DS 3: samedi 11 octobre

4h sans calculatrice

Le candidat numérotera ses pages, il encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (proche du cours et/ou des TDs).

- 1° Soit X et Y deux variables aléatoires indépendantes et de loi $\mathcal{G}(p)$ où $p \in]0,1[$.
 - (a) On pose $Z = \max(X, Y)$. Déterminer la loi de Z.
 - (b) Z est-elle d'espérance finie? (Penser à majorer Z par ...)
- 2° Des personnes se transmettent une information. Chaque personne transforme l'information reçue en son contraire avec une probabilité $p \in]0,1[$, et la transmet fidèlement avec la probabilité q=1-p. On note, pour $n \in \mathbb{N}^*$, p_n la probabilité que la n-ième personne reçoive l'information non déformée (cela ne signifie pas nécessairement qu'elle la transmettra fidèlement ni que la (n-1)-ième personne ai transmis fidèlement le message qu'elle a reçue). Ainsi $p_1=1$.

Notons A_n l'évènement « la n-ième personne reçoit l'information non déformée » et B_n l'évènement « la n-ième personne transforme le message qu'elle a reçue ».

- (a) Exprimer, pour $n \in \mathbb{N}^*$, p_{n+1} en fonction de p_n .
- (b) En déduire que la suite (p_n) est arithmético-géométrique 1 , puis exprimer p_n en fonction de n et de p.
- (c) Calculer $\lim_{n\to+\infty} p_n$. Que remarque-t-on?
- 3° On considère une urne qui contient deux boules noires et une boule rouge dans laquelle on effectue une infinité de tirages successifs et avec remise. On définit E l'évènement « on obtient au moins une boule rouge ». On souhaite calculer $\mathbb{P}(E)$ par trois méthodes différentes, pour cela, on note pour tout $n \in \mathbb{N}^*$, A_n l'évènement « on obtient la première boule rouge au n-ième tirage », B_n l'évènement « on obtient au moins une boule rouge au cours des n premiers tirages » et C_n l'évènement « on obtient n boules noires au cours des n premiers tirages ».
 - (a) Calculer pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(A_n)$, $\mathbb{P}(C_n)$ et $\mathbb{P}(B_n)$.
 - (b) Exprimer E à l'aide des évènements A_n , pour $n \in \mathbb{N}^*$ et en déduire $\mathbb{P}(E)$.
 - (c) Exprimer E à l'aide des évènements B_n , pour $n \in \mathbb{N}^*$ et en déduire $\mathbb{P}(E)$.
 - (d) Exprimer \overline{E} à l'aide des évènements C_n , pour $n \in \mathbb{N}^*$ et en déduire $\mathbb{P}(E)$.
 - (e) Que dire de l'évènement E? Interpréter ce résultat.

Correction:

- 1° (a) On a vu plusieurs méthodes en TD. On pose q = 1 p.
 - Tout d'abord $Z(\Omega) = \mathbb{N}^*$. Puis pour $k \in \mathbb{N}^*$, on a (un max est plus petit que k si et seulement si tous les éléments qui composent ce max sont plus petit que k): $\mathbb{P}(Z \le k) = \mathbb{P}((X \le k) \cap (Y \le k)) = \mathbb{P}(X \le k)\mathbb{P}(Y \le k)$
 - k) (par indépendance de X et Y), or $\mathbb{P}(X \le k) = \sum_{\ell=1}^{k} \mathbb{P}(X = \ell) = \sum_{\ell=1}^{k} q^{\ell-1}p = p\sum_{\ell=0}^{k-1} q^{\ell} = p\frac{1-q^k}{1-q} = 1-q^k$,

de même $\mathbb{P}(Y \le k) = 1 - q^k$. Ainsi $\mathbb{P}(Z \le k) = (1 - q^k)^2$.

Or, comme Z est à valeurs entières, on a $\mathbb{P}(Z=k)=\mathbb{P}(Z\leq k)-\mathbb{P}(Z\leq k-1)$, ainsi $\mathbb{P}(Z=k)=(1-q^k)^2-(1-q^{k-1})^2$.

Alternative: On peut aussi utiliser que : $(Z = k) = (X = k) \cap (Y < k) \cup (X < k) \cap (Y = k) \cup (X = k) \cap (Y = k)$ (attention à bien avoir des réunions disjointes).

(b) On a $Z = \max(X, Y) \le X + Y$ puisque X et Y sont positifs. Comme X et Y sont d'espérance finie il en va de même pour X + Y, on en déduit donc (théorème de comparaison des SATP) que Z est d'espérance finie

^{1.} au cas où, après simplification, on trouve, pour tout $n \in \mathbb{N}^{\star}$, que $p_{n+1} = (1-2p)p_n + p$

- 2° (a) D'après l'énoncé, pour tout n, on a $\mathbb{P}(A_n) = p_n$, $\mathbb{P}(B_n) = p$ et que les évènements B_n sont indépendants de tous les autres (en particulier des A_k et des $\overline{A_k}$ pour tout k).

