DNS $\mathbf{4}^{\star}$: pour le mercredi 12 novembre

Le candidat encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (MINES PONT PC, Maths 1, 2014) Somme de projecteurs. Notations

On note $\mathbb N$ l'ensemble des entiers naturels, $\mathbb R$ l'ensemble des réels et $\mathcal M_n$ l'ensemble des matrices nxn à coefficients réels.

Dans tout le problème, X est un espace vectoriel de dimension $n \ge 2$ sur le corps des réels et T un endomorphisme non nul de X.

Soit \mathcal{B} une base de X, on note $\mathbb{T}_{\mathcal{B}}$ la matrice représentant T dans cette base. On note N(T) le noyau de T et R(T) l'image de T.

On dit que T est une homothétie si c'est un multiple scalaire de l'identité. On appelle projecteur un endomorphisme P de X idempotent, c'est-a-dire tel que $P^2 = P$. On note I l'endomorphisme identité de X, \mathbb{I}_n la matrice identité de \mathcal{M}_n et \mathbb{O} la matrice nulle.

1 Traces et projecteurs

Si \mathbb{A} est élément de \mathcal{M}_n , on appelle trace de \mathbb{A} le nombre réel suivant :

$$\operatorname{tr}(\mathbb{A}) = \sum_{i=1}^{n} a_{i,i} \cdot$$

- 1. Soient \mathbb{A} et \mathbb{B} éléments de \mathcal{M}_n , montrer que $\operatorname{tr}(\mathbb{A}\mathbb{B}) = \operatorname{tr}(\mathbb{B}\mathbb{A})$.
- 2. Montrer que la trace de la matrice $\mathbb{T}_{\mathcal{B}}$ associée à T est indépendante de la base $\mathcal{B}.$

On appelle trace de T, notée $\operatorname{tr} T$, la valeur commune des traces des matrices représentant T. On dit que la trace est un invariant de similitude.

Soit P un projecteur de X.

- 3. Démontrer que $X = R(P) \oplus N(P)$.
- 4. En déduire que $\operatorname{rg} P = \operatorname{tr} P$.

On pose P' = I - P.

- 5. Montrer que R(P') = N(P) et que R(P) = N(P').
- 6. Démontrer que la dimension de la somme de deux sous-espaces F et G de X est inférieure ou égale à la somme de leurs dimensions.
- 7. Montrer que si l'endomorphisme S est une somme finie de projecteurs P_i , $i=1,\ldots,m$ alors $\operatorname{tr} S \in \mathbb{N}$ et $\operatorname{tr} S \geq \operatorname{rg} S$.

Correction: On remarquera que cette partie est essentiellement constituée de questions de cours.

1.
$$\operatorname{tr}(\mathbb{AB}) = \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{i,j} b_{i,j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{i,j} = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{i,j} a_{i,j} = \operatorname{tr}(\mathbb{BA})$$

2. Soit \mathcal{B} et \mathcal{B}' deux bases de X. Soient Q la matrice de passage de \mathcal{B} à \mathcal{B}' . On a alors : $\mathbb{T}_{\mathcal{B}'} = Q^{-1}\mathbb{T}_{\mathcal{B}}Q$. En appliquant la question précédente avec $\mathbb{A} = Q^{-1}\mathbb{T}_{\mathcal{B}}$ et $\mathbb{B} = Q$, on obtient : $\operatorname{tr}(\mathbb{T}_{\mathcal{B}'}) = \operatorname{tr}(QQ^{-1}\mathbb{T}_{\mathcal{B}}) = \operatorname{tr}(\mathbb{T}_{\mathcal{B}})$.

- 3. Comme P est un endomorphisme de X, R(P) et N(P) sont des sev de X. Comme on est en dimension finie on a, d'après le théorème du rang, que dim $X = \dim(R(P)) + \dim(N(P))$, reste à montrer $R(P) \cap N(P) = \{0_X\}$. On a $0 \in R(P) \cap N(P)$, réciproquement si $y \in R(P) \cap N(P)$ on a d'une part $P(y) = 0_X$ et d'autre part l'existence d'un $x \in X$ tel que y = P(x). Ainsi $P^2(X) = 0$, donc (en effet P est un projecteur, on a : $P^2 = P$) $P(x) = 0_X$, ie $y = 0_X$, ce qui termine de montrer que $R(P) \cap N(P) = \{0_X\}$. On a donc bien montré que $X = R(P) \oplus N(P)$.
- 4. On remarque que si $y \in R(P)$ alors P(y) = y (en effet il existe $x \in X$ tel que y = P(x), ainsi P(y) = P(x) = P(x) = y), ainsi la matrice de P dans une base adaptée à la décomposition précédente est :

