DNS 4: pour le mercredi 12 novembre

Le candidat encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (révision de sup).

On cherche à déterminer la (les?) solution(s) de l'équation $(E): x^3 - 2x^2 + x - 3 = 0$. On introduit pour cela les fonctions f et g définies, pour $x \in \mathbb{R}$, par $f(x) = x^3 - 2x^2 + x - 3$ et $g(x) = \frac{2x^2 + 3}{x^2 + 1}$.

- 1° Montrer que (E) est équivalente à l'équation g(x) = x.
- 2° Étudier les variations de f et en déduire que (E) admet une unique solution qu'on note α . Donner un encadrement de α par deux entiers consécutifs.
- 3° Effectuer la division euclidienne du polynôme $2X^2 + 3$ par $X^2 + 1$. En déduire une expression simplifiée de g puis les valeurs de g' et de g''.
- 4º Dresser les tableaux de variations de g' et de g, puis prouver que pour tout $x \in [2,3], |g'(x)| \leq \frac{1}{6}$
- 5° On définie la suite (u_n) par $u_0 = 2$ et pour tout $n \in \mathbb{N}$ par $u_{n+1} = g(u_n)$.
 - a) Montrer, pour tout $n \in \mathbb{N}$, que $u_n \in [2,3]$.
 - b) Montrer que $|u_{n+1} \alpha| \le \frac{1}{6}|u_n \alpha|$.
 - c) En déduire, pour tout $n \in \mathbb{N}$, que $|u_n \alpha| \leq \frac{1}{6^n}$. En déduire la limite de la suite (u_n) .

Correction:

1° $g(x) = x \Leftrightarrow \frac{2x^2 + 3}{x^2 + 1} = x \Leftrightarrow 2x^2 + 3 = x^3 + x \Leftrightarrow x \text{ solution de } (E).$

2° f est dérivable sur \mathbb{R} et pour $x \in \mathbb{R}$ on a : $f'(x) = 3(x-1)(x-\frac{1}{3})$, ainsi :

	$-\infty$		$\frac{1}{3}$		1		$+\infty$
signe de f'		+	0	_	0	+	
			$\frac{-77}{27}$				$+\infty$
variations de f		7		\searrow		7	
	$-\infty$				-3		

Ainsi f(x) = 0 possède une unique solution $\alpha > 1$. Comme f(2) = -1 et f(3) = 9 on a $\alpha \in]2,3[$

- 3° On a $2X^2+3=2(X^2+1)+1$, d'où pour $x\in\mathbb{R}$, $g(x)=2+\frac{1}{x^2+1}$. Ainsi $(g\text{ est de classe }\mathcal{C}^\infty)$ pour $x\in\mathbb{R}$ on a $g'(x)=\frac{-2x}{(x^2+1)^2}$ et $g''(x)=\frac{-2}{(x^2+1)^2}+\frac{8x^2}{(x^2+1)^3}=\frac{6x^2-2}{(x^2+1)^3}$.
- 4° Tableau de variation de g' et de g à faire! (changement de variation pour g' en $\frac{\pm 1}{\sqrt{3}}$ et pour g en 0). On a g' croissante sur [2,3], et $g'(2) = \frac{-4}{25}$ et $g'(3) = \frac{-6}{100}$, comme $|g'(2)| \le \frac{4}{24} = \frac{1}{6}$ on a bien pour tout $x \in [2,3]$ que $|g'(x)| \le \frac{1}{6}$
- 5° a) On a (cf. 4°) $g(\mathbb{R}_+) \subset [2,3]$, d'où (par récurrence immédiate) : $\forall n \in \mathbb{N}, \, u_n \in [2,3]$.
 - b) Comme α est solution de (E) on a $(cf. 1^{\circ})$ $g(\alpha) = \alpha$. Ainsi pour $n \in \mathbb{N}$:

$$|u_{n+1} - \alpha| = |g(u_n) - g(\alpha)| \le \frac{1}{6}|u_n - \alpha|$$

où la dernière inégalité proviens de l'inégalité des accroissements finis appliquée à g entre u_n et α (g étant de classe \mathcal{C}^{∞} elle est en particulier continue sur $[u_n, \alpha]$ et dérivable sur $]u_n, \alpha[$, on a aussi utilisé 4°).

c) Par récurrence immédiate (la rédiger) on a, pour tout $n \in \mathbb{N}$, que $|u_n - \alpha| \le \frac{1}{6^n} |u_0 - \alpha| \le \frac{1}{6^n}$. D'où, par le théorème d'encadrement $\lim_{n \to +\infty} u_n = \alpha$.

