DNS 3^* : pour le lundi 3 novembre

Le candidat encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (Noyaux itérés (d'après E3A PSI, 2007)).

Soit E un espace vectoriel de dimension finie $n \geq 2$ et soit $u \in \mathcal{L}(E)$.

- 1° (a) Montrer pour tout entier naturel i et j, $\ker(u^i) \subset \ker(u^{i+j})$.
 - (b) Pour tout $m \in \mathbb{N}$, on note $t_m = \dim(\ker(u^m))$. Prouver l'existence de : $r = \inf\{m \in \mathbb{N}, t_m = t_{m+1}\}$.
 - (c) Montrer que :
 - (i) Pour tout entier naturel m, tel que m < r, $\ker(u^m)$ est strictement inclus dans $\ker(u^{m+1})$.
 - (ii) $\ker(u^r) = \ker(u^{r+1})$.
 - (iii) Pour tout entier m > r, $\ker(u^m) = \ker(u^{m+1})$.
- 2° Soit v un endomorphisme de E de rang n-1 tel que $v^n=0$.
 - (a) Soit p et q deux entiers naturels et w la restriction de v^q à $\text{Im}(v^p)$.
 - (i) Déterminer Im(w).
 - (ii) Prouver que $\ker(w) \subset \ker(v^q)$.
 - (iii) Vérifier alors que l'on a : $\dim(\ker(v^{p+q})) \leq \dim(\ker(v^p)) + \dim(\ker(v^q))$.
 - (iv) En déduire que pour tout $i \in [1, n]$, $\dim(\ker(v^i)) < i$.
 - (v) Démontrer qu'en fait $\dim(\ker(v^i)) = i$ pour tout $i \in [1, n]$.
 - (b) Prouver que $v^{n-1} \neq 0$
 - (c) En déduire qu'il existe un vecteur e de E tel que $\mathcal{B} = (v^{n-1}(e), \dots, v(e), e)$ soit une base de E.
 - (d) Écrire la matrice de v dans cette base.

Correction:

- 1° (a) Soit $(i,j) \in \mathbb{N}^2$. Soit $x \in \ker(u^i)$, ainsi $u^i(x) = 0$, on a alors $u^{i+j}(x) = u^j(u^i(x)) = u^j(0) = 0$, ainsi $x \in \ker(u^{i+j})$, ce qui montre bien que $\ker(u^i) \subset \ker(u^{i+j})$.
 - (b) Pour tout $m \in \mathbb{N}$, en appliquant la question précédente à i = m et j = 1 on a $t_{m+1} \le t_m$, ainsi la suite (t_m) est une suite croissante d'entiers compris entre 0 et n (car dimension de sev de E), ainsi elle converge, or une suite stationnaire d'entiers est stationnaire, ce qui montre que la partie $\{m \in \mathbb{N}, t_m = t_{m+1}\}$ de \mathbb{N} est non vide, ainsi elle possède un plus petit élément (en particulier une borne inférieure).
 - (c) Montrer que:
 - (i) Par minimalité de r, si m < r alors $t_m \neq t_{m+1}$ et donc $t_m < t_{m+1}$ ce qui montre que l'inclusion $\ker(u^m) \subset \ker(u^{m+1})$ est stricte.
 - (ii) On a déjà montré $\ker(u^r) \subset \ker(u^{r+1})$, comme $\dim(\ker(u^r)) = t_r = t_{r+1} = \dim(\ker(u^{r+1}))$, on a donc $\ker(u^r) = \ker(u^{r+1})$.
 - (iii) Montrons par récurrence sur $m \ge r$ que $\ker(u^m) = \ker(u^{m+1})$.

Initialisation : Déjà fait pour m = r.