 Pour que la (n+1)-ième personne reçoive la bonne information il faut soit que la n-ième la reçoive aussi et la transmette bien, soit que la n-ième reçoive la mauvaise information mais se trompe en la transmettant. Ainsi $A_{n+1} = (A_n \cap \overline{B_n}) \cup (\overline{A_n} \cap B_n)$ et la réunion est disjointe, d'où $p_{n+1} = \mathbb{P}(A_n \cap \overline{B_n}) + \mathbb{P}(\overline{A_n} \cap B_n)$.
 - $(1-p)p_n+p(1-p_n)$. Ainsi $p_{n+1}=(1-2p)p_n+p$ (b) La suite (p_n) est donc arithmético-géométrique. On cherche ℓ tel que $\ell=(1-2p)\ell+p$, ainsi $\ell=\frac{1}{2}$. Posons, pour $n\in\mathbb{N}^\star$, $v_n=p_n-\ell$, ainsi $v_{n+1}=(1-2p)p_n+p-\ell=(1-2p)p_n+p-((1-2p)\ell+p)=(1-2p)(p_n-\ell)=(1-2p)v_n$. La suite (v_n) est donc géométrique de raison (1-2p), on a pour tout $n\geq 1$, $v_n=(1-2p)^{n-1}v_1=\frac{1}{2}(1-2p)^{n-1}$. On en déduit donc que : $\forall n\in\mathbb{N},\ p_n=\frac{1}{2}+\frac{1}{2}(1-2p)^{n-1}$.

Les évènements A_n et $\overline{B_n}$ étant indépendants, on a $p_{n+1} = \mathbb{P}(A_n)\mathbb{P}(\overline{B_n}) + \mathbb{P}(\overline{A_n})\mathbb{P}(\cap B_n)$, d'où $p_{n+1} = \mathbb{P}(A_n)\mathbb{P}(\overline{B_n}) + \mathbb{P}(\overline{A_n})\mathbb{P}(\cap B_n)$

- (c) Comme $p \in]0,1[$, on a $1-2p \in]-1,1[$, on a donc $\lim_{n \to +\infty} p_n = \frac{1}{2}$. Cette limite est indépendante de p.
- 3° Notons, pour $i \in \mathbb{N}^*$, R_i l'évènement « on obtient une boule rouge au n-ième tirage ». Ainsi pour tout k on a $\mathbb{P}(R_k) = \frac{1}{3}$
 - (a) On a $A_n = \overline{R_1} \cap \overline{R_2} \cap \ldots \cap \overline{R_{n-1}} \cap R_n$, donc, par indépendance des évènements, on a $\mathbb{P}(A_n) = \left(\frac{2}{3}\right)^{n-1} \frac{1}{3}$. L'évènement C_n est l'intersection des $\overline{R_k}$ pour k de 1 à n, on a donc $\mathbb{P}(C_n) = \left(\frac{2}{3}\right)^n$. Comme $B_n = \overline{C_n}$ on a $\mathbb{P}(B_n) = 1 \left(\frac{2}{3}\right)^n$.
 - (b) On a $E = \bigcup_{n=1}^{+\infty} A_n$, or les évènements A_n sont deux à deux incompatibles, d'où, par σ -additivité, on a $\mathbb{P}(E) = \sum_{n=1}^{+\infty} \mathbb{P}(A_n) = \frac{1}{3} \sum_{n=0}^{+\infty} \left(\frac{2}{3}\right)^n = \frac{1}{3} \frac{1}{1 \frac{2}{3}} = 1.$
 - (c) On a $E = \bigcup_{n=1}^{+\infty} B_n$, comme pour tout $n \in \mathbb{N}$ on a $B_n \subset B_{n+1}$, la suite (B_n) est une suite croissante d'évènements, ainsi par continuité croissante $\mathbb{P}(E) = \mathbb{P}\left(\bigcup_{n=1}^{+\infty} B_n\right) = \lim_{n \to +\infty} \mathbb{P}(B_n) = \lim_{n \to +\infty} 1 \left(\frac{2}{3}\right)^n = 1$ (car $\left|\frac{2}{3}\right| < 1$).
 - (d) L'évènement \overline{E} est l'évènement « on obtient que des boules vertes », ainsi $\overline{E} = \bigcap_{n=1}^{+\infty} C_n$, comme pour tout $n \in \mathbb{N}$ on a $C_{n+1} \subset C_n$, la suite (C_n) est une suite décroissante d'évènement, d'où, par continuité décroissante, on a $\mathbb{P}(\overline{E}) = \mathbb{P}\left(\bigcap_{n=1}^{+\infty} C_n\right) = \lim_{n \to +\infty} \mathbb{P}(C_n) = \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$ (car $\left|\frac{2}{3}\right| < 1$). d'où $\mathbb{P}(E) = 1$.
 - (e) L'évènement E est presque sûr, on est presque sûr d'obtenir, au moins une fois, une boule rouge.

Exercice 2 (Problème: Entropie au sens de Shannon, d'après CONCOURS TSI, 2017).

I. Préliminaire

- I.A Représenter graphiquement la fonction logarithme népérien.
- I.B Démontrer que, pour tout $x \in \mathbb{R}_+^*$, $\ln(x) \le x 1$ et que $\ln(x) = x 1$ si et seulement si x = 1.
- I.C Donner une interprétation graphique de ces deux résultats.
- I.D Montrer que la fonction g définie sur [0,1] par g(0)=0 et $\forall x\in]0,1]$, $g(x)=x\ln(x)$ est continue sur [0,1] et dérivable sur [0,1]. Représenter graphiquement la fonction g.

On admet, pour tout $q \in]-1,1[$, que la série $\sum nq^{n-1}$ converge absolument et que $\sum_{k=1}^{+\infty}kq^{k-1}=\frac{1}{(1-q)^2}$.

II. Entropie d'une variable aléatoire

- II.A Dans cette sous-partie, toutes les variables aléatoires considérées sont définies sur un même univers fini Ω et prennent leurs valeurs dans [0, n].
 - Si X est une telle variable, on note $p_k = \mathbb{P}(X = k)$. On définit l'entropie de X par :

$$H(X) = -\sum_{k=0}^{n} p_k \ln(p_k)$$

en convenant que $p_k \ln(p_k)$ vaut 0 lorsque $p_k = 0$.