$$\begin{pmatrix} \mathbb{I}_r & \mathbb{O} \\ \hline \mathbb{O} & \mathbb{O} \end{pmatrix}$$

où on a noté $r = rg(P) = \dim R(P)$. Cette matrice est de trace r, comme la trace est indépendant de la base on a bien rg(P) = tr(P).

- 5. Tout d'abord on vérifie que P' est un projecteur : $P'^2 = (I-P)^2 = I^2 2P + P^2 = I P$ (car I et P commutent et car $P^2 = P$), ainsi P' est bien un projecteur, on pourra donc se contenter de ne montrer qu'une égalité (en échangeant les rôles de P et de P' (en effet I-P'=I-(I-P)=P). Soit $x\in R(P)$, on a P(x)=x (cf. question précédente), ainsi $x\in N(P')$. Ce qui montre que $R(P)\subset N(P')$, réciproquement si $x\in N(P')$ alors x-P(x)=0 d'où $x\in R(P)$. Ce qui montre l'autre inclusion. Ainsi R(P)=N(P'). Par symétrie on a N(P)=R(P').
- 6. La concaténation d'une base de F et d'une base de G est une famille génératrice de F+G, or cette base a $\dim(F)+\dim(G)$ éléments. Ainsi $\dim(F+G)\leq \dim F+\dim G$.

 Remarque: On peut aussi appliquer le théorème du rang à l'application de $F\times G\to X$, $(x,y)\mapsto x+y$ qui a F+G comme image. On peut aussi utiliser la formule de Grassmann.
- 7. Par linéarité de la trace : $\operatorname{tr}(S) = \operatorname{tr}(P_1) + \ldots + \operatorname{tr}(P_m)$, ainsi d'après la question $4 : \operatorname{tr}(S) = \operatorname{rg}(P_1) + \ldots + \operatorname{rg}(P_m)$. Ce qui montre bien que $\operatorname{tr}(S) \in \mathbb{N}$. Pour l'inégalité on peut utiliser la question précédente en la généralisant en une somme finie (c'est une récurrence immédiate). Tout d'abord on remarque que si $y \in R(S)$, alors il existe $x \in X$ tel que y = S(x). Ainsi $y = P_1(x) + \ldots + P_m(x)$, ce qui montre que $R(S) \subset (R(P_1) + \ldots + R(P_m))$. Comme on est en dimension finie on a donc $\operatorname{dim}(R(S)) \leq \operatorname{dim}(R(P_1) + \ldots + R(P_m))$, d'où d'après la question 6 généralisée : $\operatorname{rg}(S) \leq \operatorname{dim}(R(P_1)) + \ldots + \operatorname{dim}(R(P_m))$ Or $\operatorname{dim}(R(P_1)) + \ldots + \operatorname{dim}(R(P_m)) = \operatorname{rg}(P_1) + \ldots + \operatorname{rg}(P_m) = \operatorname{tr}(P_1) + \ldots + \operatorname{tr}(P_m) = \operatorname{tr}(S)$, ce qui montre bien que $\operatorname{rg}(S) \leq \operatorname{tr}(S)$.

Remarque: Si on ne veut pas généraliser sans démonstration la question 6, on peut démontrer la généralisation, ou démontrer le résultat par récurrence sur le nombre m de projecteurs.

2 Projecteurs de rang 1

On suppose dans cette partie que le rang du projecteur P est égal à 1.

- 8. Démontrer qu'il existe $\mu \in \mathbb{R}$ tel que $PTP = \mu P$. Soit $\mathcal{C} = \{f_1, f_2, \cdots, f_n\}$ une base de X adaptée à la décomposition $X = R(P) \oplus N(P)$.
- 9. Montrer que dans la base \mathcal{C} la matrice représentant T s'écrit

où μ est le nombre réel dont l'existence a été prouvé en question 8 et $\mathbb{B} \in \mathcal{M}_{n-1}$.