Hérédité : On suppose qu'il existe $m \ge r$ tel que $\ker(u^m) = \ker(u^{m+1})$, montrons que $\ker(u^{m+1}) = \ker(u^{m+2})$. On a déjà montré $\ker(u^{m+1}) \subset \ker(u^{m+2})$ en question 1°(a), montrons l'autre inclusion, soit $x \in \ker(u^{m+1})$), ainsi $u^{m+2}(x) = 0$, ce qu'on peut écrire $u^{m+1}(u(x)) = 0$, ainsi $u(x) \in \ker(u^{m+1})$ donc $u(x) \in \ker(u^m)$ par hypothèse de récurrence, ie $u^m(u(x)) = 0$, ce qui correspond à $u^{m+1}(x) = 0$ et donc à $x \in \ker(u^{m+1})$, ce qui montre bien l'autre inclusion et donc que $\ker(u^{m+1}) = \ker(u^{m+2})$

On a bien montré, pour $m \ge r$, que $\ker(u^m) = \ker(u^{m+1})$.

- 2° Soit v un endomorphisme de E de rang n-1 tel que $u^n=0$
 - (a) Soit p et q deux entiers naturels et w la restriction de v^q à $\text{Im}(v^p)$.

- (i) On a $\text{Im}(w) = v^q(\text{Im}(v^p))$, on a donc clairement que $\text{Im}(w) \subset \text{Im}(v^{p+q})$, or si $y \in \text{Im}(v^{p+q})$ alors il existe $x \in E$ tel que $y = v^{p+q}(x) = v^q(v^p(x))$, et comme $v^p(x) \in \text{Im}(v^p)$, on a donc $y \in \text{Im}(w)$. Ce qui montre que $\operatorname{Im}(w) = \operatorname{Im}(v^{p+q})$.
- (ii) Soit $x \in \ker(w)$, on a ainsi $x \in \operatorname{Im}(v^p)$ et w(x) = 0, ainsi $v^q(x) = 0$ ce qui montre que $\ker(w) \subset \ker(v^q)$. $Remarque: On a même ker(w) = Im(v^p) \cap ker(v^q).$
- (iii) D'après le théorème du rang appliqué à $w : \dim(\operatorname{Im}(v^p)) = \dim(\ker(w)) + \dim(\operatorname{Im}(w))$, ainsi (d'après les deux questions précédentes) : $\operatorname{rg}(v^p) \leq \dim(\ker(v^q) + \operatorname{rg}(v^{p+q}))$. En appliquant maintenant le théorème du rang à v^p et v^{p+q} , on a : $n - \dim(\ker(v^p)) \le \dim(\ker(v^q) + n - \dim(\ker(v^{p+q}))$, ce qui montre bien que l'on a : $\dim(\ker(v^{p+q})) \le \dim(\ker(v^p)) + \dim(\ker(v^q))$.
- (iv) Tout d'abord, comme v est de rang n-1, le théorème du rang donne $\dim(\ker(v))=1$. Pour $i\in [1,n]$, l'inégalité précédente pour p=i et q=1 donne $\dim(\ker(v^{p+1})) \leq \dim(\ker(v^p)) + \dim(\ker(v)) \leq$ $\dim(\ker(v^p)) + 1$, ainsi par récurrence directe sur $i \in [1, n]$, on a : $\dim(\ker(v^i)) \leq i$.
- (v) On a dim(ker(v^n)) = n (en effet $v^n = 0$ et donc ker(v^n) = E), comme dim($ker(v^{n-1})$) $\leq n 1 < n$ on en déduit que le r de la question 1°(b) est plus grand que n (comme $\ker(v^n) = E = \ker(v^{n+1})$ on a même r=n), ainsi $(\dim(\ker(v^i)))_{1\leq i\leq n}$ est strictement croissante d'après $1^{\circ}(c)(i)$, ce qui impose, pour tout $i \in [1, n]$, que $\dim(\ker(v^i)) = i$.
- (b) Comme $\dim(\ker(v^{n-1})) = n 1 \neq n$, on en déduit que $v^{n-1} \neq 0$.
- (c) Soit $e \in E$ tel que $v^{n-1}(e) \neq 0$, notons $\mathcal{B} = (v^{n-1}(e), \dots, v(e), e)$, soit $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$ tel que $\lambda_0 e + \lambda_1 v(e) + \dots + \lambda_{n-1} v^{n-1}(e) = 0$. On compose l'égalité par v^{n-1} et on obtient sur $\lambda_0 v^{n-1}(e) + 0 = 0$ (car $v^n = 0$) ainsi $\lambda_0 = 0$ puisque $v^{n-1}(e) \neq 0$, si on compose l'égalité initiale par v^{n-2} on obtient $\lambda_1 = 0$, et ainsi de suite jusque obtenir $\lambda_0 = \ldots = \lambda_{n-1} = 0$, ainsi \mathcal{B} est une famille libre de n vecteurs dans E qui est de dimension n, ainsi \mathcal{B} est une base de E.
- (d) On trouve la matrice avec des 1 sur la sur-diagonale et des 0 partout ailleurs.

