DS 3: samedi 11 octobre

4h sans calculatrice

Le candidat numérotera ses pages, il encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Exercice 1 (proche du cours et/ou des TDs).

- 1° Soit X et Y deux variables aléatoires indépendantes et de loi $\mathcal{G}(p)$ où $p \in]0,1[$.
 - (a) On pose $Z = \max(X, Y)$. Déterminer la loi de Z.
 - (b) Z est-elle d'espérance finie? (Penser à majorer Z par ...)
- 2° Des personnes se transmettent une information. Chaque personne transforme l'information reçue en son contraire avec une probabilité $p \in]0,1[$, et la transmet fidèlement avec la probabilité q=1-p. On note, pour $n \in \mathbb{N}^*$, p_n la probabilité que la n-ième personne reçoive l'information non déformée (cela ne signifie pas nécessairement qu'elle la transmettra fidèlement ni que la (n-1)-ième personne ai transmis fidèlement le message qu'elle a reçue). Ainsi $p_1=1$.

Notons A_n l'évènement « la n-ième personne reçoit l'information non déformée » et B_n l'évènement « la n-ième personne transforme le message qu'elle a reçue ».

- (a) Exprimer, pour $n \in \mathbb{N}^*$, p_{n+1} en fonction de p_n .
- (b) En déduire que la suite (p_n) est arithmético-géométrique 1 , puis exprimer p_n en fonction de n et de p.
- (c) Calculer $\lim_{n\to+\infty} p_n$. Que remarque-t-on?
- 3° On considère une urne qui contient deux boules noires et une boule rouge dans laquelle on effectue une infinité de tirages successifs et avec remise. On définit E l'évènement « on obtient au moins une boule rouge ». On souhaite calculer $\mathbb{P}(E)$ par trois méthodes différentes, pour cela, on note pour tout $n \in \mathbb{N}^*$, A_n l'évènement « on obtient la première boule rouge au n-ième tirage », B_n l'évènement « on obtient au moins une boule rouge au cours des n premiers tirages » et C_n l'évènement « on obtient n boules noires au cours des n premiers tirages ».
 - (a) Calculer pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(A_n)$, $\mathbb{P}(C_n)$ et $\mathbb{P}(B_n)$.
 - (b) Exprimer E à l'aide des évènements A_n , pour $n \in \mathbb{N}^*$ et en déduire $\mathbb{P}(E)$.
 - (c) Exprimer E à l'aide des évènements B_n , pour $n \in \mathbb{N}^*$ et en déduire $\mathbb{P}(E)$.
 - (d) Exprimer E à l'aide des évènements C_n , pour $n \in \mathbb{N}^*$ et en déduire $\mathbb{P}(E)$.
 - (e) Que dire de l'évènement E? Interpréter ce résultat.

Exercice 2 (Problème: Entropie au sens de Shannon, d'après Concours TSI, 2017).

I. Préliminaire

- I.A Représenter graphiquement la fonction logarithme népérien.
- I.B Démontrer que, pour tout $x \in \mathbb{R}_+^*$, $\ln(x) \le x 1$ et que $\ln(x) = x 1$ si et seulement si x = 1.
- I.C Donner une interprétation graphique de ces deux résultats.
- I.D Montrer que la fonction g définie sur [0,1] par g(0) = 0 et $\forall x \in]0,1]$, $g(x) = x \ln(x)$ est continue sur [0,1] et dérivable sur [0,1]. Représenter graphiquement la fonction g.

On admet, pour tout $q \in]-1,1[$, que la série $\sum nq^{n-1}$ converge absolument et que $\sum_{k=1}^{+\infty}kq^{k-1}=\frac{1}{(1-q)^2}$.

II. Entropie d'une variable aléatoire

- II.A Dans cette sous-partie, toutes les variables aléatoires considérées sont définies sur un même univers fini Ω et prennent leurs valeurs dans [0, n].
 - Si X est une telle variable, on note $p_k = \mathbb{P}(X = k)$. On définit l'entropie de X par :

$$H(X) = -\sum_{k=0}^{n} p_k \ln(p_k)$$

en convenant que $p_k \ln(p_k)$ vaut 0 lorsque $p_k = 0$.

