n}) = \mathbb{P}\left(\bigcap_{n=0}^{+\infty} (X \le x_0 + \frac{1}{n})\right)$ ie $\lim_{n \to +\infty} F_X(x_0 + \frac{1}{n}) = \mathbb{P}(X \le x_0)$.

D'où $\lim_{x\to x_0^+} F_X(x) = F_X(x_0)$ ie F_X est continue à droite en x_0 .

Conclusion : F_X est continue à droite en chaque réel.

Remarque: Si on note $X(\Omega) = \{x_n, n \in \mathbb{N}\}$ avec $x_0 < x_1 < \dots$ (cas où le support est infini et minoré), on a F_X constante sur $[x_n, x_{n+1}]$, ainsi F_X est continue sur $\mathbb{R} \setminus X(\Omega)$ et est continue à droite avec limite à gauche en tout point de \mathbb{R} . Cette démonstration est cependant problématique si le support possède des points d'accumulations (par exemple en 0 dans le cas où $X(\Omega) = \{\frac{1}{n}, n \in \mathbb{N}^*\}$).

d) Pour les mêmes raisons $F_X(x_0^-)$ existe et $F_X(x_0^-) = \lim_{n \to +\infty} F_X(x_0 - \frac{1}{n})$.

Comme avant avec les suites des événements $(X \leq x_0 - \frac{1}{n})$ et $(X \leq x_0 + \frac{1}{n})$ qui sont respectivement croissantes et décroissantes pour avoir $\lim_{x_0^+} F_X - \lim_{x_0^-} F_X = \mathbb{P}(X \leq x_0) - \mathbb{P}(X < x_0)$ d'où la conclusion

(remarque: on a $\bigcup_{n=0}^{+\infty} (X \le x_0 - \frac{1}{n}) = (X < x_0)$).

2° a) Comme $F_X(x) = \mathbb{P}(X \le x) = \sum_{k \in X(\Omega), \ k \le x} \mathbb{P}(X = k) = \sum_{k \in Y(\Omega), \ k \le x} \mathbb{P}(Y = k)$ car X et Y ont même loi, on a $F_X = F_Y$.

b) Conséquence de 2° d). Pour tout $x \in X(\Omega)$ on a $\mathbb{P}(X = x_0) = \mathbb{P}(Y = x_0)$, ce qui montre aussi que $X(\Omega) = Y(\Omega)$. Ainsi X et Y ont la même loi.

Conclusion (a) et (b): La fonction de répartition caractérise la loi d'une VAR.

3° a) Il s'agit de montrer que pour tout $k \in Z(\Omega)$, $Z^{-1}(\{k\}) \in \mathcal{A}$ la tribu de l'espace probabilisé sur lequel on travaille.

Soit $k \in Z(\Omega)$, $Z^{-1}(\{k\}) = (Z = k) = (X = k \cap Y \le k) \cup (X < k \cap Y = k)$. Comme $(X = k) = X^{-1}(\{k\})$ est un événement car X est une VAR et que $(Y \le k) = \bigcup_{\ell \in Y(\Omega), \ \ell \le k} (Y = \ell)$ est pour les mêmes raisons une union (au plus dénombrable) d'événements, on obtient $(X = k \cap Y \le k) \in \mathcal{A}$. De même pour $(X < k \cap Y = k)$ et par stabilité par union il suit que $Z^{-1}(\{k\}) \in \mathcal{A}$.

Conclusion : $Z = \max(X, Y)$ est une VAR.

b) Soit $x \in \mathbb{R}$, on a $(Z \le x) = (\max(X, Y) \le x) = ((X \le x) \cap (Y \le x))$ (double inclusion pour vous en convaincre si nécessaire).

Ainsi $F_Z(x) = F_X(x)F_Y(x)$ par indépendance de X et Y.

Conclusion : Si X et Y sont indépendantes alors $F_{\max(X,Y)} = F_X F_Y$.

c) D'après le travail fait avant on trouve que F_X est nulle sur $]-\infty,1[$ puis que, pour tout $x\geq 1$:

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{k=1}^{\lfloor x \rfloor} \mathbb{P}(X = k) = p_1 \frac{1 - q_1^{\lfloor x \rfloor}}{1 - q_1} = 1 - q_1^{\lfloor x \rfloor} \text{ avec } q_1 = 1 - p_1.$$

On peut se contenter de calculer F_Z sur $\mathbb{N}^* = Z(\Omega)$ pour déterminer la loi de Z. D'après b), de l'indépendance de X et Y suit $F_Z(k) = (1-q_1^k)(1-q_2^k)$. Comme $(Z=k) = (Z \leq k) \cap \overline{(X \leq k-1)}$ car $Z(\Omega) \subset \mathbb{N}$, on en déduit

$$\mathbb{P}(Z=k) = F_Z(k) - F_Z(k-1) = 1 - q_1^k - q_2^k + (q_1q_2)^k - 1 + q_1^{k-1} + q_2^{k-1} - (q_1q_2)^{k-1} = p_1q_1^{k-1} + p_2q_2^{k-1} - (q_1q_2)^{k-1}(1 - q_1q_2).$$

Exercice 3 (Lemme de Borel-Cantelli).