Exercice 2 (E3A PSI, 2017).

Dans tout l'exercice, n désigne un entier supérieur ou égal à 3. On note $E = \mathbb{R}_{n-1}[X]$ et $\mathcal{B} = (1, X, \dots, X^{n-1})$ sa base canonique.

Soient a_1, \ldots, a_n , n réels vérifiant : $a_1 < a_2 < \cdots < a_n$.

- 1° Montrer que l'application $T: P \mapsto (P(a_1), \dots, P(a_n))$ est un isomorphisme de E dans \mathbb{R}^n .
- 2° On note $\mathcal{E} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n et pour tout $i \in [1, n]$, on note $L_i = T^{-1}(e_i)$, c'est-à-dire l'unique polynôme dont l'image par T est e_i . Montrer que $\mathcal{B}' = (L_1, \dots, L_n)$ est une base de E puis déterminer les composantes d'un polynôme P quelconque de E dans cette base.

Dans la suite de l'exercice, on note $M=(m_{i,j})_{1\leq i,j\leq n}$ la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' .

- 3° Dans cette question uniquement, on suppose que n = 3, $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$.
 - a) Donner, sans justification, les polynômes L_1 , L_2 , L_3 et expliciter la matrice M.
 - b) Pour les 5/2: Montrer que 1 est valeur propre de la matrice M et déterminer le sous-espace propre associé. Pour les 3/2: Déterminer le noyau de $M-I_3$.
 - c) En déduire tous les polynômes P de $\mathbb{R}_2[X]$ vérifiant : $P(X) = P(0) + P(1)X + P(2)X^2$.
- 4° On revient au cas général.
 - a) Montrer que M est inversible. Calculer son inverse. (On pourra utiliser la question 2°)
 - b) Établir la relation : $\sum_{i=1}^{n} L_i = 1$.
 - c) Montrer que l'on a : $\sum_{j=1}^n m_{1,j} = 1$. Montrer ensuite que pour tout $i \in [2, n]$, $\sum_{j=1}^n m_{i,j} = 0$
 - d) Lorsque $a_1 = 1$, déterminer la somme des coefficients de chaque colonne de M.
- 5° Dans cette question, on suppose que $n \ge 4$, on suppose aussi que $a_1 = 0$, $a_2 = 1$ et $a_3 = 3$. Soit u l'endomorphisme de E défini par :

$$\forall P \in E, u(P) = Q$$
 avec $Q(X) = P(0)L_1(X) + P(1)L_2(X) + P(2)L_3(X)$

- a) Déterminer $\ker(u)$ et $\operatorname{Im}(u)$. Sont-ils supplémentaires dans E?
- b) Pour les 5/2: Déterminer les éléments propres de u et caractériser géométriquement u. Pour les 3/2: Justifier que (L_1, L_2, L_3) est une base de $\operatorname{Im}(u)$, justifier que la concaténation de (L_1, L_2, L_3) et d'une base du noyau de u est une base de E. En considérant la matrice de u relativement à cette base, caractériser géométriquement u. Déterminer la matrice de u dans l

Correction:

1º Montrons tout d'abord la linéarité. Soient $(P,Q) \in E^2$ et $\lambda \in \mathbb{R}$. Alors :

$$T(\lambda P + Q) = ((\lambda P + Q)(a_1), \dots, (\lambda P + Q)(a_n))$$

= $\lambda (P(a_1), \dots, P(a_n)) + (Q(a_1), \dots, Q(a_n))$
= $\lambda T(P) + T(Q)$

Ainsi T est une application linéaire de E vers \mathbb{R}^n .

Montrons l'injectivité : Soit $P \in E$. Si $P \in \ker(T)$, T(P) = 0 donc : $(P(a_1), \ldots, P(a_n)) = (0, \ldots, 0)$ et donc P a au moins n racines réelles distinctes mais P est un polynôme de degré inférieur ou égal à n-1 donc c'est nécessairement le polynôme nul. Ainsi, $\ker(T) = \{0_E\}$ (on a l'inclusion réciproque car $\ker(T)$ est un sev) et T est donc injective.