II.A.1) Montrer que $H(X) \ge 0$ et que H(X) = 0 si et seulement si X est une variable aléatoire certaine, c'est-à-dire

$$\exists i \in [0, n]$$
 tel que $p_i = 1$ et $\forall i \neq i, p_i = 0$.

LJB Maths - DS3 1/3

^{1.} au cas où, après simplification, on trouve, pour tout $n \in \mathbb{N}^{\star}$, que $p_{n+1} = (1-2p)p_n + p$

- II.A.2) (a) X_0 est une variable aléatoire suivant la loi uniforme sur [0, n]. Calculer $H(X_0)$.
 - (b) En appliquant l'inégalité de la question I.B à un nombre réel x bien choisi, démontrer que

$$\forall k \in [0, n] \qquad -p_k \ln(p_k) + p_k \ln\left(\frac{1}{n+1}\right) \le \frac{1}{n+1} - p_k.$$

- (c) En déduire que $H(X) \leq H(X_0)$ avec égalité si et seulement si X suit la même loi que X_0 (pour le cas d'égalité on pourra utiliser le cas d'égalité de la question I.B).
- II.B Dans cette sous-partie, on s'intéresse à des variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathbb{P}) et prenant leurs valeurs dans \mathbb{N}^* . Si X est une telle variable pour laquelle $\mathbb{P}(X=k)$ est noté p_k , on dit qu'elle est d'entropie finie si la série $\sum p_k \ln(p_k)$ est absolument convergente et on définit alors son entropie par

$$H(X) = -\sum_{k=1}^{+\infty} p_k \ln(p_k)$$

en convenant à nouveau que $p_k \ln(p_k)$ vaut 0 lorsque $p_k = 0$.

- II.B.1) Pour $p \in]0, 1[$, X_1 est une variable aléatoire suivant la loi géométrique de paramètre p. Rappeler les valeurs de $\mathbb{P}(X_1 = k)$ et de l'espérance de X_1 (aucune démonstration n'est demandée). Démontrer que X_1 est d'entropie finie et que $H(X_1) = -\frac{1-p}{p} \ln(1-p) - \ln(p)$.
- II.B.2) Dans cette question et la suivante, X est une variable aléatoire à valeurs dans \mathbb{N}^* d'espérance finie. On note $\mathbb{E}(X) = \sum_{k=1}^{+\infty} kp_k$. On se propose de démontrer que X est d'entropie finie.
 - (a) Quelle est la limite de p_k lorsque k tend vers $+\infty$?
 - (b) En déduire que $\lim_{k\to +\infty} \sqrt{p_k} \ln(p_k) = 0$, puis qu'il existe un entier k_0 tel que $\forall k\geq k_0 \quad 0\leq -\sqrt{p_k} \ln(p_k)\leq 1$.
 - $\begin{array}{l} \text{(c) Soit } k \geq k_0. \text{ Montrer que} \\ -- \text{ si } p_k \leq \frac{1}{k^3}, \text{ alors } 0 \leq -p_k \ln(p_k) \leq \frac{1}{k^{3/2}}; \\ -- \text{ si } p_k \geq \frac{1}{k^3}, \text{ alors } 0 \leq -p_k \ln(p_k) \leq 3p_k \ln(k). \end{array}$
 - (d) Soit $k \ge 1$. Justifier que $\ln(k) \le k$, puis que la série $\sum_{k \ge 1} \left(\frac{1}{k^{3/2}} + 3p_k \ln(k) \right)$ converge.
 - (e) Conclure.
- II.B.3) Dans cette question, on suppose en plus que $\mathbb{E}(X) \leq 1/p$, p étant un réel de l'intervalle]0,1[. On veut montrer que $H(X) \leq H(X_1)$ (entropie d'une variable aléatoire suivant la loi géométrique de paramètre p dont la valeur a été calculée à la question II.B.1). Pour $k \in \mathbb{N}^*$, on note $p_k = \mathbb{P}(X = k)$ et $q_k = \mathbb{P}(X_1 = k)$.
 - (a) Justifier que la série $\sum_{k=1}^{+\infty} (k-1)p_k$ converge et exprimer sa somme en fonction de $\mathbb{E}(X)$.
 - (b) Justifier la convergence de la série $\sum p_k \ln(q_k)$ et démontrer que