LJB Maths - DS3-cor 2 / 8

II.A.1) Montrer que $H(X) \ge 0$ et que H(X) = 0 si et seulement si X est une variable aléatoire certaine, c'est-à-dire

$$\exists i \in [0, n]$$
 tel que $p_i = 1$ et $\forall j \neq i, p_j = 0$.

- II.A.2) (a) X_0 est une variable aléatoire suivant la loi uniforme sur [0, n]. Calculer $H(X_0)$.
 - (b) En appliquant l'inégalité de la question I.B à un nombre réel x bien choisi, démontrer que

$$\forall k \in [0, n]$$
 $-p_k \ln(p_k) + p_k \ln\left(\frac{1}{n+1}\right) \le \frac{1}{n+1} - p_k.$

- (c) En déduire que $H(X) \leq H(X_0)$ avec égalité si et seulement si X suit la même loi que X_0 (pour le cas d'égalité on pourra utiliser le cas d'égalité de la question I.B).
- II.B Dans cette sous-partie, on s'intéresse à des variables aléatoires discrètes définies sur un espace probabilisé (Ω, \mathbb{P}) et prenant leurs valeurs dans \mathbb{N}^* . Si X est une telle variable pour laquelle $\mathbb{P}(X=k)$ est noté p_k , on dit qu'elle est d'entropie finie si la série $\sum p_k \ln(p_k)$ est absolument convergente et on définit alors son entropie par

$$H(X) = -\sum_{k=1}^{+\infty} p_k \ln(p_k)$$

en convenant à nouveau que $p_k \ln(p_k)$ vaut 0 lorsque $p_k = 0$.

- II.B.1) Pour $p \in]0,1[$, X_1 est une variable aléatoire suivant la loi géométrique de paramètre p. Rappeler les valeurs de $\mathbb{P}(X_1=k)$ et de l'espérance de X_1 (aucune démonstration n'est demandée). Démontrer que X_1 est d'entropie finie et que $H(X_1) = -\frac{1-p}{p}\ln(1-p) - \ln(p)$.
- II.B.2) Dans cette question et la suivante, X est une variable aléatoire à valeurs dans \mathbb{N}^{\star} d'espérance finie.

On note $\mathbb{E}(X) = \sum_{k=1}^{+\infty} kp_k$. On se propose de démontrer que X est d'entropie finie.

- (a) Quelle est la limite de p_k lorsque k tend vers $+\infty$?
- (b) En déduire que $\lim_{k\to +\infty} \sqrt{p_k} \ln(p_k) = 0$, puis qu'il existe un entier k_0 tel que $\forall k\geq k_0 \quad 0\leq -\sqrt{p_k} \ln(p_k)\leq 1$.
- (c) Soit $k \ge k_0$. Montrer que

 si $p_k \le \frac{1}{k^3}$, alors $0 \le -p_k \ln(p_k) \le \frac{1}{k^{3/2}}$;

 si $p_k \ge \frac{1}{k^3}$, alors $0 \le -p_k \ln(p_k) \le 3p_k \ln(k)$.
- (d) Soit $k \ge 1$. Justifier que $\ln(k) \le k$, puis que la série $\sum_{k>1} \left(\frac{1}{k^{3/2}} + 3p_k \ln(k)\right)$ converge.
- (e) Conclure.
- II.B.3) Dans cette question, on suppose en plus que $\mathbb{E}(X) \leq 1/p$, p étant un réel de l'intervalle]0,1[. On veut montrer que $H(X) \leq H(X_1)$ (entropie d'une variable aléatoire suivant la loi géométrique de paramètre p dont la valeur a été calculée à la question II.B.1). Pour $k \in \mathbb{N}^*$, on note $p_k = \mathbb{P}(X = k)$ et $q_k = \mathbb{P}(X_1 = k)$.
 - (a) Justifier que la série $\sum_{k=1}^{+\infty} (k-1)p_k$ converge et exprimer sa somme en fonction de $\mathbb{E}(X)$.
 - (b) Justifier la convergence de la série $\sum p_k \ln(q_k)$ et démontrer que

$$\sum_{k=1}^{+\infty} p_k \ln(q_k) = \ln(p) + (\mathbb{E}(X) - 1) \ln(1 - p).$$

(c) Démontrer que

$$-H(X_1) \le \sum_{k=1}^{+\infty} p_k \ln(q_k).$$

(d) En déduire que

$$H(X) - H(X_1) \le \sum_{k=1}^{+\infty} p_k \ln\left(\frac{q_k}{p_k}\right)$$

puis que

$$H(X) \leq H(X_1)$$

Indication: On pourra utiliser l'inégalité démontrée dans la question I.B.

Correction: d'après CENTRALE TSI, 2017

I. I.A

- I.B Posons $f: x \mapsto \ln(x) x + 1$, la fonction f est dérivable sur \mathbb{R}_+^* et pour x > 0 on a $f'(x) = \frac{1}{x} 1 = \frac{1-x}{x}$, ainsi f' est strictement positive sur]0,1[et négative sur $]1,+\infty[$, on a donc que f' est strictement croissante sur]0,1] et strictement décroissante sur $[1,+\infty[$, ainsi f admet un maximum en 1 qui est f(1) = 0, la stricte monotonie sur ces deux intervalles implique que f est strictement négative sur $\mathbb{R}_+^* \setminus \{1\}$. Ce qui montre bien que pour tout $x \in \mathbb{R}_+^*$, $\ln(x) \le x 1$ et que $\ln(x) = x 1$ si et seulement si x = 1.
- I.C La courbe représentative de ln est en dessous de la droite d'équation y = x 1 et ne la touche qu'au point de coordonnée (1,0).
- I.D Tout d'abord g est continue sur]0,1] (propriété de]n), et par croissance comparée $\lim_{x\to 0} g(x) = 0$, ainsi g est continue sur [0,1].