Montrons que T est bijective. On a $\dim(E) = n = \dim(\mathbb{R}^n)$. Donc comme T est une application linéaire injective de E vers \mathbb{R}^n , on a par caractérisation des isomorphismes en dimension finie que T est un isomorphisme de E vers \mathbb{R}^n .

Finalement,

 $T: P \mapsto (P(a_1), \dots, P(a_n))$ est un isomorphisme de E dans \mathbb{R}^n

2° La famille $\mathcal{E} = (e_1, \dots, e_n)$ est la base canonique de \mathbb{R}^n et pour tout $i \in [\![1, n]\!]$, on a $L_i = T^{-1}(e_i)$. On sait que T est un isomorphisme de E vers \mathbb{R}^n donc sa bijection éciproque, T^{-1} est un isomorphisme de \mathbb{R}^n vers E. Or \mathcal{B}' est l'image de \mathcal{E} par T^{-1} . Sachant que l'image par un isomorphisme d'une base de l'espace de départ est une base de l'espace d'arrivée, on en déduit que : $\mathcal{B}' = (L_1, \dots, L_n)$ est une base de E.

Soient $P \in E$ et $(\lambda_1, \lambda_2, \dots, \lambda_n)$ ses coordonnées dans la base \mathcal{B}' . On a :

$$P = \sum_{k=1}^{n} \lambda_k L_k$$

On évalue cette relation en a_j , sachant que comme $L_i = T^{-1}\left(e_i\right)$, on sait que $L_i(a_j) = 1$ si i = j et 0 si $i \neq j$. On obtient alors $P\left(a_j\right) = \lambda_j$ ce qui donne la coordonnée selon L_k de P dans la base \mathcal{B}' . Ainsi : $P = \sum_{k=1}^n P\left(a_k\right) L_k$

- 3° a) On sait que les polynômes L_k (pour k variant de 1 à 3) sont de degré inférieur ou égal à n-1, s'annulent aux points a_j pour $j \neq k$ et valent 1 en a_k , on en déduit (en utilisant ou pas les polynômes de Lagrange...): $L_1 = \frac{(X-1)(X-2)}{2} = 1 \frac{3}{2}X + \frac{1}{2}X^2, L_2 = -X(X-2) = 0 + 2X X^2 \text{ et } L_3 = \frac{X(X-1)}{2} = 0 \frac{1}{2}X + \frac{1}{2}X^2.$ On en déduit alors la matrice de passage $M: M = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 2 & -\frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ -3 & 4 & -1 \\ 1 & -2 & 1 \end{pmatrix}$
 - b) On a : $M-I_3=\frac{1}{2}\begin{pmatrix}0&0&0\\-3&2&-1\\1&-2&-1\end{pmatrix}$ qui est de rang 2 (une ligne nulle donc la matrice est non inversible et les deux premières colonnes non colinéaires donc le rang est supérieur ou égal à 2). Ainsi, 1 est une valeur propre de M. De plus on remarque que dans cette matrice $M-I_3$, la somme des deux premières colonnes donne la troisième, ce qui signifie que : $\begin{pmatrix}1\\1\\-1\end{pmatrix} \in E_1(M)$. Ce vecteur étant non nul et l'espace propre étant de dimension 1 (le rang de $M-I_3$ vaut 2, ce qui donne le résultat par la formule du rang). Finalement, $E_1(M) = \text{vect} \begin{pmatrix}1\\1\\1\\-1\end{pmatrix}$
 - c) Soit $P = a + bX + cX^2 \in \mathbb{R}_2[X]$. Alors P vérifie la condition souhaitée si et seulement si : (a, b, c) = (P(0), P(1), P(2)) ce qui équivalent à dire que T(P) = (a, b, c) ou encore $P = T^{-1}((a, b, c))$ ce qui s'écrit matriciellement (M étant la matrice de T^{-1} dans les bases \mathcal{E} de \mathbb{R}^3 et \mathbb{B} de $\mathbb{R}_2[X]$) : $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = M \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Ainsi $P = P(0) + P(1)X + P(2)X^2$ si et seulement si : $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \ker(M I_3) = \operatorname{vect}\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. Finalement, l'ensemble des polynômes P de $\mathbb{R}_2[X]$ vérifiant $P(X) = P(0) + P(1)X + P(2)X^2$ est : $\operatorname{Vect}(1 + X X^2)$.
- 4° a) M est la matrice de passage d'une base vers une autre donc M est inversible M^{-1} est la matrice de passage de \mathcal{B}' dans \mathcal{B} . Or d'après la question 2° on sait que pour tout $j \in [0, n-1, X^j = \sum_{k=1}^n a_k^j L_k(X)]$ et ainsi :

$$M^{-1} = \begin{pmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{pmatrix}$$