$$\sum_{k=1}^{+\infty} p_k \ln(q_k) = \ln(p) + (\mathbb{E}(X) - 1) \ln(1 - p).$$

(c) Démontrer que

$$-H(X_1) \le \sum_{k=1}^{+\infty} p_k \ln(q_k).$$

(d) En déduire que

$$H(X) - H(X_1) \le \sum_{k=1}^{+\infty} p_k \ln\left(\frac{q_k}{p_k}\right)$$

puis que

$$H(X) \leq H(X_1)$$

Indication : On pourra utiliser l'inégalité démontrée dans la question I.B.

Exercice 3 (E3A PC, exercice 4, 2020).

1. Soient n un entier naturel supérieur ou égal à 2 et $M \in \mathcal{M}_n(\mathbb{R}), M \neq I_n$ et $M \neq \frac{1}{2}I_n$, vérifiant la relation :

$$2M^2 = 3M - I_n.$$

- 1.1 On note $F = \text{Vect}(I_n, M, M^2)$. Prouver que : $\forall k \in \mathbb{N}, M^k \in F$. Déterminer la dimension de F et en donner une base.
- 1.2 Vérifier que F est stable pour la multiplication des matrices.
- 1.3 Soient $A = M I_n$ et $B = M \frac{1}{2}I_n$. Justifier que $\mathcal{B} = (A, B)$ constitue une base de F. Déterminer les composantes des matrices AB, BA, A^2 et B^2 dans la base \mathcal{B} .
- 1.4 Déterminer toutes les matrices T de F vérifiant $T^2 = M$.
- 2. Soit X une variable aléatoire réelle telle que l'on a :

$$X(\Omega) = \mathbb{N} \text{ et } \forall n \in \mathbb{N}, \quad 2\mathbb{P}(X = n + 2) = 3\mathbb{P}(X = n + 1) - \mathbb{P}(X = n).$$

2.1 On note $p_n = \mathbb{P}(X = n)$. Exprimer p_n en fonction de n. En déduire la loi de la variable aléatoire X.

2.2 Justifier que la variable aléatoire X possède une espérance et une variance et les calculer.

On pourra admettre que si
$$q \in]-1,1[$$
, alors $\sum nq^{n-1}$ converge et que $\sum_{k=1}^{+\infty}kq^{k-1}=\frac{1}{(1-q)^2}$, et que $\sum n(n-1)q^{n-2}$ converge aussi et que $\sum_{k=2}^{+\infty}k(k-1)q^{k-2}=\frac{2}{(1-q)^3}$.

Exercice 4 (E3A PC, exercice 1, 2022).

Un sauteur tente de franchir des hauteurs successives numérotées $1, 2, \ldots, n, \cdots$

Il ne peut tenter de passer la hauteur n+1 que s'il a réussi les sauts de hauteurs $1,2,\ldots,n$.

En supposant que le sauteur a réussi tous les sauts précédents, la probabilité de succès au n-ième saut est $p_n = \frac{1}{n}$. Ainsi le premier saut est toujours réussi.

Pour tout $k \in \mathbb{N}^*$, on note S_k l'évènement : « le sauteur a réussi son k-ième saut » et on note X la variable aléatoire égale au numéro du dernier saut réussi.

- 1° Rappeler sans démonstration la formule des probabilités composées.
- 2° Rappeler sans démonstration l'expression de la série exponentielle.
- 3° Déterminer l'ensemble des valeurs prises par la variable aléatoire X.
- 4° Déterminer $\mathbb{P}([X=1])$.
- 5° Justifier que $[X=2]=S_1\cap S_2\cap \overline{S_3}$. En déduire $\mathbb{P}([X=2])$.
- 6° Pour tout entier $n \geq 2$, exprimer l'évènement [X = n] en fonction d'évènements du type S_k .
- 7° Déterminer la loi de X.
- 8° Vérifier par le calcul que : $\sum_{n=1}^{+\infty} \mathbb{P}([X=n]) = 1.$
- 9° Montrer que X possède une espérance et la calculer.