On a g dérivable sur]0,1] et pour $x\in]0,1]$, $g'(x)=\ln(x)+1$ ainsi g' est négative sur $]0,\frac{1}{\mathrm{e}}]$ et positive sur $[\frac{1}{\mathrm{e}},1]$, donc g est décroissante sur $]0,\frac{1}{\mathrm{e}}]$ et croissante sur $[\frac{1}{\mathrm{e}},1]$. De plus $\lim_{x\to 0}g'(x)=-\infty$, donc la courbe représentative de g présente une tangente verticale au point d'abscisse 0 (horizontale au point d'abscisse $\frac{1}{\mathrm{e}}$ et de coefficient directeur 1 au point d'abscisse 1), avec en plus g(0)=0, g(1/e)=-1/e et g(1)=0 on a tout pour tracer le graphe de g (on place ces trois points, les trois tangentes et on relie).

I.E (rajout) Tout d'abord remarquons que si on montre la convergence de $\sum nq^{n-1}$ pour $q \in [0,1[$ on aura la convergence absolue de $\sum nq^{n-1}$ pour $q \in [-1,1[$.

Pour $x \in]-1,1[$ et $n \in \mathbb{N}$, notons $S_n(x) = \sum_{k=0}^n x^k$, on a $S_n(x) = \frac{1-x^{n+1}}{1-x}$. La fonction S_n est dérivable

sur] -1,1[et pour $x\in]-1,1[$ on a, d'une part que $dsS'_n(x)=\sum_{k=1}^n kx^{k-1}$ et d'autre part que $S'_n(x)=\frac{-(n+1)x^n(1-x)-(1-x^{n+1})(-1)}{(1-x)^2} \xrightarrow[n\to+\infty]{} \frac{1}{(1-x)^2}.$ Ainsi la série $\sum nq^{n-1}$ converge (la convergence est

absolue d'après la remarque en début de question) et que $\sum_{k=1}^{+\infty} kq^{k-1} = \frac{1}{(1-q)^2}$.

Remarque : Plus tard (dans le chapitre sur les Séries entières) on aura un théorème qui nous permettra d'affirmer directement que $S: x \mapsto \sum_{k=0}^{+\infty} x^k$ est de classe \mathcal{C}^{∞} sur]-1,+1[et qu'on peut dériver terme à terme.

II. II.A II.A.1) Tout d'abord on remarque que $H(X) = \sum_{k=0}^{n} -g(p_k)$ (la valeur de g en 0 intègre la convention)

et donc, comme g est définie sur [0,1], que H(X) est bien définie, de plus comme g est négative sur [0,1] on a que $H(X) \geq 0$.

Ainsi (somme de nombres positifs) : H(X) = 0 si et seulement si pour tout $k \in [0, n]$, $g(p_k) = 0$, en utilisant l'étude de g du préliminaire (g ne s'annule qu'en 0 ou 1) on a donc que : H(X) = 0 si et seulement si pour tout $k \in [0, n]$, $p_k \in \{0, 1\}$. Comme X est une variable aléatoire on a que la somme des p_k vaut 1.

On en déduit donc que si X est certaine alors H(X) = 0 et réciproquement que si H(X) = 0 alors tous les p_k valent 0 ou 1 et comme la somme des p_k vaut 1, que l'un des p_k vaut 1 et tous les autres valent 0 (si on veut vraiment être rigoureux : s'ils valent tous 0 alors la somme des p_k vaut 0 ce qui est interdit, et si plus que deux valent 1 alors la somme des p_k est plus grande que 2, ce qui est aussi illicite).

- II.A.2) (a) Pour cette variable aléatoire on a, pour tout $k \in [0, n]$, $p_k = \frac{1}{n+1}$, ainsi $H(X_0) = -\sum_{k=0}^{n} \frac{1}{n+1} \ln \left(\frac{1}{n+1} \right) = \ln(n+1)$.
 - (b) Soit $k \in [0, n]$. Si $p_k = 0$ alors l'inégalité est vérifiée, on suppose donc $p_k \neq 0$. On applique l'inégalité de I.B à $x = \frac{1}{(n+1)p_k}$ on a $\ln\left(\frac{1}{(n+1)p_k}\right) \leq \frac{1}{(n+1)p_k} 1$. Comme $\ln\left(\frac{1}{(n+1)p_k}\right) = \ln\left(\frac{1}{(n+1)}\right) \ln(p_k)$ et en multipliant l'inégalité par $p_k > 0$ on en déduit que $p_k\left(\ln\left(\frac{1}{(n+1)}\right) \ln(p_k)\right) \leq \frac{1}{(n+1)} p_k$, c'est-à-dire $-p_k\ln(p_k) + p_k\ln\left(\frac{1}{n+1}\right) \leq \frac{1}{n+1} p_k$. (c) En sommant l'inégalité de la question précédente pour k allant de 0 à n on en
 - déduit que $H(x) + \sum_{k=0}^{n} p_k \ln\left(\frac{1}{n+1}\right) \le \sum_{k=0}^{n} \left(\frac{1}{n+1} p_k\right)$. Or $\sum_{k=0}^{n} p_k \ln\left(\frac{1}{n+1}\right) = \ln\left(\frac{1}{n+1}\right) \sum_{k=0}^{n} p_k = \ln\left(\frac{1}{n+1}\right) = -\ln(n+1)$ et $\sum_{k=0}^{n} \left(\frac{1}{n+1} p_k\right) = 1 1 = 0$. On

en déduit donc : $H(X) - \ln(n+1) \le 0$ ie $H(X) \le H(X_0)$.