10. Montrer que si P'TP' n'est pas proportionnel à P', alors \mathbb{B} , défini en (1), n'est pas la matrice d'une homothétie. On rappelle que P' = I - P.

Correction:

8. Soit f_1 un élément non nul de R(P) : c'est donc une base de R(P) puisque $\operatorname{rg} P=1$. Comme $P\circ T(f_1)=P(T(f_1))$, cet élément appartient à R(P) . Aussi il existe $\mu\in\mathbb{R}$ tel que $P\circ T(f_1)=\mu f_1$. Or pour tout x de X, P(x) est colinéaire à f_1 (ie. il existe $\alpha\in\mathbb{R}$ tel que $P(x)=\alpha f_1$) donc : $P\circ T\circ P(x)=P\circ T(\alpha f_1)=\mu f_1=\mu P(x)$. Ce qui prouve que : $P\circ T\circ P=\mu P$.

- 9. Comme f_1 est dans R(P), on a $P(f_1)=f_1$, et d'après ce qui précède, $P(T(f_1))=\mu f_1=\mu P(f_1)$, ainsi $T(f_1)-\mu f_1$ est une élément de $N(P)=\mathrm{Vect}(f_2,\cdots,f_n)$, cela justifie la forme de la première colonne de $\mathbb{T}_{\mathcal{C}}$, les autres colonnes étant quelconques, on a bien le résultat.
- 10. Par définition de P', $\mathbb{P}'_{\mathcal{C}} = \begin{pmatrix} 0 & \mathbb{O}_{1,n-1} \\ \mathbb{O}_{n-1,1} & \mathbb{I}_{n-1} \end{pmatrix}$. Si on écrit de la même façon, $\mathbb{T}_{\mathcal{C}} = \begin{pmatrix} \mu & L \\ \hline C & \mathbb{B} \end{pmatrix}$, un calcul en blocs donne alors $\mathbb{P}'_{\mathcal{C}}\mathbb{T}_{\mathcal{C}} = \begin{pmatrix} 0 & \mathbb{O}_{1,n-1} \\ \hline C & \mathbb{B} \end{pmatrix}$. Ainsi $\mathbb{P}'_{\mathcal{C}}\mathbb{T}_{\mathcal{C}}\mathbb{P}'_{\mathcal{C}} = \begin{pmatrix} 0 & \mathbb{O}_{1,n-1} \\ \hline \mathbb{O}_{n-1,1} & \mathbb{B} \end{pmatrix}$. On a ainsi :

$$P' \circ T \circ P' = \alpha P' \iff \mathbb{P}'_{\mathcal{C}} \mathbb{T}_{\mathcal{C}} \mathbb{P}'_{\mathcal{C}} = \alpha \mathbb{P}'_{\mathcal{C}} \iff \mathbb{B} = \alpha \mathbb{I}_{n-1}.$$

On a ainsi vérifié par contraposition que : \mathbb{B} n 'est pas la matrice d'une homothétie ssi $P' \circ T \circ P'$ n'est pas proportionnel à P'.

Remarque: il suffisait d'une implication donc de montrer que si $\mathbb{B} = \alpha \mathbb{I}_{n-1}$ alors $P' \circ T \circ P' = \alpha P'$.

3 Endomorphismes différents d'une homothétie

On suppose dans cette partie que l'endomorphisme T n'est pas une homothétie.

- 11. Démontrer qu'il existe un vecteur $x \in X$ tel que x et Tx ne soient pas liés (c'est-à-dire ne soient pas colinéaires).
- 12. Montrer qu'il existe une base $\mathcal{B} = \{e_1, e_2, ..., e_n\}$ dans laquelle la matrice $\mathbb{T}_{\mathcal{B}}$ est de la forme suivante :

$$\mathbb{T}_{\mathcal{B}} = \begin{pmatrix} 0 & x & x & \cdots & x \\ \hline 1 & & & & \\ 0 & & & & \\ \vdots & & \mathbb{A} & & \\ 0 & & & & \end{pmatrix} \text{ où } \mathbb{A} \in \mathcal{M}_{n-1}.$$

13. En déduire que si trT=0, il existe une base \mathcal{B}' dans laquelle la diagonale de $\mathbb{T}_{\mathcal{B}'}$ est nulle.

