DNS 3: pour le lundi 3 novembre

Le candidat encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1.

Soit E un \mathbb{K} -espace vectoriel muni d'une base $\mathcal{B} = (i, j, k)$.

Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est $A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$.

- 1° Quelle est l'image par f du vecteur i + j k?
- 2° Démontrer que f est un projecteur puis déterminer une base de Im(f) et ker(f).
- 3° Quelle est la matrice de f relativement à une base adaptée à $E = \operatorname{Im}(f) \oplus \ker(f)$?

Correction: Attention E est un \mathbb{K} -ev, pas nécessairement \mathbb{K}^3 ...

- 1° On a f(i) = 2i + j + k, f(j) = -i k) et f(k) = -i j, ainsi f(i + j k) = f(i) + f(j) f(k) = 2i + 2j. On peut aussi utiliser que $A^t(11-1)$ sont les coordonnées de f(i+j+k) dans la base \mathcal{B} et donc f(i+j-k) = 2i + 2j.
- 2° Comme $A^2 = A$ on a $f \circ f = f$ donc f est un projecteur. Pour $\ker(f)$ on résout en notant X les coordonnées d'un vecteur u dans $\mathcal{B}: u \in \ker(f) \Leftrightarrow f(u) = 0 \Leftrightarrow AX = 0$.

 Immédiatement (ou avec le pivot de Gauss): x = y et x = z donc $\ker(f) = \operatorname{Vect}(i + j + k)$, pour l'image on sait que dans le cas d'un projecteur $\operatorname{Im}(f) = \ker(f \operatorname{Id})$, on résout le système (pivot de Gauss) et on trouve $\operatorname{Im}(f) = \operatorname{Vect}(i + j, i + k)$ (Alternative qui marche même si ce n'es pas un projecteur: pour déterminer l'image on pourrait utiliser le fait que l'image est engendré par f(i) = 2i + j + k, f(j) = -i k et f(k) = -i j, le théorème du rang nous dit que l'image est de dimension 2, il suffit de prendre deux vecteurs non colinéaires parmi ces trois pour avoir une famille génératrice).
- 3° Dans une base adaptée à $E = \text{Im}(f) \oplus \ker(f)$, la matrice de f est diag(1, 1, 0) par définition même; et surtout sans calcul (en effet si $u \in \text{Im}(f)$ alors f(u) = u puisque f est un projecteur).

Exercice 2.

Soit $n \in \mathbb{N}^*$, on définit $\varphi : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ par $\varphi(P) = P(X) + P(X+1)$.

- 1° Montrer que φ est un automorphisme. Montrer que pour tout $n \in \mathbb{N}$, il existe un unique $P_n \in \mathbb{R}_n[X]$ tel que $P_n(X) + P_n(X+1) = 2X^n$.
- 2° Dans cette question uniquement n=2.
 - a) Donner la matrice canoniquement associée à φ . Retrouver alors que $\varphi \in \mathrm{GL}(\mathbb{R}_2[X])$.
 - b) Démontrer que $\operatorname{Vect}(Q)$ est une droite vectorielle stable par φ si et seulement si il existe $\lambda \in \mathbb{R}$ tel que $\varphi(Q) = \lambda Q$. En déduire les droites stables par φ par résolution de systèmes linéaires.
- 3° Justifier qu'on peut exprimer $P_n(X+1)$ comme combinaison linéaire de P_0,\ldots,P_n .
- 4° En calculant de deux façons $P_n(X+2)+P_n(X+1)$ déterminer une relation donnant P_n en fonction de P_0,\ldots,P_{n-1} .

Correction:

1° La linéarité est très facile. Comme $\deg(\varphi(P)) = \deg(P)$ on a $\varphi \in \mathcal{L}(\mathbb{R}_n[X])$. Le plus délicat ici est de justifier proprement $\ker(\varphi) = \{0\}$: Soit $P \in \mathbb{R}_n[X]$ tel que $\varphi(P) = 0$, on suppose $P \neq 0$, posons $p = \deg(P)$ et notons a_p son coefficient dominant, ainsi $a_p \neq 0$, comme $\varphi(P) = 0$ on a P(X) = -P(X+1), ce qui montre que $a_p = -a_p$, d'où $a_p = 0$, ce qui est absurde d'où P = 0. Alternative: Soit $P \in \ker(\varphi)$, notons $P = \sum_{k=0}^n a_k X^k$, on a $\varphi(P) = 0$ et $\varphi(P) = P(X) + P(X+1) = 2a_0 + a_1(X+(X+1)) + \ldots + a_n(X^n+(X+1)^n)$, notons pour tout $k \in [0,n]$, $Q_k = X^k + (X+1)^k$ (on a clairement $\deg(Q_k)=k$), ainsi $\varphi(P)=\sum_{k=0}^n a_kQ_k$, la famille (Q_0,\ldots,Q_n) est une famille de polynômes non nul de degré échelonné, c'est donc une famille libre, comme $\sum_{k=0}^n a_kQ_k=0$ on en déduit que $a_0=\ldots=a_n=0$ et donc que P=0.

