DNS 4: pour le mercredi 12 novembre

Le candidat encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Exercice 1 (révision de sup).

On cherche à déterminer la (les?) solution(s) de l'équation (E): $x^3 - 2x^2 + x - 3 = 0$. On introduit pour cela les fonctions f et g définies, pour $x \in \mathbb{R}$, par $f(x) = x^3 - 2x^2 + x - 3$ et $g(x) = \frac{2x^2 + 3}{x^2 + 1}$.

- 1º Montrer que (E) est équivalente à l'équation g(x) = x.
- 2° Étudier les variations de f et en déduire que (E) admet une unique solution qu'on note α . Donner un encadrement de α par deux entiers consécutifs.
- 3° Effectuer la division euclidienne du polynôme $2X^2 + 3$ par $X^2 + 1$. En déduire une expression simplifiée de g puis les valeurs de g' et de g''.
- 4º Dresser les tableaux de variations de g' et de g, puis prouver que pour tout $x \in [2,3], |g'(x)| \leq \frac{1}{6}$
- 5° On définie la suite (u_n) par $u_0 = 2$ et pour tout $n \in \mathbb{N}$ par $u_{n+1} = g(u_n)$.
 - a) Montrer, pour tout $n \in \mathbb{N}$, que $u_n \in [2,3]$.
 - b) Montrer que $|u_{n+1} \alpha| \leq \frac{1}{6}|u_n \alpha|$.
 - c) En déduire, pour tout $n \in \mathbb{N}$, que $|u_n \alpha| \leq \frac{1}{6^n}$. En déduire la limite de la suite (u_n) .

Exercice 2 (E3A PSI, 2017).

Dans tout l'exercice, n désigne un entier supérieur ou égal à 3. On note $E = \mathbb{R}_{n-1}[X]$ et $\mathcal{B} = (1, X, \dots, X^{n-1})$ sa base canonique.

Soient a_1, \ldots, a_n , n réels vérifiant : $a_1 < a_2 < \cdots < a_n$.

- 1° Montrer que l'application $T: P \mapsto (P(a_1), \ldots, P(a_n))$ est un isomorphisme de E dans \mathbb{R}^n .
- 2° On note $\mathcal{E} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n et pour tout $i \in [1, n]$, on note $L_i = T^{-1}(e_i)$, c'est-à-dire l'unique polynôme dont l'image par T est e_i . Montrer que $\mathcal{B}' = (L_1, \dots, L_n)$ est une base de E puis déterminer les composantes d'un polynôme P quelconque de E dans cette base.

Dans la suite de l'exercice, on note $M=(m_{i,j})_{1\leq i,j\leq n}$ la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' .

- 3° Dans cette question uniquement, on suppose que n = 3, $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$.
 - a) Donner, sans justification, les polynômes L_1 , L_2 , L_3 et expliciter la matrice M.
 - b) Montrer que 1 est valeur propre de la matrice M et déterminer le sous-espace propre associé.
 - c) En déduire tous les polynômes P de $\mathbb{R}_2[X]$ vérifiant : $P(X) = P(0) + P(1)X + P(2)X^2$.
- 4° On revient au cas général.
 - a) Montrer que M est inversible. Calculer son inverse. (On pourra utiliser la question 2°)
 - b) Établir la relation : $\sum_{i=1}^{n} L_i = 1$.
 - c) Montrer que l'on a : $\sum_{j=1}^{n} m_{1,j} = 1$. Montrer ensuite que pour tout $i \in [2, n]$, $\sum_{j=1}^{n} m_{i,j} = 0$
 - d) Lorsque $a_1 = 1$, déterminer la somme des coefficients de chaque colonne de M.
- 5° Dans cette question, on suppose que $n \geq 4$ et soit u l'endomorphisme de E défini par :

$$\forall P \in E, u(P) = Q$$
 avec $Q(X) = P(0)L_1(X) + P(1)L_2(X) + P(2)L_3(X)$

- a) Déterminer $\ker(u)$ et $\operatorname{Im}(u)$. Sont-ils supplémentaires dans E?
- b) Déterminer les éléments propres de u et caractériser géométriquement u.