Soit t_i , $i=1,\ldots,n$ une suite de n nombres réels vérifiant $\operatorname{tr} T=\sum_{i=1}^n t_i$.

14. En dimension n=2, démontrer qu'il existe une base \mathcal{B}'' dans laquelle $\mathbb{T}_{\mathcal{B}''}$ ait pour éléments diagonaux t_1 et t_2 .

Soit $t \in \mathbb{R}$, on admettra qu'en dimension $n \geq 3$, il existe un projecteur L de X de rang 1, tel que d'une part LTL = tL et d'autre part L'TL' ne soit pas proportionnel à L' = I - L.

15. En dimension $n \geq 3$, à l'aide des questions 9 et 10 démontrer qu'il existe une base C dans laquelle la matrice représentant T s'écrit

$$\mathbb{T}_{\mathcal{C}} = \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \mathbf{x} \\ \hline \mathbf{x} & & & \\ \vdots & & \mathbb{B} \\ \mathbf{x} & & & \end{pmatrix} \text{ où } \mathbb{B} \text{ n'est pas une homothétie.}$$

16. En dimension $n \geq 3$, démontrer par récurrence qu'il existe une base \mathcal{B}'' dans laquelle la diagonale de $\mathbb{T}_{\mathcal{B}''}$ ait pour éléments diagonaux les t_i où $i \in [\![1,n]\!]$.

Correction:

- 11. On va montré que si pour tout $x \in X$, on a (x, T(x)) liés alors T est une homothétie (dit autrement les homothéties sont les seuls endomorphismes laissant stable toutes les droites). Il existe donc pour tout $x \in X$ un coefficient $\alpha_x \in \mathbb{R}$ tel que $T(x) = \alpha_x x$. Soit u un vecteur non nul fixé et $\alpha = \alpha_u$. Si x (non nul) est colinéaire à u alors il existe $\lambda \in \mathbb{R}$ tel que $x = \lambda u$, ainsi $T(x) = \lambda T(u) = \lambda \alpha u = \alpha x$, ainsi $\alpha_x = \alpha$. Si x n'est pas colinéaire à u, u + x est non nul et $T(u + x) = T(u) + T(x) = \alpha u + \alpha_x x$, or $T(u + x) = \alpha_{u+x}(u + x)$, ainsi $(\alpha_x \alpha_{u+x})x = (\alpha_{u+x} \alpha)u$ comme (x, u) est libre on a $\alpha_x = \alpha_{x+u} = \alpha$. On a donc montré que pour tout x (pour le vecteur nul c'est bon) $T(x) = \alpha x$, ie T est une homothétie. Ainsi par contraposition si T n'est pas une homothétie alors il existe un vecteur x tel que T(x) n'est pas colinéaire à x.
- 12. Soit e_1 un élément tel que e_1 et $T(e_1)$ ne soient pas colinéaires (un tel vecteur existe par la question précédente). On peut compléter cette famille libre en une base $\mathcal{B} = (e_1, T(e_1), e_3, \dots, e_n)$ de X et dans cette base T a la matrice recherchée.

LJB Maths - DNS4e-cor 3 / 5

13. On va procéder par récurrence sur n.

Initialisation: pour n=2 on utilise la base de la question précédente, on a donc deux réels a et b tels que $\mathbb{T}_{\mathcal{B}} = \begin{pmatrix} 0 & b \\ \hline 1 & d \end{pmatrix}$, comme la trace est nulle on a b=0, ce qui montre bien le résultat pour n=2.

Hérédité : On considère un entier $n \ge 2$ pour lequel le résultat est vrai. Soit alors T un endomorphisme autre qu'une homothétie de trace nulle d'un espace vectoriel X de dimension n+1. D'après la question précédente

il existe une base
$$\mathcal{B}$$
 tel que $\mathbb{T}_{\mathcal{B}} = \begin{pmatrix} 0 & \mathbf{x} & \mathbf{x} & \cdots & \mathbf{x} \\ \hline 1 & & & & \\ 0 & & & & \\ \vdots & & \mathbb{A} & \\ 0 & & & \end{pmatrix}$. On a alors $\operatorname{tr}(T) = \operatorname{tr}(\mathbb{A})$, ainsi $\operatorname{tr}(\mathbb{A}) = 0$. Si \mathbb{A}