Ainsi φ est injectif, on a donc montré $\varphi \in GL(\mathbb{R}_n[X])$ (en effet pour un endomorphisme d'un ev de dimension fini on est bijectif dés qu'on est injectif).

Puisque $2X^n \in \mathbb{R}_n[X]$ et φ bijectif : il existe un unique antécédent P_n à ce polynôme par φ .

- 2° a) Posons $C = (1, X, X^2)$. De $\varphi(1) = 2$, $\varphi(X) = 1 + 2X$ et $\varphi(X^2) = 1 + 2X + 2X^2$ vient $M = \text{Mat}_{\mathcal{C}}(\varphi) = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$ donc $\det(M) = 2^3 \neq 0$ et $\varphi \in \text{GL}(\mathbb{R}_n[X])$.
 - b) $\operatorname{Vect}(Q)$ est stable par $\varphi \Leftrightarrow \varphi(Q) \in \operatorname{Vect}(Q) \Leftrightarrow \exists \lambda \in \mathbb{R} / \varphi(Q) = \lambda Q \Leftrightarrow Q \in \ker(\varphi \lambda \operatorname{Id}_{\mathbb{R}_2[X]})$. En notant \tilde{Q} les coordonnées de Q dans C, on résout $(M - \lambda I_3)\tilde{Q} = 0$, un système linéaire homogène de matrice $M - \lambda I_3$.

Qu'il existe une autre solution que 0 revient à la non inversibilité de $M-\lambda I_3$ ie à la nullité de son déterminant. Cette matrice étant triangulaire supérieure on a immédiatement $\det(M-\lambda I_3)=(2-\lambda)^3$ donc le seul scalaire λ possible est 2 et l'on cherche alors l'ensemble des solutions du système linéaire homogène de matrice $M-2I_3$; de tête (la matrice $M-2I_3$ est de rang 2 et sa première colonne est nulle) Vect(1).

Conclusion : φ ne laisse stable qu'une seule droite vectorielle, celle dirigée par 1.

3° Pour $k \in [0, n]$, comme $\varphi(P_k) = 2X^k$ et comme on a montré en 1° que φ préservait les degrés, on a que $\deg(P_k) = k$. Donc la famille (P_0, \dots, P_n) est étagées en degré et est donc libre.

Comme $P_k \in \mathbb{R}_n[X]$ $(k \leq n)$ et $Card(P_k)_{0 \leq k \leq n} = \dim \mathbb{R}_n[X]$, $(P_k)_{0 \leq k \leq n}$ est une base de $\mathbb{R}_n[X]$, donc l'engendre.

Puisque $P_n(X+1)$ a même degré que P_n , ie. n, il s'exprime comme combinaison linéaire des vecteurs de la base (P_0, \ldots, P_n) .

 4° On suit l'indication, $P_n(X+2) + P_n(X+1) = 2(X+1)^n$ par définition de P_n et d'après la question précédente,

il existe $(\alpha_0, \dots, \alpha_n) \in \mathbb{R}^{n+1}$ tel que $P_n(X+1) = \sum_{k=0}^n \alpha_k P_k(X)$ d'où $P_n(X+2) + P_n(X+1) = \sum_{k=0}^n \alpha_k (P_k(X+1))$

1) +
$$P_k(X)$$
) = $\sum_{k=0}^{n} 2\alpha_k X^k$.

Ainsi $\sum_{k=0}^{n} 2\alpha_k X^k = 2(X+1)^n$, ainsi (binôme de Newton) : $\sum_{k=0}^{n} \alpha_k X^k = \sum_{k=0}^{n} \binom{n}{k} X^k$, comme deux polynômes

sont égaux ssi ils ont les mêmes coefficients (remarque : cela correspond en fait à la liberté de $(1, ..., X^n)$) on a donc, pour tout k, que $\alpha_k = \binom{n}{k}$.

On en tire
$$P_n = 2X^n - P_n(X+1) = 2X^n - \sum_{k=0}^n \binom{n}{k} P_k = 2X^n - \sum_{k=0}^{n-1} \binom{n}{k} P_k - P_n$$
.