Exercice 2 (CENTRALE PC, Maths 2 partie I, 2016) Opérateur de translation et opérateur de différence.

Dans tout le problème, $\mathbb N$ est l'ensemble des entiers naturels, $\mathbb R$ l'ensemble des réels, n désigne un entier naturel supérieur ou égal à 1 et $\mathbb{R}_n[X]$ est l'ensemble des polynômes à coefficients réels de degré au plus n.

Pour a < b dans \mathbb{Z} , on note [a, b] l'ensemble $[a, b] \cap \mathbb{Z}$.

Pour $k \in \mathbb{N}^*$, on note P_k le polynôme X^{k-1} . On rappelle que $\mathbb{R}_n[X]$ est un \mathbb{R} -espace vectoriel de dimension n+1dont la famille $(P_k)_{k\in [1,n+1]}$ est une base. Pour $P\in \mathbb{R}_n[X]$, on note $\deg(P)$ le degré de P et, lorsque P est non nul, cd(P) désigne le coefficient dominant de P, c'est-à-dire le coefficient du monôme $X^{\deg(P)}$.

Pour $k \in \mathbb{N}$ et $j \in [0, k]$, le coefficient binomial $\binom{k}{j}$ vaut $\frac{k!}{j!(k-j)!}$. Pour un ensemble E et $f: E \to E$, on définit l'application $f^k: E \to E$ par récurrence sur $k \in \mathbb{N}$ de la façon

suivante:

$$f^0 = \mathrm{Id}_E$$
 et $f^{k+1} = f \circ f^k$

Si f est bijective, on note f^{-1} la réciproque de f et pour $k \in \mathbb{N}$, on note $f^{-k} = (f^{-1})^k$. Pour $p \in \mathbb{N}^*$, on note $\mathcal{M}_p(\mathbb{R})$ l'ensemble des matrices carrées réelles de taille p.

A - L'opérateur de translation

L'opérateur de translation est l'endomorphisme τ de $\mathbb{R}_n[X]$ donné par :

$$\tau: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

 $P(X) \mapsto P(X+1)$

- A.1) Pour un polynôme non nul $P \in \mathbb{R}_n[X]$, exprimer $\deg(\tau(P))$ et $cd(\tau(P))$ à l'aide de $\deg(P)$ et cd(P).
- A.2) Soit $P \in \mathbb{R}_n[X]$. Pour $k \in \mathbb{N}$, donner l'expression de $\tau^k(P)$ en fonction de P.
- A.3) Donner la matrice $M=(M_{i,j})_{1\leqslant i,j\leqslant n+1}$ de τ dans la base $(P_k)_{k\in \llbracket 1,n+1\rrbracket}$. On exprimera les coefficients $M_{i,j}$ en fonction de i et j.
- A.4) (pour les 5/2) Préciser l'ensemble des valeurs propres de τ . L'application τ est-elle diagonalisable?
- A.5) L'application τ est-elle bijective? Si oui, préciser τ^{-1} . L'expression de τ^{j} trouvée à la question A2 pour $j \in \mathbb{N}$ est-elle valable pour $j \in \mathbb{Z}$?
- A.6) Que vaut M^{-1} ? Exprimer les coefficients $(M^{-1})_{i,j}$ en fonction de i et j.
- A.7) On se donne une suite réelle $(u_k)_{k\in\mathbb{N}}$ et on définit, pour tout entier $k\in\mathbb{N}$

$$v_k = \sum_{j=0}^k \binom{k}{j} u_j \tag{1}$$

2 / 5 LJB Maths - DNS3e-con

Déterminer une matrice $Q \in \mathcal{M}_{n+1}(\mathbb{R})$ telle que

$$\begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_n \end{pmatrix} = Q \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_n \end{pmatrix}$$