est une matrice d'homothétie de rapport $\lambda \in \mathbb{R}$, on a nécessairement $\lambda = 0$, ainsi $\mathbb{A} = \mathbb{O}$, ce qui termine l'hérédité dans ce cas. Si \mathbb{A} n'est pas une homothétie, notons \tilde{T} l'endomorphisme de $\tilde{X} = \mathrm{Vect}(e_2, \dots, e_{n+1})$ de matrice \mathbb{A} dans la base $\tilde{\mathbb{B}} = (e_2, \dots, e_{n+1})$, cet endomorphisme n'est pas une homothétie et est de trace nulle donc, par HR, il existe une base $\tilde{\mathcal{B}}' = (e'_2, \dots, e'_{n+1})$ dans laquelle la matrice \mathbb{A}' de \tilde{T} n'a que des zéros sur la diagonale. Posons $\mathbb{B}' = (e_1, e'_2, \dots, e'_{n+1})$, c'est une base de X.Montrons que la matrice de T dans cette base n'a que des 0 sur la diagonale. Par la matrice précédente, $T(e_1) \in \tilde{X}$ ce qui justifie que dans $\mathbb{T}_{\mathcal{B}'}$ on ait un 0 en ligne 1 colonne 1. Si $x \in \tilde{X}$, $T(x) = \alpha_x e_1 + \tilde{T}(x)$; aussi, la composante de $T(e'_i)$ sur e'_i est la même que celle de $\tilde{T}(e'_i)$; elle est donc nulle. Tous les termes diagonaux de $\mathbb{T}_{\mathcal{B}'}$ sont donc nuls. Ce qui termine l'hérédité et la récurrence.

Il existe donc une base dans laquelle la matrice de T n'a que des 0 sur sa diagonale.

- 14. D'après le premier point de la démonstration précédente, comme T n'est pas une homothétie, il existe une base (e_1,e_2) de X relativement à laquelle la matrice de T s'écrit $\begin{pmatrix} 0 & \alpha \\ 1 & t_1+t_2 \end{pmatrix}$, où $\alpha \in \mathbb{R}$. On pose alors $f_1=e_1$ et $f_2=-t_1e_1+e_2$. f_2 n'est pas colinéaire à f_1 , donc (f_1,f_2) est une famille libre donc une base de X. Mais $T(e_1)=e_2$, donc $T(f_1)=e_2=f_2+t_1e_1=f_2+t_1f_1$. La matrice de T relativement à (f_1,f_2) s'écrit donc $\begin{pmatrix} t_1 & \delta_1 \\ 1 & \delta_2 \end{pmatrix}$, où δ_1 et δ_2 sont réels. Mais la trace de cette matrice est t_1+t_2 , donc $\delta_2=t_2$, donc les coefficients diagonaux de la matrice de T relativement à la base (f_1,f_2) sont t_1 et t_2 . Remarque : C'est une méthode "à la main", on peut aussi introduire $T'=T-t_1I$ et appliquer à T' le résultat précédent (de 12).
- 15. Par la propriété admise (pour $t=t_1$), il existe un projecteur L de X de rang 1, tel que d'une part $LTL=t_1L$ et d'autre part L'TL' ne soit pas proportionnel à L'=I-L. Par la question 9, dans une base $\mathcal C$ adaptée à

la décomposition
$$E = R(L) \oplus N(L)$$
: $\mathbb{T}_{\mathcal{C}} = \begin{pmatrix} \frac{t_1 \mid \mathbf{x} & \cdots & \mathbf{x}}{\mathbf{x} \mid \mathbf{x} \mid$

pas proportionnel à I, $\mathbb B$ n'est pas une matrice colinéaire à $\mathbb I$.

16. La récurrence est suggérée et a été initialisée pour n=2 en question 14. Supposons la propriété réalisée à l'ordre $n-1\geq 2$ et démontrons la à l'ordre n. Par la question précédente, il existe $\mathcal{C}=\{e_1,\cdots,e_n\}$ telle

que :
$$\mathbb{T}_{\mathcal{C}} = \begin{pmatrix} \frac{t_1 \mid \mathbf{x} & \cdots & \mathbf{x}}{\mathbf{x} \mid} \\ \vdots & \mathbb{B} \\ \mathbf{x} \mid \end{pmatrix}$$
 où \mathbb{B} n'est pas une matrice d'homothétie et $\operatorname{tr}(\mathbb{B}) = \operatorname{tr}(T) - t_1 = \sum_{i=2}^n t_i$.

