DNS 3: pour le lundi 3 novembre

Le candidat encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Exercice 1.

Soit E un K-espace vectoriel muni d'une base $\mathcal{B} = (i, j, k)$.

Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est $A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$.

- 1° Quelle est l'image par f du vecteur i + j k?
- 2° Démontrer que f est un projecteur puis déterminer une base de $\operatorname{Im}(f)$ et $\ker(f)$.
- 3° Quelle est la matrice de f relativement à une base adaptée à $E = \operatorname{Im}(f) \oplus \ker(f)$?

Exercice 2.

Soit $n \in \mathbb{N}^*$, on définit $\varphi : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ par $\varphi(P) = P(X) + P(X+1)$.

1° Montrer que φ est un automorphisme.

Montrer que pour tout $n \in \mathbb{N}$, il existe un unique $P_n \in \mathbb{R}_n[X]$ tel que $P_n(X) + P_n(X+1) = 2X^n$.

- 2° Dans cette question uniquement n=2.
 - a) Donner la matrice canoniquement associée à φ . Retrouver alors que $\varphi \in \mathrm{GL}(\mathbb{R}_2[X])$.
 - b) Démontrer que $\operatorname{Vect}(Q)$ est une droite vectorielle stable par φ si et seulement si il existe $\lambda \in \mathbb{R}$ tel que $\varphi(Q) = \lambda Q$. En déduire les droites stables par φ par résolution de systèmes linéaires.
- 3° Justifier qu'on peut exprimer $P_n(X+1)$ comme combinaison linéaire de P_0,\ldots,P_n .
- 4° En calculant de deux façons $P_n(X+2)+P_n(X+1)$ déterminer une relation donnant P_n en fonction de P_0,\ldots,P_{n-1} .

Exercice 3 (Noyaux itérés (d'après E3A PSI, 2007)).

Soit E un espace vectoriel de dimension finie $n \geq 2$ et soit $u \in \mathcal{L}(E)$.

- 1° (a) Montrer pour tout entier naturel i et j, $\ker(u^i) \subset \ker(u^{i+j})$.
 - (b) Pour tout $m \in \mathbb{N}$, on note $t_m = \dim(\ker(u^m))$. Prouver l'existence de : $r = \inf\{m \in \mathbb{N}, t_m = t_{m+1}\}$.
 - (c) Montrer que:
 - (i) Pour tout entier naturel m, tel que m < r, $\ker(u^m)$ est strictement inclus dans $\ker(u^{m+1})$.
 - (ii) $\ker(u^r) = \ker(u^{r+1})$.
 - (iii) Pour tout entier $m \ge r$, $\ker(u^m) = \ker(u^{m+1})$.
- 2° Soit v un endomorphisme de E de rang n-1 tel que $v^n=0$.
 - (a) Soit p et q deux entiers naturels et w la restriction de v^q à $\text{Im}(v^p)$.
 - (i) Déterminer Im(w)
 - (ii) Prouver que $\ker(w) \subset \ker(v^q)$.
 - (iii) Vérifier alors que l'on a : $\dim(\ker(v^{p+q})) \leq \dim(\ker(v^p)) + \dim(\ker(v^q))$.
 - (iv) En déduire que pour tout $i \in [1, n]$, $\dim(\ker(v^i)) \leq i$.
 - (v) Démontrer qu'en fait $\dim(\ker(v^i)) = i$ pour tout $i \in [1, n]$.
 - (b) Prouver que $v^{n-1} \neq 0$
 - (c) En déduire qu'il existe un vecteur e de E tel que $\mathcal{B} = (v^{n-1}(e), \dots, v(e), e)$ soit une base de E.
 - (d) Écrire la matrice de v dans cette base.