A.8) En déduire la formule d'inversion : pour tout entier $k \in \mathbb{N}$,

$$u_k = \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} v_j \tag{2}$$

A.9) On considère un réel λ et la suite $(u_k = \lambda^k)_{k \in \mathbb{N}}$. Quelle est la suite $(v_k)_{k \in \mathbb{N}}$ définie par la formule (1)? Vérifier alors la formule (2).

B - L'opérateur de différence

L'opérateur de différence est l'endomorphisme δ de $\mathbb{R}_n[X]$ tel que $\delta = \tau - \mathrm{Id}_{\mathbb{R}_n[X]}$:

$$\delta: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

 $P(X) \mapsto P(X+1) - P(X)$

- B.1) Pour un polynôme non constant $P \in \mathbb{R}_n[X]$, exprimer $\deg(\delta(P))$ et $cd(\delta(P))$ à l'aide de $\deg(P)$ et cd(P).
- B.2) En déduire le noyau $\ker(\delta)$ et $\operatorname{Im}(\delta)$ de l'endomorphisme δ .
- B.3) Plus généralement, pour $j \in [1, n]$, montrer les égalités suivantes :

$$\ker(\delta^j) = \mathbb{R}_{j-1}[X]$$
 et $\operatorname{Im}(\delta^j) = \mathbb{R}_{n-j}[X]$ (3)

- B.4) Pour $k \in \mathbb{N}$ et $P \in \mathbb{R}_n[X]$, exprimer $\delta^k(P)$ en fonction des $\tau^j(P)$ pour $j \in [0, k]$.
- B.5) Soit $P \in \mathbb{R}_{n-1}[X]$. Montrer que :

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(j) = 0 \tag{4}$$

- B.6) Dans cette question, on veut montrer qu'il n'existe pas d'application linéaire $u: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ telle que $u \circ u = \delta$. On suppose, par l'absurde, qu'une telle application u existe.
 - a) Montrer que u et δ^2 commutent.
 - b) En déduire que $\mathbb{R}_1[X]$ est stable par l'application u.
 - c) Montrer qu'il n'existe pas de matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que :

$$A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- d) Conclure.
- B.7) Dans cette question, on cherche tous les sous-espaces vectoriels de $\mathbb{R}_n[X]$ stables par l'application δ .
 - a) Pour P polynôme non nul de degré $d \leq n$, montrer que la famille $(P, \delta(P), \dots, \delta^d(P))$ est libre. Quel est l'espace vectoriel engendré par cette famille?
 - b) En déduire que si V est un sous-espace vectoriel de $\mathbb{R}_n[X]$ stable par δ et non réduit à $\{0\}$, il existe un entier $d \in [0, n]$ tel que $V = \mathbb{R}_d[X]$.

Correction:

I.A.1) Soit $P = \sum_{k=0}^{a} a_k X^k$, un polynôme non nul de $\mathbb{R}_n[X]$, de degré $d = \deg(P)$ (i.e. $a_d \neq 0$). Alors, $\tau(P) = \sum_{k=0}^{a} a_k X^k$

$$P(X+1) = \sum_{k=0}^{d} a_k (X+1)^k = a_d (X+1)^d + \sum_{k=0}^{d-1} a_k (X+1)^k = a_d X^d + \sum_{k=0}^{d-1} \binom{n}{k} a_d X^k + \sum_{k=0}^{d-1} a_k (X+1)^k.$$

Comme $a_d \neq 0$ on a donc $\deg(\tau(P)) = \deg(P)$ et $\operatorname{cd}(\tau(P)) = \operatorname{cd}(P)$.

I.A.2) Notons que $\tau^0(P) = P$. De plus, si $\tau^k(P)(X) = P(X+k)$, alors $\tau^{k+1}(P)(X) = \tau(\tau^k(P))(X) = P((X+k)+1) = P(X+(k+1))$.