Or, d'après le cas d'égalité de I.B, on a égalité si et seulement si, pour tout k, on a $\frac{1}{(n+1)p_k}=1$, ie $p_k=\frac{1}{n+1}$, ce qui montre bien qu'on a égalité ssi X suit la même loi que X_0 .

II.B II.B.1) On a $X_1(\Omega) = \mathbb{N}^*$ et, pour $k \in \mathbb{N}^*$, $\mathbb{P}(X_1 = k) = (1 - p)^{k-1}p$. De plus $\mathbb{E}(X) = \frac{1}{p}$. Pour $k \in \mathbb{N}^*$, $p_k \ln(p_k) = (1 - p)^{k-1}p \ln((1 - p)^{k-1}p) = (1 - p)^{k-1}p \left((k - 1)\ln(1 - p) + \ln(p)\right) = (k - 1)(1 - p)^{k-1}p \ln(1 - p) + p \ln(p)(1 - p)^{k-1}$.

On a donc, en posant q=1-p, $p_k\ln(p_k)=\alpha(k-1)q^{k-2}+\beta q^{k-1}$ où $\alpha=qp\ln(q)$ et $\beta=p\ln(p)$. Or, d'après la question I.E, $\sum (k-1)q^{k-2}$ converge absolument (il en va de même pour $\sum q^{k-1}$).

On en déduit donc que $\sum -p_k \ln(p_k)$ converge absolument, de plus : $H(X_1) = -\alpha \sum_{k=1}^{+\infty} (k - 1)$

$$1)q^{k-2} - \beta \sum_{k=1}^{+\infty} q^{k-1} = -\alpha \sum_{k=0}^{+\infty} kq^k - \beta \sum_{k=0}^{+\infty} q^k = -\alpha \frac{1}{(1-q)^2} - \beta \frac{1}{1-q} = -\frac{1-p}{p} \ln(1-p) - \ln(p).$$

- II.B.2) (a) On sait que $\sum p_k$ converge (et sa somme vaut 1), donc $\lim_{k\to+\infty} p_k = 0$.
 - (b) Par croissance comparée : $\sqrt{p_k} \ln(p_k) = 2\sqrt{p_k} \ln(\sqrt{p_k}) \xrightarrow[k \to +\infty]{} 0$, ainsi par définition de la limite avec $\varepsilon = 1$, il existe $k_0 \in \mathbb{N}$ tel que pour tout $k \ge k_0$, $\left|\sqrt{p_k} \ln(p_k) 0\right| \le 1$, ie $-1 \le \sqrt{p_k} \ln(p_k) \le 1$, comme $\ln(p_k)$ est négatif, on en déduit que pour tout $k \ge k_0$, $0 \le -\sqrt{p_k} \ln(p_k) \le 1$.
 - (c) si $p_k \leq \frac{1}{k^3}$, alors, en multipliant l'inégalité de la question précédente par $\sqrt{p_k}$, on a $0 \leq -p_k \ln(p_k) \leq \sqrt{p_k}$, et comme $\sqrt{p_k} \leq \frac{1}{k^{3/2}}$, on en déduit que $0 \leq -p_k \ln(p_k) \leq \frac{1}{k^{3/2}}$; si $p_k \geq \frac{1}{k^3}$, alors (croissance de ln) $\ln(p_k) \geq \ln\left(\frac{1}{k^3}\right) = -3\ln(k)$, ainsi $0 \leq -p_k \ln(p_k) \leq 3p_k \ln(k)$.
 - (d) Pour $k \geq 1$, d'après I.B, on a $\ln(k) \leq k-1 \leq k$, ainsi $3p_k \ln(k) \leq 3kp_k$, d'après le théorème de comparaison des séries à termes positifs, on en déduit que $\sum 3p_k \ln(p_k)$ converge (le membre de droite de la majoration est le terme général d'une série convergente puisque X est d'espérance finie), de plus on sait que la série de Riemann $\sum \frac{1}{k^{3/2}}$ de paramètre 3/2 > 1 converge. On en déduit que que la série $\sum_{k \geq 1} \left(\frac{1}{k^{3/2}} + 3p_k \ln(k)\right)$ converge.
 - (e) On a, d'après II.B.2.(c), pour $k \geq k_0$, $0 \leq -p_k \ln(p_k) \leq \frac{1}{k^{3/2}} + 3p_k \ln(k)$, le théorème de comparaison des séries à termes positifs et la question précédente permet d'en déduire que $\sum -p_k \ln(p_k)$ converge (et même absolument), ie que X est d'entropie finie.
- II.B.3) (a) On sait que $\sum p_k$ converge (et sa somme vaut 1) et que $\sum kp_k$ converge (X est d'espérance finie, la somme de cette série vaut $\mathbb{E}(X)$). Ainsi la série $\sum (k-1)p_k$ converge et $\sum_{k=1}^{+\infty} (k-1)p_k$

1)
$$p_k = \sum_{k=1}^{+\infty} k p_k - \sum_{k=1}^{+\infty} p_k = \mathbb{E}(X) - 1.$$