Soit T_1 l'endomorphisme de Vect e_2, \dots, e_n de matrice \mathbb{B} dans la base $\mathcal{C}_1 = \{e_2, \dots, e_n\}$. T_1 n'est donc pas une homothétie et par hypothèse de récurrence, il existe \mathcal{C}'' telle que $\mathbb{T}_{1,\mathcal{C}''} = \mathbb{B}'$ est une matrice de termes diagonaux t_2, \dots, t_n . Soit $\mathcal{B}'' = \{e_1\}_{\cup}\mathcal{C}''$. La matrice de passage de \mathcal{C} à \mathcal{B}'' est $\mathbb{Q} = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & \mathbb{Q}_1 \end{array}\right)$ où \mathbb{Q}_1 est

la matrice de passage de C_1 à C'' et $\mathbb{Q}^{-1} = \begin{pmatrix} 1 & 0 \\ \hline 0 & \mathbb{Q}_1^{-1} \end{pmatrix}$. Un calcul en blocs donne alors :

$$\mathbb{T}_{\mathcal{B}''} = \mathbb{Q}^{-1} \begin{pmatrix} t_1 & x & \cdots & x \\ \hline x & & & \\ \vdots & & \mathbb{B} & \\ x & & & \end{pmatrix} \mathbb{Q} = \begin{pmatrix} t_1 & \times & \cdots & \times \\ \hline \times & & & \\ \vdots & & \mathbb{B}' & \\ \times & & & \end{pmatrix}$$

Cette dernière matrice a bien comme éléments diagonaux t_1, \dots, t_n . Ainsi on a vérifié par récurrence que : Il existe une base \mathcal{B}'' dans laquelle la diagonale de $\mathbb{T}_{\mathcal{B}''}$ ait pour éléments diagonaux les t_i où $i \in [1, n]$.

4 Décomposition en somme de projecteurs

On suppose désormais que T est un endomorphisme de X vérifiant $\operatorname{tr} T \in \mathbb{N}$ et $\operatorname{tr} T \geq \operatorname{rg} T$. On pose $\rho = \operatorname{rg} T$ et $\theta = \operatorname{tr} T$.

17. Montrer qu'il existe une base $\mathcal B$ dans laquelle $\mathbb T_{\mathcal B}$ est de la forme suivante :

$$\begin{pmatrix} \mathbb{T}_1 & \mathbb{O} \\ \mathbb{T}_2 & \mathbb{O} \end{pmatrix}$$

où \mathbb{T}_1 est une matrice de taille $\rho x \rho$.

Supposons tout d'abord que \mathbb{T}_1 ne soit pas la matrice d'une homothétie.

18. A l'aide de la question 16 montrer qu'il existe une base \mathcal{B}' dans laquelle

$$\mathbb{T}_{\mathcal{B}'} = \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \\ \mathbf{x} & \ddots & \ddots & \\ \vdots & \ddots & t_{\rho} & \\ \vdots & & \ddots & \\ \vdots & & & \ddots & \\ \vdots & & & & \mathbb{O} \\ \mathbf{x} & \cdots & \cdots & \end{pmatrix} \text{ où les } t_i, \ i = 1, \rho \text{ sont des entiers non nuls}$$

19. En déduire que T est la somme d'un nombre fini de projecteurs.

On suppose maintenant que T_1 est la matrice d'une homothétie.

20. Démontrer que là encore, T est la somme d'un nombre fini de projecteurs.

Correction:

17. Par le théorème du rang, $\dim N(T) = n - \rho$. Soit X_1 un supplémentaire de N(T) et $\mathcal{B} = \{e_1, \cdots, e_n\}$ une base adaptée à la décomposition $X = F \oplus N(T)$. Dans cette base \mathcal{B} , $\mathbb{T}_{\mathcal{B}}$ est de la forme $\begin{pmatrix} \mathbb{T}_1 & \mathbb{O} \\ \mathbb{T}_2 & \mathbb{O} \end{pmatrix}$.

