DNS 3*: pour le lundi 3 novembre

Le candidat encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Exercice 1 (Noyaux itérés (d'après E3A PSI, 2007)).

Soit E un espace vectoriel de dimension finie $n \geq 2$ et soit $u \in \mathcal{L}(E)$.

- 1° (a) Montrer pour tout entier naturel i et j, $\ker(u^i) \subset \ker(u^{i+j})$.
 - (b) Pour tout $m \in \mathbb{N}$, on note $t_m = \dim(\ker(u^m))$. Prouver l'existence de : $r = \inf\{m \in \mathbb{N}, t_m = t_{m+1}\}$.
 - (c) Montrer que:
 - (i) Pour tout entier naturel m, tel que m < r, $\ker(u^m)$ est strictement inclus dans $\ker(u^{m+1})$.
 - (ii) $\ker(u^r) = \ker(u^{r+1})$.
 - (iii) Pour tout entier $m \ge r$, $\ker(u^m) = \ker(u^{m+1})$.
- 2° Soit v un endomorphisme de E de rang n-1 tel que $v^n=0$.
 - (a) Soit p et q deux entiers naturels et w la restriction de v^q à $\text{Im}(v^p)$.
 - (i) Déterminer Im(w).
 - (ii) Prouver que $\ker(w) \subset \ker(v^q)$.
 - (iii) Vérifier alors que l'on a : $\dim(\ker(v^{p+q})) \leq \dim(\ker(v^p)) + \dim(\ker(v^q))$.
 - (iv) En déduire que pour tout $i \in [1, n]$, $\dim(\ker(v^i)) \leq i$.
 - (v) Démontrer qu'en fait $\dim(\ker(v^i)) = i$ pour tout $i \in [1, n]$.
 - (b) Prouver que $v^{n-1} \neq 0$
 - (c) En déduire qu'il existe un vecteur e de E tel que $\mathcal{B} = (v^{n-1}(e), \dots, v(e), e)$ soit une base de E.
 - (d) Écrire la matrice de v dans cette base.

Exercice 2 (CENTRALE PC, Maths 2 partie I, 2016) Opérateur de translation et opérateur de différence.

Dans tout le problème, \mathbb{N} est l'ensemble des entiers naturels, \mathbb{R} l'ensemble des réels, n désigne un entier naturel supérieur ou égal à 1 et $\mathbb{R}_n[X]$ est l'ensemble des polynômes à coefficients réels de degré au plus n.

Pour a < b dans \mathbb{Z} , on note $[\![a,b]\!]$ l'ensemble $[a,b] \cap \mathbb{Z}$.

Pour $k \in \mathbb{N}^*$, on note P_k le polynôme X^{k-1} . On rappelle que $\mathbb{R}_n[X]$ est un \mathbb{R} -espace vectoriel de dimension n+1dont la famille $(P_k)_{k\in[1,n+1]}$ est une base. Pour $P\in\mathbb{R}_n[X]$, on note $\deg(P)$ le degré de P et, lorsque P est non nul, cd(P) désigne le coefficient dominant de P, c'est-à-dire le coefficient du monôme $X^{\deg(P)}$.

Pour
$$k \in \mathbb{N}$$
 et $j \in [0, k]$, le coefficient binomial $\binom{k}{j}$ vaut $\frac{k!}{j!(k-j)!}$.

Pour un ensemble E et $f: E \to E$, on définit l'application $f^k: E \to E$ par récurrence sur $k \in \mathbb{N}$ de la façon suivante:

$$f^0 = \operatorname{Id}_E \text{ et } f^{k+1} = f \circ f^k$$

Si f est bijective, on note f^{-1} la réciproque de f et pour $k \in \mathbb{N}$, on note $f^{-k} = (f^{-1})^k$.

Pour $p \in \mathbb{N}^*$, on note $\mathcal{M}_p(\mathbb{R})$ l'ensemble des matrices carrées réelles de taille p.