Conclusion:
$$P_n = X^n - \frac{1}{2} \sum_{k=0}^{n-1} \binom{n}{k} P_k$$
.

Exercice 3 (Noyaux itérés (d'après E3A PSI, 2007)).

Soit E un espace vectoriel de dimension finie $n \geq 2$ et soit $u \in \mathcal{L}(E)$.

- 1° (a) Montrer pour tout entier naturel i et j, $\ker(u^i) \subset \ker(u^{i+j})$.
 - (b) Pour tout $m \in \mathbb{N}$, on note $t_m = \dim(\ker(u^m))$. Prouver l'existence de : $r = \inf\{m \in \mathbb{N}, t_m = t_{m+1}\}$.
 - (c) Montrer que :
 - (i) Pour tout entier naturel m, tel que m < r, $\ker(u^m)$ est strictement inclus dans $\ker(u^{m+1})$.
 - (ii) $\ker(u^r) = \ker(u^{r+1})$.
 - (iii) Pour tout entier $m \ge r$, $\ker(u^m) = \ker(u^{m+1})$.
- 2° Soit v un endomorphisme de E de rang n-1 tel que $v^n=0$.
 - (a) Soit p et q deux entiers naturels et w la restriction de v^q à $\text{Im}(v^p)$.
 - (i) Déterminer Im(w).
 - (ii) Prouver que $\ker(w) \subset \ker(v^q)$.
 - (iii) Vérifier alors que l'on a : $\dim(\ker(v^{p+q})) \leq \dim(\ker(v^p)) + \dim(\ker(v^q))$.
 - (iv) En déduire que pour tout $i \in [1, n]$, $\dim(\ker(v^i)) \leq i$.
 - (v) Démontrer qu'en fait $\dim(\ker(v^i)) = i$ pour tout $i \in [1, n]$.

- (b) Prouver que $v^{n-1} \neq 0$
- (c) En déduire qu'il existe un vecteur e de E tel que $\mathcal{B} = (v^{n-1}(e), \dots, v(e), e)$ soit une base de E.
- (d) Écrire la matrice de v dans cette base.

Correction:

- 1° (a) Soit $(i,j) \in \mathbb{N}^2$. Soit $x \in \ker(u^i)$, ainsi $u^i(x) = 0$, on a alors $u^{i+j}(x) = u^j(u^i(x)) = u^j(0) = 0$, ainsi $x \in \ker(u^{i+j})$, ce qui montre bien que $\ker(u^i) \subset \ker(u^{i+j})$.
 - (b) Pour tout $m \in \mathbb{N}$, en appliquant la question précédente à i = m et j = 1 on a $t_{m+1} \le t_m$, ainsi la suite (t_m) est une suite croissante d'entiers compris entre 0 et n (car dimension de sev de E), ainsi elle converge, or une suite stationnaire d'entiers est stationnaire, ce qui montre que la partie $\{m \in \mathbb{N}, t_m = t_{m+1}\}$ de \mathbb{N} est non vide, ainsi elle possède un plus petit élément (en particulier une borne inférieure).
 - (c) Montrer que:
 - (i) Par minimalité de r, si m < r alors $t_m \neq t_{m+1}$ et donc $t_m < t_{m+1}$ ce qui montre que l'inclusion $\ker(u^m) \subset \ker(u^{m+1})$ est stricte.
 - (ii) On a déjà montré $\ker(u^r) \subset \ker(u^{r+1})$, comme $\dim(\ker(u^r)) = t_r = t_{r+1} = \dim(\ker(u^{r+1}))$, on a donc $\ker(u^r) = \ker(u^{r+1})$.
 - (iii) Montrons par récurrence sur $m \ge r$ que $\ker(u^m) = \ker(u^{m+1})$. Initialisation : Déjà fait pour m = r.

Hérédité : On suppose qu'il existe $m \ge r$ tel que $\ker(u^m) = \ker(u^{m+1})$, montrons que $\ker(u^{m+1}) = \ker(u^{m+2})$. On a déjà montré $\ker(u^{m+1}) \subset \ker(u^{m+2})$ en question 1°(a), montrons l'autre inclusion, soit $x \in \ker(u^{m+1})$), ainsi $u^{m+2}(x) = 0$, ce qu'on peut écrire $u^{m+1}(u(x)) = 0$, ainsi $u(x) \in \ker(u^{m+1})$ donc $u(x) \in \ker(u^m)$ par hypothèse de récurrence, ie $u^m(u(x)) = 0$, ce qui correspond à $u^{m+1}(x) = 0$ et donc à $x \in \ker(u^{m+1})$, ce qui montre bien l'autre inclusion et donc que $\ker(u^{m+1}) = \ker(u^{m+2})$

On a bien montré, pour m > r, que $\ker(u^m) = \ker(u^{m+1})$.