Ainsi, par récurrence : $\forall k \in \mathbb{N}, \ \tau^k(P)(X) = P(X+k).$

I.A.3) D'après la formule du binôme de Newton (changement de variable i = h + 1), pour tout $j \in [1, n + 1]$, on

a
$$\tau(P_j)(X) = (X+1)^{j-1} = \sum_{h=0}^{j-1} {j-1 \choose h} X^h = \sum_{i=1}^{j} {j-1 \choose i-1} P_i$$
.

M est donc triangulaire supérieure et les coefficients de M vérifient donc $\forall i,j \in [\![1,n]\!], (M)_{i,j} =$ $\left\{ \begin{array}{ll} \binom{j-1}{i-1} & \text{pour} & i \leqslant j \\ 0 & \cdot \end{array} \right.$

- I.A.4) La matrice M est triangulaire supérieure, donc ses valeurs propres se trouvent sur la diagonale. Il s'agit des nombres $\binom{j-1}{j-1} = 1$. Comme M et τ ont les mêmes valeurs propres, $\operatorname{Sp}(\tau) = \{1\}$. Si M était diagonalisable, elle serait alors semblable à la matrice unité, et donc elle serait égale à la matrice unité. Ainsi, M et τ ne sont pas diagonalisable.
- I.A.5) Comme 0 n'est pas valeur propre de τ , τ est bijective (alternative $\det(\tau) = 1$ puisque le déterminant d'une matrice qui le représente est triangulaire supérieure avec des 1 sur la diagonale).

Puis si on considère $\overline{\tau}: \mathbb{R}_n[X] \to \mathbb{R}_n[X], P(X) \mapsto P(X-1),$

on montre qu'il s'agit d'un endomorphisme de $\mathbb{R}_n[X]$. Il vérifie : $\tau \circ \overline{\tau} = \overline{\tau} \circ \tau = \mathrm{id}$: en effet pour tout $P \in \mathbb{R}_n[X]$, on a $\tau(\overline{\tau}(P))(X) = \overline{\tau}(P)(X+1) = P(X) = \tau(\overline{\tau}(P))(X)$. Ainsi $\tau^{-1}(P)(X) = P(X-1)$.

Puis, comme à la question 2), on montre que pour tout $k \in \mathbb{N}$, $\tau^{-k}(P)(X) = P(X - k)$.

Ainsi la formule est toujours vraie : $\forall k \in \mathbb{Z}, \ \tau(P)(X) = P(X+k)$. **I.A.6)** Avec l'expression de τ^{-1} , on applique la même méthode qu'en 3) et on obtient :

$$\forall j \in \mathbb{N}_{n+1}, \ \tau^{-1}(P_j)(X) = (X-1)^{j-1} = \sum_{h=0}^{j-1} \binom{j-1}{h} (-1)^{j-1-h} X^h = \sum_{i=1}^{j} (-1)^{j-i} \binom{j-1}{i-1} P_i$$

Puis
$$\forall i, j \in [1, n], (M^{-1})_{i,j} = \begin{cases} (-1)^{j-i} {j-1 \choose i-1} & \text{pour} \quad i \leqslant j \\ 0 & \text{sinon} \end{cases}$$

I.A.7) La $k+1^e$ ligne du calcul $V=Q\times U$ est justement $v_k=\sum_{j=1}^{n+1}Q_{k+1,j}u_{j-1}=\sum_{j=0}^{\kappa}\binom{k}{j}u_j$.

On peut identifier (après changement d'indice) : $Q_{k,j} = \begin{cases} \binom{k-1}{j-1} & \text{pour } j \leqslant k \\ 0 & \text{sinon} \end{cases}$

On a donc $Q = {}^{t}M$.

I.A.8) M est inversible, donc $Q = {}^t M$ également et $Q^{-1} = ({}^t M)^{-1} = {}^t (M^{-1})$. Puis par équivalence : $V = Q \times U \iff U = Q^{-1} \times V = {}^t (M^{-1}) \times V$.