- (b) Comme, pour tout $k \in \mathbb{N}^*$, $q_k = p(1-p)^{k-1}$, on a $p_k \ln(q_k) = (k-1)p_k \ln(1-p) + p_k \ln(p)$. Or on sait que $\sum (k-1)p_k$ et $\sum p_k$ convergent, on en déduit donc que $\sum p_k \ln(q_k)$ converge et que $\sum_{k=1}^{+\infty} p_k \ln(q_k) = \ln(1-p) \sum_{k=1}^{+\infty} (k-1)p_k + \ln(p) \sum_{k=1}^{+\infty} p_k = \ln(1-p)(\mathbb{E}(X)-1) + \ln(p)$.
- (c) Par hypothèse, $\mathbb{E}(X) 1 \leq \frac{1}{p} 1 = \frac{1-p}{p}$, ainsi $(\ln(1-p) \text{ négatif}) : \ln(1-p)(\mathbb{E}(X) 1) \geq \frac{1-p}{p} \ln(1-p)$, et donc $\ln(1-p)(\mathbb{E}(X) 1) + \ln(p) \geq \frac{1-p}{p} \ln(1-p) + \ln(p)$, ce qui montre (avec la question précédente et II.B.1) que $\sum_{k=1}^{+\infty} p_k \ln(q_k) \geq -H(X_1)$.
- (d) Par définition de H(X) et en utilisant l'inégalité de la question précédente (et que toutes les sommes misent en jeu sont bien convergentes) : $H(X) H(X_1) \le \sum_{k=1}^{+\infty} p_k \ln(p_k)$ –

$$\sum_{k=1}^{+\infty} p_k \ln(q_k) = \sum_{k=1}^{+\infty} p_k \ln\left(\frac{q_k}{p_k}\right).$$

Or, d'après la question I.B on a, pour tout $k \in \mathbb{N}^*$, $\ln\left(\frac{q_k}{p_k}\right)$, ainsi (les séries misent en jeu

LJB Maths - DS3-cor $5 \ / \ 8$

sont bien convergentes) :
$$H(X) - H(X_1) \le \sum_{k=1}^{+\infty} q_k - p_k = 1 - 1 = 0$$
, ce qui montre bien que $H(X) \le H(X_1)$.

Exercice 3 (E3A PC, exercice 4, 2020).

1. Soient n un entier naturel supérieur ou égal à 2 et $M \in \mathcal{M}_n(\mathbb{R})$, $M \neq I_n$ et $M \neq \frac{1}{2}I_n$, vérifiant la relation :

$$2M^2 = 3M - I_n$$

- 1.1 On note $F = \text{Vect}(I_n, M, M^2)$. Prouver que : $\forall k \in \mathbb{N}, M^k \in F$. Déterminer la dimension de F et en donner une base.
- 1.2 Vérifier que F est stable pour la multiplication des matrices.
- 1.3 Soient $A = M I_n$ et $B = M \frac{1}{2}I_n$. Justifier que $\mathcal{B} = (A, B)$ constitue une base de F. Déterminer les composantes des matrices AB, BA, A^2 et B^2 dans la base \mathcal{B} .
- 1.4 Déterminer toutes les matrices T de F vérifiant $T^2 = M$.
- 2. Soit X une variable aléatoire réelle telle que l'on a :

$$X(\Omega) = \mathbb{N} \text{ et } \forall n \in \mathbb{N}, \quad 2\mathbb{P}(X = n + 2) = 3\mathbb{P}(X = n + 1) - \mathbb{P}(X = n).$$

- 2.1 On note $p_n = \mathbb{P}(X = n)$. Exprimer p_n en fonction de n. En déduire la loi de la variable aléatoire X.
- 2.2 Justifier que la variable aléatoire X possède une espérance et une variance et les calculer.

On pourra admettre que si
$$q \in]-1,1[$$
, alors $\sum nq^{n-1}$ converge et que $\sum_{k=1}^{+\infty}kq^{k-1}=\frac{1}{(1-q)^2}$, et que $\sum n(n-1)q^{n-2}$ converge aussi et que $\sum_{k=1}^{+\infty}k(k-1)q^{k-2}=\frac{2}{(1-q)^3}$.

Correction:

1. 1.1 Montrons par récurrence double sur $k \in \mathbb{N}$ que $M^k \in F$.

Initialisation : par construction de F on a $M^0 = I_n$ et $M^1 = M$ dans F (et même M^2), ainsi la propriété est vrai au rang 0 et 1.

Hérédité : on suppose la propriété au rang k et k-1 pour un certain $k \in \mathbb{N}^*$, ie on suppose $M^k \in F$ et $M^{k-1} \in F$.

On a $M^{k+1}=M^2M^{k-1}=(\frac{3}{2}M-\frac{1}{2}I_n)M^{k-1}=\frac{3}{2}M^k-\frac{1}{2}M^{k-1}\in F$ (par hypothèse de récurrence et car F est un ev).

On a bien montré par récurrence que : $\forall k \in \mathbb{N}, M^k \in F$.