A - L'opérateur de translation

L'opérateur de translation est l'endomorphisme τ de $\mathbb{R}_n[X]$ donné par :

$$\tau: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

 $P(X) \mapsto P(X+1)$

- A.1) Pour un polynôme non nul $P \in \mathbb{R}_n[X]$, exprimer $\deg(\tau(P))$ et $cd(\tau(P))$ à l'aide de $\deg(P)$ et cd(P).
- A.2) Soit $P \in \mathbb{R}_n[X]$. Pour $k \in \mathbb{N}$, donner l'expression de $\tau^k(P)$ en fonction de P.
- A.3) Donner la matrice $M = (M_{i,j})_{1 \leq i,j \leq n+1}$ de τ dans la base $(P_k)_{k \in [1,n+1]}$. On exprimera les coefficients $M_{i,j}$ en fonction de i et j.
- A.4) (pour les 5/2) Préciser l'ensemble des valeurs propres de τ . L'application τ est-elle diagonalisable?
- A.5) L'application τ est-elle bijective? Si oui, préciser τ^{-1} . L'expression de τ^{j} trouvée à la question A2 pour $j \in \mathbb{N}$ est-elle valable pour $j \in \mathbb{Z}$?
- A.6) Que vaut M^{-1} ? Exprimer les coefficients $(M^{-1})_{i,j}$ en fonction de i et j.

A.7) On se donne une suite réelle $(u_k)_{k\in\mathbb{N}}$ et on définit, pour tout entier $k\in\mathbb{N}$

$$v_k = \sum_{j=0}^k \binom{k}{j} u_j \tag{1}$$

Déterminer une matrice $Q \in \mathcal{M}_{n+1}(\mathbb{R})$ telle que

$$\begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_n \end{pmatrix} = Q \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_n \end{pmatrix}$$

A.8) En déduire la formule d'inversion : pour tout entier $k \in \mathbb{N}$,

$$u_k = \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} v_j \tag{2}$$

A.9) On considère un réel λ et la suite $(u_k = \lambda^k)_{k \in \mathbb{N}}$. Quelle est la suite $(v_k)_{k \in \mathbb{N}}$ définie par la formule (1)? Vérifier alors la formule (2).

B - L'opérateur de différence

L'opérateur de différence est l'endomorphisme δ de $\mathbb{R}_n[X]$ tel que $\delta = \tau - \mathrm{Id}_{\mathbb{R}_n[X]}$:

$$\delta: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

 $P(X) \mapsto P(X+1) - P(X)$

- B.1) Pour un polynôme non constant $P \in \mathbb{R}_n[X]$, exprimer $\deg(\delta(P))$ et $cd(\delta(P))$ à l'aide de $\deg(P)$ et cd(P).
- B.2) En déduire le novau $\ker(\delta)$ et $\operatorname{Im}(\delta)$ de l'endomorphisme δ .
- B.3) Plus généralement, pour $j \in [1, n]$, montrer les égalités suivantes :

$$\ker(\delta^j) = \mathbb{R}_{j-1}[X]$$
 et $\operatorname{Im}(\delta^j) = \mathbb{R}_{n-j}[X]$ (3)

- B.4) Pour $k \in \mathbb{N}$ et $P \in \mathbb{R}_n[X]$, exprimer $\delta^k(P)$ en fonction des $\tau^j(P)$ pour $j \in [0, k]$.
- B.5) Soit $P \in \mathbb{R}_{n-1}[X]$. Montrer que :

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(j) = 0 \tag{4}$$

- B.6) Dans cette question, on veut montrer qu'il n'existe pas d'application linéaire $u: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ telle que $u \circ u = \delta$. On suppose, par l'absurde, qu'une telle application u existe.
 - a) Montrer que u et δ^2 commutent.
 - b) En déduire que $\mathbb{R}_1[X]$ est stable par l'application u.
 - c) Montrer qu'il n'existe pas de matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que :

$$A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- d) Conclure.
- B.7) Dans cette question, on cherche tous les sous-espaces vectoriels de $\mathbb{R}_n[X]$ stables par l'application δ .
 - a) Pour P polynôme non nul de degré $d \leq n$, montrer que la famille $(P, \delta(P), \dots, \delta^d(P))$ est libre. Quel est l'espace vectoriel engendré par cette famille?
 - b) En déduire que si V est un sous-espace vectoriel de $\mathbb{R}_n[X]$ stable par δ et non réduit à $\{0\}$, il existe un entier $d \in [0, n]$ tel que $V = \mathbb{R}_d[X]$.

LJB Maths - DNS3e 2 / 2