La
$$k+1^{e}$$
 ligne de ce calcul donne alors : $u_{k} = \sum_{j=1}^{n+1} {t \choose M^{-1}}_{k+1,j} v_{j-1} = \sum_{j=1}^{n+1} {(M^{-1})}_{j,k+1} v_{j-1} = \sum_{j=1}^{n+1} {t \choose M^{-1}}_{j,k+1} v_{j-1} v_{j-1} = \sum_{j$

$$\sum_{j=0}^{n} ((M^{-1}))_{j+1,k+1} v_j.$$

Ainsi
$$u_k = \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} v_j$$
.

- **I.A.9)** On a alors : $v_k = \sum_{j=0}^k \binom{k}{j} \lambda^j = (\lambda + 1)^k$. On vérifie bien : $\sum_{j=0}^k (-1)^{k-j} \binom{k}{j} v_j = \sum_{j=0}^k \binom{k}{j} (\lambda + 1)^j (-1)^{k-j} = \sum_{j=0}^k \binom{k}{j} (\lambda + 1)^j (-1)^k (((\lambda + 1) - 1)^k = u_k.$
- I.B L'opérateur de différence
- **I.B.1)** De manière similaire à 1.A.1), avec P non constant on a :

$$\delta(P)(X) = a_d X^d + (da_d + a_{d-1}) X^{d-1} + \sum_{k=0}^{d-2} b_k X^k - a_d X^d - a_{d-1} X^{d-1} - \sum_{k=0}^{d-2} a_k X^k = da_d X^{d-1} + \sum_{k=0}^{d-2} c_k X^k$$

Comme $a_d \neq 0$: si P, non constant, $\deg(\delta(P)) = \deg(P) - 1$ et $\operatorname{cd}(\delta(P)) = \deg(P) \times \operatorname{cd}(P)$

I.B.2) D'après la question précédente, si P n'est pas constant, $\deg(P) \geqslant 1$ et $\deg(\delta(P)) \geqslant 0$, donc $\delta(P)$ n'est pas nul. Ainsi, si $\delta(P) = 0$, alors P est constant.

Réciproquement, si P est constant, le calcul (simple) donne $\delta(P) = 0$.

Donc $\ker(\delta) = \mathbb{R}_0[X]$.

La question précédente montre aussi que $\operatorname{Im}(\delta) \subset \mathbb{R}_{n-1}[X]$.

Or d'après le théorème du rang : $\dim(\operatorname{Im}(\delta)) = n + 1 - \dim(\ker(\delta)) = n = \dim(\mathbb{R}_{n-1}[X])$.

Donc: $\operatorname{Im}(\delta) = \mathbb{R}_{n-1}[X]$.

I.B.3) Si $\ker(\delta^j) = \mathbb{R}_{j-1}[X]$, avec j < n.

$$P \in \ker(\delta^{j+1}) \iff \delta^{j+1}(P) = 0 = \delta^j(\delta(P)) \iff \delta(P) \in \mathbb{R}_{j-1}[X]$$

Donc

$$P \in \ker(\delta^{j+1}) \iff \deg(P) = \deg(\delta(P)) + 1 \leqslant (j-1) + 1 = j \iff P \in \mathbb{R}_j[X]$$

Ainsi, par récurrence :

$$\forall j \in [1, n], \ker(\delta^j) = \mathbb{R}_{j-1}[X]$$

Si $P \in \text{Im}(\delta^j)$, alors il existe $Q \in \mathbb{R}_n[X]$ tel que $P = \delta^j(Q)$.

Or une récurrence simple (suite arithmétique) montre que $\deg P = \deg(Q) - j$, donc $\deg(P) \leqslant n - j$.

Par conséquent, $P \in \mathbb{R}_{n-j}[X]$, et donc $\operatorname{Im}(\delta^j) \subset \mathbb{R}_{n-j}[X]$.

Le théorème du rang assure par ailleurs que ces deux espaces ont même dimension, donc : $\forall j \in$ $[1, n], \operatorname{Im}(\delta^{j}) = \mathbb{R}_{n-j}[X].$

I.B.4) Notons Δ , la matrice de δ dans la base (P_k) .