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Soit (A_n) une suite d'événements. On note A l'ensemble des $\omega \in \Omega$ qui appartiennent à une infinité de A_n .

- 1° Posons $\limsup A_n = \bigcap_{n=0}^{+\infty} \bigcup_{k=n}^{+\infty} A_k$, prouver que $A = \limsup A_n$ et que $A \in \mathcal{A}$.
- 2° Montrer que si la série $\sum \mathbb{P}(A_n)$ converge alors $\mathbb{P}(A) = 0$.
- 3° Une application : Soit $\alpha \in]1, +\infty[$ et $(Z_n)_{n \in \mathbb{N}^*}$ une suite de var indépendantes telles que Z_n suit la loi de Bernoulli de paramètre $\frac{1}{n^{\alpha}}$. Montrer que l'événement « la suite des (Z_n) est nulle à partir d'un certain rang » est quasi-certain.

Correction:

1° Une partie de $\mathbb N$ est infinie si et seulement si elle n'est pas majorée, ainsi $\omega \in A$ si et seulement l'ensemble $\{n \in \mathbb N \mid \omega \in A_n \text{ est infinie si il n'est pas majoré, on a donc}:$

$$\omega \in A \iff \forall n \in \mathbb{N}, \ \exists k \geq n \ / \ \omega \in A_k \iff \omega \in \bigcap_{n=0}^{+\infty} \bigcup_{k=n}^{+\infty} A_k$$

Ce qui montre le résultat (et que A est bien un évènement)

2º Posons, pour $n \geq 0, \; B_n = \bigcup_{k \geq n} A_k$. Ainsi (B_n) est une suite décroissante d'événements donc, par conti-

nuité décroissante de
$$\mathbb{P}$$
 : $\mathbb{P}(\bigcap_{n=0}^{\infty} B_n) = \lim_{n \to +\infty} \mathbb{P}(B_n)$, ie. $\mathbb{P}(\limsup A_n) = \mathbb{P}\left(\bigcup_{k \ge n} A_k\right)$. Par sous-additivité

$$\mathbb{P}\left(\bigcup_{k\geq n}A_k\right)\leq \sum_{k=n+1}^{+\infty}\mathbb{P}(A_k) \text{ qui, en tant que reste d'une série convergente, tend vers 0. La conclusion suit.}$$

3° Posons $A_n = (Z_n = 1)$, ainsi (somme de Riemann) $\sum \mathbb{P}(A_n)$ converge, ainsi d'après 2° la probabilité qu'une infinité de A_n se réalise est nulle, il n'y a qu'un nombre fini de A_n non négligeables. Soit n_0 le plus grand indice tel que A_n ne soit pas négligeable. Alors $(Z_n)_{n \geq n_0+1}$ est constituée d'événements négligeables ie. « la suite des (Z_n) est nulle à partir d'un certain rang » est quasi-certain.

Exercice 4 (Lemme de Borel-Cantelli, suite).

Avec les notations de l'exercice précédent. On suppose maintenant que la série $\sum \mathbb{P}(A_n)$ est divergente et que les les événements $(A_n)_{n\in\mathbb{N}}$ sont mutuellement indépendants.

1° Montrer pour $x \in \mathbb{R}$ que $e^x \ge x+1$ puis en déduire, pour tout entiers $m \le n$, que $\mathbb{P}\left(\bigcap_{k=m}^n \overline{A_k}\right) \le$

$$\exp{\left(-\sum_{m}^{n}\mathbb{P}(A_{k})\right)}.$$

 2° Montrer que $\mathbb{P}(A) = 1$.

Correction:

1° L'inégalité sur l'exponentielle est immédiate (par exemple via une étude de fonction). L'indépendance des A_n implique celle des $\overline{A_n}$, donc la probabilité du membre de gauche se réécrit comme un produit.

implique celle des
$$A_n$$
, donc la probabilité du membre de gauche se réécrit comme un produit.

On a $\mathbb{P}\left(\bigcap_{k=m}^n \overline{A_k}\right) = \prod_{k=m}^n \mathbb{P}\left(\overline{A_k}\right) = \prod_{k=m}^n 1 - \mathbb{P}\left(\overline{A_k}\right)$, en appliquant l'inégalité : $\mathbb{P}\left(\bigcap_{k=m}^n \overline{A_k}\right) \leq \prod_{k=m}^n \exp\left(-\mathbb{P}(A_k)\right) = \exp\left(-\sum_{k=m}^n \mathbb{P}(A_k)\right)$.

2° Comme la série $\sum \mathbb{P}(A_n)$ est divergente et qu'elle est à termes positifs on a $\sum_{k=m}^n \mathbb{P}(A_k)$ qui tend vers $+\infty$ quand $n \to +\infty$, ainsi d'après la question précédente $\mathbb{P}\left(\bigcap_{k=m}^{+\infty} \overline{A_k}\right) = 0$, en utilisant la sous-additivité (une réunion d'évènements de proba nulle est encore de proba nulle) on a $\mathbb{P}(\overline{A} = 0, d$ 'où le résultat.