Comme M^2 est combinaison linéaire de M et de I_n , on en déduit que $F = \text{Vect}(I_n, M)$. Montrons que (I_n, M) est une famille libre, procédons par l'absurde :

On suppose que M et I_n sont liés, comme $I_n \neq 0$, on aurait l'existence de $\lambda \in \mathbb{R}$ tel que $M = \lambda I_n$. En injectant dans le relation vérifiée par M on en déduit que $2\lambda^2 I_n = 3\lambda I_n - I_n$, ainsi $(2\lambda^2 - 3\lambda + 1)I_n = 0$, donc $2\lambda^2 - 3\lambda + 1 = 0$, ce qui implique que $\lambda = 1$ ou $\lambda = \frac{1}{2}$, or ces deux possibilités sont exclus. Ainsi (I_n, M) est une famille libre, comme elle est génératrice de F c'est donc une base de F. En particulier $\dim(F) = 2$.

- 1.2 Soit $(N, N') \in F^2$, il existe donc $(\alpha, \beta) \in \mathbb{R}^2$ et $(\alpha', \beta') \in \mathbb{R}^2$ tels que $N = \alpha I_n + \beta M$ et $N' = \alpha' I_n + \beta' M$, on en déduit donc que $NN' = \alpha \alpha' I_n + (\alpha \beta' + \alpha' \beta) M + \beta \beta' M^2 \in F$ (par définition initiale de F), ainsi F est stable par produit.
- 1.3 Tout d'abord on remarque que A et B sont dans F, montrons maintenant que (A, B) est une famille libre. Soit $(\alpha, \beta) \in \mathbb{R}^2$ tels que $\alpha A + \beta B = 0$, ainsi $\alpha (M I_n) + \beta (M \frac{1}{2}I_n) = 0$, ie $(\alpha + \beta)M + (-\alpha \frac{1}{2}\beta)I_n = 0$, comme la famille (M, I_n) est libre, on en déduit que $\alpha + \beta = 0$ et $-\alpha \frac{1}{2}\beta = 0$, donc $\alpha = \beta = 0$. La famille (A, B) est donc une famille libre de F, comme elle est constituée de deux vecteurs et comme F est de dimension 2, on en déduit que (A, B) est une base de F.

On a
$$AB = (M - I_n)(M - \frac{1}{2}I_n) = M^2 - \frac{3}{2}M + \frac{1}{2} = 0$$
, de même $BA = 0$.
On a $A^2 = M^2 - 2M + I_n = \frac{3}{2}M - \frac{1}{2}I_n - 2M + I_n = \frac{-1}{2}M + \frac{1}{2}I_n = \frac{-1}{2}A$.
On a $B^2 = M^2 - M + \frac{1}{4}I_n = \frac{3}{2}M - \frac{1}{2}I_n - M + \frac{1}{4}I_n = \frac{1}{2}M - \frac{1}{4}I_n = \frac{1}{2}B$.

LJB Maths - DS3-cor 6 / 8

1.4 Soit $T \in F$, il existe donc $(\alpha, \beta) \in \mathbb{R}^2$ tel que $T = \alpha A + \beta B$. Ainsi $T^2 = \alpha^2 A^2 + \alpha \beta A B + \beta \alpha B A + \beta^2 B = \frac{1}{2}(-\alpha^2 A + \beta^2 B)$. Or M = -A + 2B, ainsi on a l'équivalence (la deuxième c'est car (A, B) base de F):

$$T^2 = M \iff \frac{1}{2}(-\alpha^2 A + \beta^2 B) = -A + 2B \iff \begin{cases} -\alpha^2/2 &= -1 \\ \beta^2/2 &= 2 \end{cases} \iff \begin{cases} \alpha^2 &= 2 \\ \beta^2 &= 4 \end{cases}.$$

Ainsi l'équation $T^2 = M$ possède 4 solutions : $\sqrt{2}A + 2B$, $\sqrt{2}A - 2B$, $-\sqrt{2}A + 2B$ et $-\sqrt{2}A - 2B$

2. 2.1 On remarque tout de suite que p_n est une suite récurrente linéaire d'ordre 2, en effet pour tout $n \in \mathbb{N}$ on a $2p_{n+2} = 3p_{n+1} - p_n$.

Son équation caractéristique $2r^2 - 3r + 1 = 0$ admet deux racines 1 et $\frac{1}{2}$. Ainsi il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que $p_n = \frac{\alpha}{2^n} + \beta$.

Comme on sait que $\sum_{k=0}^{+\infty} p_n = 1$ (X est une variable aléatoire), et comme on sait que $\sum_{k=0}^{+\infty} \frac{1}{2^k} = \frac{1}{1 - \frac{1}{2}} = 2$,

on en déduit que $\alpha = \frac{k=0}{2}$ et $\beta = 0$.

On a donc montré : $\forall n \in \mathbb{N}, \mathbb{P}(X = n) = \frac{1}{2^{n+1}}$.

2.2 Avec le rajout (série géométrique dérivée), on a tout de suite que $\sum n\mathbb{P}(X=n)$ converge absolument et

$$\mathbb{E}(X) = \sum_{k=0}^{+\infty} k \frac{1}{2^{k+1}} = \frac{1}{4} \sum_{k=1}^{+\infty} k \frac{1}{2^{k-1}} = \frac{1}{4} \frac{1}{(1-1/2)^2} = 1.$$

On en déduit aussi tout de suite que $\sum n(n-1)\mathbb{P}(X=n)$ converge absolument et $\mathbb{E}(X(X-1))=$

$$\sum_{k=0}^{+\infty} k(k-1) \frac{1}{2^{k+1}} = \frac{1}{8} \sum_{k=2}^{+\infty} k(k-1) \frac{1}{2^{k-2}} = \frac{1}{8} \frac{2}{(1-1/2)^3} = 2.$$

Ainsi X^2 est d'espérance finie et $\mathbb{E}(X^2) = \mathbb{E}(X(X-1)) + \mathbb{E}(X) = 3$. On en conclue ensuite que X possède une variance, la formule de Koenig-Huygens donne $\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 3 - 1 = 2$.