Par construction de $\delta = \tau - \mathrm{id}$, on a $\Delta = M - I_{n+1}$.

Puis comme M commute avec I_{n+1} , alors d'après la formule de Newton : $\Delta^k = \sum_{i=0}^k {k \choose i} (-1)^{k-j} M^j$.

Ce qui permet d'affirmer, en revenant aux endomorphismes : $\forall k \in \mathbb{N}, \ \delta^k = \sum_{i=1}^{k} (-1)^{k-j} \binom{k}{i} \tau^j$.

I.B.5) Si $P \in \mathbb{R}_{n-1}[X] = \ker(\delta^n)$, alors $\delta^n(P) = 0$. Donc:

$$0 = \delta^n(P) = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} \tau^j(P) = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} [\tau^j(P)(X)] = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} P(X+j)$$

Et en particulier en la valeur réelle X = 0: $\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(j) = 0$.

- a) $u \circ \delta^2 = u \circ [u^2 \circ u^2] = u^5 = [u^2 \circ u^2] \circ u = \delta^2 \circ u$. Donc u et δ^2 commutent. I.B.6)
 - b) Soit $P \in \mathbb{R}_1[X] = \ker \delta^2$, alors $\delta^2(u(P)) = u(\delta^2(P)) = u(0) = 0$. Donc $u(P) \in \ker(\delta^2) = \mathbb{R}_1[X]$. Par conséquent $\mathbb{R}_1[X]$ est stable par u.

c) Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ vérifie $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, alors : $\begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix} = A \times A^2 = A^3 = A^2 \times A = \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix}$.

Donc a = d et c = 0, ainsi $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, puis $A^2 = \begin{pmatrix} a^2 & 2ab \\ 0 & a^2 \end{pmatrix}$, et ainsi nécessairement a = 0, puis 2ab = 0; ce qui est contradictoire avec ab = 1

Donc aucune matrice A ne vérifie $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

d) Puisque $\mathbb{R}_1[X]$ est stable par u, notons $\tilde{u}: \mathbb{R}_1[X] \to \mathbb{R}_1[X], P \mapsto u(P)$.

Considérons alors A, la matrice de \tilde{u} dans la base (P_1, P_2) de $\mathbb{R}_1[X]$.

Alors A^2 est égale à la matrice de δ sur $\mathbf{R}_1[X]$ donc $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Or d'après la question précédente, ceci est impossible. Donc Il n'existe pas d'endomorphisme u de $\mathbb{R}_n[X]$ tel que $u^2 = \delta$.

I.B.7) a) On a vu (questions I.B.3)) que $deg(\delta^i(P)) = deg(P) - i = d - i$.

Ainsi, la famille $(P, \delta(P), \dots \delta^d(P))$ est une famille de degré échelonné (de d à 0).

C'est une famille libre et $\operatorname{vect}(P, \delta(P), \dots \delta^d(P)) = \mathbb{R}_d[X]$.

b) Soit V stable par δ .

Si $P \in V$, alors $\delta^i(P) \in V$ et donc $\mathbb{R}_{\deg(P)}[X] = \mathrm{vect}(P, \delta(P), \dots \delta^n(P)) \subset V$.

Il reste à montrer l'égalité, il faut prendre le polynôme en degré maximum...

V est un sous-espace vectoriel de $\mathbb{R}_n[X]$. Notons $d = \dim(V) - 1$.

Notons $(e_0, \dots e_d)$ une base de V. Nécessairement, l'un des e_i est un polynôme de degré supérieur ou égal à d.

Sinon, on aurait une famille libre de d+1 vecteurs de $\mathbb{R}_d[X]$, ce qui est impossible.

Donc il existe P dans V de degré $r \ge d$.

Si deg P=r>d, alors d'après la remarque précédente, $\mathbb{R}_r[X]=\mathrm{vect}(P,\delta(P),\ldots\delta^r(P))\subset V$ et Vne peut être de dimension d+1. Donc il existe P de degré d dans V et $\mathbb{R}_d[X] \subset V$ et par égalité des dimensions : il existe $d \in [0, n]$ tel que $V = \mathbb{R}_d[X]$