18. Soit T_1 l'endomorphisme de X_1 de matrice \mathbb{T}_1 dans la base $\mathcal{B}_1 = \{e_1, \cdots, e_\rho\}$. Comme $\operatorname{tr}(T) = \operatorname{tr}(\mathbb{T}_{\mathcal{B}}) = \operatorname{tr}(\mathbb{T}_1) = \operatorname{tr}(T_1), \operatorname{tr}(T_1)$ est élément de \mathbb{N} et $\operatorname{tr}(T_1) \geq \rho$. Soient $t_i = 1$ pour $i \in [\![1, \rho - 1]\!]$ et $t_\rho = \operatorname{tr}(T) - (\rho - 1) \geq 1$. Ces ρ nombres sont des entiers naturels non nuls dont la trace est égale à $\operatorname{tr}(\mathbb{T}_1)$. Par la question 16, T' n'étant pas une homothétie, il existe \mathcal{B}_1'' une base de X_1 où \mathbb{T}_1' la matrice de T' dans la base \mathcal{B}_1'' admet comme éléments diagonaux t_1, \cdots, t_ρ . Soit $\mathcal{B}' = \mathcal{B}_{1}'' \setminus \{e_{\rho+1}, \cdots, e_n\}$. Dans cette nouvelle base, la matrice de T a la forme $\begin{pmatrix} \mathbb{T}_1' & \mathbb{O} \\ \mathbb{T}_2' & \mathbb{O} \end{pmatrix}$ où \mathbb{T}_1' a comme éléments diagonaux des entiers non nuls.

19. Soient C_1, \dots, C_ρ les premières colonnes de $\mathbb{T}_{\mathcal{B}'}$. Soit P_i l'endomorphisme dont la matrice dans la base \mathcal{B}' est :

$$(\mathbb{P}_i)_{\mathcal{B}'} = \begin{pmatrix} 0 & \cdots & 0 & \frac{1}{t_i} C_i & 0 & \cdots & 0 \end{pmatrix}$$

Cette matrice ayant un 1 en place (i,i), on a $\mathbb{P}^2_i = \mathbb{P}_i$, ce qui prouve que les P_i sont des projecteurs. Ainsi

$$T = \sum_{i=1}^{\rho} t_i P_i = \underbrace{P_1 + \cdots P_1}_{t_1 \text{ fois}} + \cdots + \underbrace{P_{\rho} + \cdots + P_{\rho}}_{t_{\rho} \text{ fois}}.$$

20. Comme $\mathbb{T}_1 = \alpha \mathbb{I}_{\rho}$, $\operatorname{tr}(T) \geq \rho$ donne $\alpha \geq 1$.

Si $\alpha=1$, on peut utiliser la méthode précédente (on peut même l'utiliser si $\alpha\in\mathbb{N}$) en décomposant en somme de ρ projecteurs de rang 1 .

Si $\alpha > 1$, soit P_0 de matrice $\mathbb{P}_0 = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \mathbb{O} \\ 0 & & & \end{pmatrix}$ dans la bas \mathcal{B}' . Alors $T - P_0$ a pour matrice : $(\mathbb{T} - \mathbb{P}_0)_{\mathcal{B}'} = \mathbb{T}$

 $\begin{pmatrix} \mathbb{T}_1'' & 0 \\ \mathbb{T}_2' & 0 \end{pmatrix}$ où T_1'' est une matrice ayant pour éléments diagonaux $(\alpha-1,\alpha,\cdots,\alpha)$: ce n'est donc pas une matrice d'homothétie. De plus, $T-P_0$ est de rang au plus ρ (sa matrice dans la base \mathcal{B}' a $n-\rho$ colonnes nulles). Ainsi $T-P_0$ vérifie

$$tr(T-P_0) = \rho\alpha - 1 > \rho - 1 \Longrightarrow tr(T-P_0) \ge \rho \ge rg(T-P_0)$$

donc on peut appliquer la question précédente. $T' = T - P_0$ est une somme de projecteurs et comme $T = P_0 + (T - P_0)$: T est une somme de projecteurs. On a ainsi prouvé que T est une somme de projecteurs ssi sa trace est un entier naturel supérieur ou égal à son rang.