- 2° Soit v un endomorphisme de E de rang n-1 tel que $u^n=0$.
 - (a) Soit p et q deux entiers naturels et w la restriction de v^q à $\operatorname{Im}(v^p)$.
 - (i) On a $\operatorname{Im}(w) = v^q(\operatorname{Im}(v^p))$, on a donc clairement que $\operatorname{Im}(w) \subset \operatorname{Im}(v^{p+q})$, or si $y \in \operatorname{Im}(v^{p+q})$ alors il existe $x \in E$ tel que $y = v^{p+q}(x) = v^q(v^p(x))$, et comme $v^p(x) \in \operatorname{Im}(v^p)$, on a donc $y \in \operatorname{Im}(w)$. Ce qui montre que $\operatorname{Im}(w) = \operatorname{Im}(v^{p+q})$.
 - (ii) Soit $x \in \ker(w)$, on a ainsi $x \in \operatorname{Im}(v^p)$ et w(x) = 0, ainsi $v^q(x) = 0$ ce qui montre que $\ker(w) \subset \ker(v^q)$. $\operatorname{Remarque}: \text{On a même } \ker(w) = \operatorname{Im}(v^p) \cap \ker(v^q)$.
 - (iii) D'après le théorème du rang appliqué à w : $\dim(\operatorname{Im}(v^p)) = \dim(\ker(w)) + \dim(\operatorname{Im}(w))$, ainsi (d'après les deux questions précédentes) : $\operatorname{rg}(v^p) \leq \dim(\ker(v^q) + \operatorname{rg}(v^{p+q}))$. En appliquant maintenant le théorème du rang à v^p et v^{p+q} , on a : $n \dim(\ker(v^p)) \leq \dim(\ker(v^q) + n \dim(\ker(v^{p+q}))$, ce qui montre bien que l'on a : $\dim(\ker(v^{p+q})) \leq \dim(\ker(v^p)) + \dim(\ker(v^q))$.
 - (iv) Tout d'abord, comme v est de rang n-1, le théorème du rang donne $\dim(\ker(v))=1$. Pour $i\in [\![1,n]\!]$, l'inégalité précédente pour p=i et q=1 donne $\dim(\ker(v^{p+1}))\leq \dim(\ker(v^p))+\dim(\ker(v))\leq \dim(\ker(v^p))+1$, ainsi par récurrence directe sur $i\in [\![1,n]\!]$, on a : $\dim(\ker(v^i))\leq i$.
 - (v) On a $\dim(\ker(v^n)) = n$ (en effet $v^n = 0$ et donc $\ker(v^n) = E$), comme $\dim(\ker(v^{n-1})) \le n 1 < n$ on en déduit que le r de la question $1^{\circ}(b)$ est plus grand que n (comme $\ker(v^n) = E = \ker(v^{n+1})$ on a même r = n), ainsi $(\dim(\ker(v^i)))_{1 \le i \le n}$ est strictement croissante d'après $1^{\circ}(c)(i)$, ce qui impose, pour tout $i \in [1, n]$, que $\dim(\ker(v^i)) = i$.
 - (b) Comme dim $(\ker(v^{n-1})) = n 1 \neq n$, on en déduit que $v^{n-1} \neq 0$.
 - (c) Soit $e \in E$ tel que $v^{n-1}(e) \neq 0$, notons $\mathcal{B} = \left(v^{n-1}(e), \dots, v(e), e\right)$, soit $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$ tel que $\lambda_0 e + \lambda_1 v(e) + \dots + \lambda_{n-1} v^{n-1}(e) = 0$. On compose l'égalité par v^{n-1} et on obtient sur $\lambda_0 v^{n-1}(e) + 0 = 0$ (car $v^n = 0$) ainsi $\lambda_0 = 0$ puisque $v^{n-1}(e) \neq 0$, si on compose l'égalité initiale par v^{n-2} on obtient $\lambda_1 = 0$, et ainsi de suite jusque obtenir $\lambda_0 = \dots = \lambda_{n-1} = 0$, ainsi \mathcal{B} est une famille libre de n vecteurs dans E qui est de dimension n, ainsi \mathcal{B} est une base de E.
 - (d) On trouve la matrice avec des 1 sur la sur-diagonale et des 0 partout ailleurs.

LJB Maths - DNS3-cor 3 / 3