- b) C'est simplement la question 2 appliquée au polynôme constant 1.
- c) Par définition de M, on a pour tout $j \in [1, n]$, $L_j = \sum_{i=1}^n m_{i,j} X^{i-1}$. D'après la question précédente, on a

alors: $1 = \sum_{j=1}^{n} L_j = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} m_{i,j}\right) X^{i-1}$. En particulier, pour tout $i \in [1, n]$, la somme $\sum_{j=1}^{n} m_{i,j}$ représente

le coefficient en X^{i-1} du polynôme $\sum_{j=1}^n L_j = 1$. Donc : $\sum_{j=1}^n m_{1,j} = 1$ et, si $i \in [2, n]$, $\sum_{j=1}^n m_{i,j} = 0$

d) On reprend l'expression $L_j = \sum_{i=1}^n m_{i,j} X^{i-1}$. On a alors, pour tout $j \in [1, n]$, $\sum_{i=1}^n m_{i,j} = L_j(1) = L_j(a_1)$

car $a_1 = 1$. Ainsi, $\sum_{i=1}^n m_{i,1} = 1$ et, si $j \in [2, n]$, $\sum_{i=1}^n m_{i,j} = 0$.

- 5° a) Soit $P \in E$. P appartient au noyau de u si et seulement si P(0) = P(1) = P(2) = 0 car (L_1, L_2, L_3) est une famille libre. Ainsi, $\ker(u) = \left\{X(X-1)(X-2)Q \middle| Q \in \mathbb{R}_{n-4}[X]\right\}$. D'après le théorème du rang, $\operatorname{Im}(u)$ est de dimension $\dim(E) \dim(\ker(u)) = 3$. Or on a clairement : $\operatorname{Im}(u) \subset \operatorname{Vect}(L_1, L_2, L_3)$ qui est de dimension 3 car (L_1, L_2, L_3) est libre. Ainsi, $\operatorname{Im}(u) = \operatorname{Vect}(L_1, L_2, L_3)$. Soit $P \in E$. Si $P \in \ker(u) \cap \operatorname{Im}(u)$ alors Il existe $(a, b, c) \in \mathbb{R}^3$ tel que $P = aL_1 + bL_2 + cL_3$. En évaluant en 0, 1 et 2, on trouve respectivement a = 0, b = 0, c = 0. Donc P est le polynôme nul. Ainsi, $\operatorname{Im}(u)$ et $\ker(u)$ sont en somme directe. Mais comme la somme de leurs dimensions est $\dim(E)$ par le théorème du rang, on en déduit que : $\operatorname{Im}(u)$ et $\ker(u)$ sont supplémentaires dans E.
 - b) On sait déjà que 0 est valeur propre d'ordre de multiplicité n-3 car $\ker(u)$ est de dimension n-3. Par ailleurs on vérifie aisément que $u(L_1)=L_1,\ u(L_2)=L_2$ et $u(L_3)=L_3$. ainsi, comme (L_1,L_2,L_3) est une base de $\operatorname{Im}(u)$, on en déduit que u induit sur $\operatorname{Im}(u)$ l'endomorphisme identique de $\operatorname{Im}(u)$: 1 est donc

LJB Maths - DNS4-cor $3 \ / \ 4$

une valeur propre de u et l'espace propre associé est $\operatorname{Im}(u)$. Ainsi u est diagonalisable (car la somme des dimensions des sous-espaces propres est n la dimension de E) et ses valeurs propres sont 0 et 1. Finalement, u est le projecteur sur $\operatorname{Im}(u)$ parallèlement à $\ker(u)$

LJB Maths - DNS4-cor $4 \ / \ 4$