Exercice 4 (E3A PC, exercice 1, 2022).

Un sauteur tente de franchir des hauteurs successives numérotées $1, 2, \ldots, n, \cdots$

Il ne peut tenter de passer la hauteur n+1 que s'il a réussi les sauts de hauteurs $1,2,\ldots,n$.

En supposant que le sauteur a réussi tous les sauts précédents, la probabilité de succès au n-ième saut est $p_n = \frac{1}{n}$. Ainsi le premier saut est toujours réussi.

Pour tout $k \in \mathbb{N}^*$, on note S_k l'évènement : « le sauteur a réussi son k-ième saut » et on note X la variable aléatoire égale au numéro du dernier saut réussi.

- 1° Rappeler sans démonstration la formule des probabilités composées.
- 2° Rappeler sans démonstration l'expression de la série exponentielle.
- 3° Déterminer l'ensemble des valeurs prises par la variable aléatoire X.
- 4° Déterminer $\mathbb{P}([X=1])$.
- 5° Justifier que $[X=2]=S_1\cap S_2\cap \overline{S_3}$. En déduire $\mathbb{P}([X=2])$.
- 6° Pour tout entier $n \geq 2$, exprimer l'évènement [X = n] en fonction d'évènements du type S_k .
- 7° Déterminer la loi de X.
- 8° Vérifier par le calcul que : $\sum_{n=1}^{+\infty} \mathbb{P}([X=n]) = 1$.
- 9° Montrer que X possède une espérance et la calculer.

Correction:

1° Formule des probabilités composées : Pour tous évènements A_1, \ldots, A_n tels que $\mathbb{P}(A_1 \cap \cdots \cap A_{n-1}) \neq 0$, on a :

$$\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\dots\mathbb{P}(A_n|A_1 \cap \dots \cap A_{n-1}).$$

- 2° On a : $\forall x \in \mathbb{R}, e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.
- 3º Les valeurs prises par X sont les entiers naturels non nuls : $X(\Omega) = \mathbb{N}^*$ (à ce stade c'est plutôt $X(\Omega) = \mathbb{N}^* \cup \{+\infty\}$, c'est la question 8º qui permet de dire que \mathbb{N}^* convient).
- $4^{\circ} \ \text{On a} \ \mathbb{P}([X=1]) = \mathbb{P}(S_1 \cap \overline{S_2}) = \mathbb{P}(S_1)\mathbb{P}(\overline{S_2}|S_1) = 1 \times \tfrac{1}{2} = \tfrac{1}{2}.$
- 5° L'évènement [X=2] est réalisé si et seulement si les deux premiers sauts ont été réussis, et le troisième a été raté. Autrement dit : $[X=2] = S_1 \cap S_2 \cap \overline{S_3}$.

Par conséquent d'après la FPC, on a : $\mathbb{P}([X=2]) = \mathbb{P}(S_1)\mathbb{P}(S_2|S_1)\mathbb{P}(\overline{S_3}|S_1 \cap S_2) = 1 \times \frac{1}{2} \times (1-\frac{1}{3}) = \frac{1}{3}$.

- 6° Tout comme à la question 5°, on a $[X = n] = S_1 \cap \cdots \cap S_n \cap \overline{S_{n+1}}$.
- 7° D'après la FPC, on a $\mathbb{P}([X=n]) = \mathbb{P}(S_1)\mathbb{P}(S_2|S_1)\dots\mathbb{P}(S_n|S_1\cap\dots\cap S_{n-1})\mathbb{P}(\overline{S_{n+1}}|S_1\cap\dots\cap S_n) = 1\times\frac{1}{2}\times\dots\times\frac{1}{n}\times\left(1-\frac{1}{n+1}\right) = \frac{n}{(n+1)!} = \frac{1}{(n+1)(n-1)!}$
- 8° On a: $\sum_{n=1}^{\infty} \mathbb{P}([X=n]) = \sum_{n=1}^{\infty} \frac{(n+1)-1}{(n+1)!} = \sum_{n=1}^{\infty} \left(\frac{1}{n!} \frac{1}{(n+1)!}\right) = \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{n=1}^{\infty} \frac{1}{(n+1)!}$ (car les deux séries misent en jeux convergent). Ainsi $\sum_{n=1}^{\infty} \mathbb{P}([X=n]) = \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{n=2}^{\infty} \frac{1}{n!} = 1.$
- 9° Pour montrer que X est d'espérance finie, on doit montrer que $\sum_{n\geq 1} n\mathbb{P}([X=n])$ converge absolument.

Pour
$$n \in \mathbb{N}^*$$
, $n\mathbb{P}(X=n) = \frac{n}{(n+1)(n-1)!} = \frac{(n+1)-1}{(n+1)(n-1)!} = \frac{1}{(n-1)!} - \frac{1}{(n+1)(n-1)!}$. Or $\sum \frac{1}{(n-1)!}$ et $\sum \frac{1}{(n+1)(n-1)!} = \sum \mathbb{P}([X=n])$ sont deux séries convergentes , donc $\sum_{n\geq 1} n\mathbb{P}([X=n])$ convergente absolument, ainsi X possède une espérance et, en reconnaissant la série exponentielle (cf 2°) et la série de la question 8°, on trouve $\mathbb{E}(X) = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} - \sum_{n=1}^{\infty} \frac{1}{(n+1)(n-1)!} e - 1$.

LJB Maths - DS3-cor $8 \ / \ 8$