DS 4: samedi 22 novembre

4h sans calculatrice

Le candidat numérotera ses pages, il encadrera ou soulignera les résultats.

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Exercice 1 (proche du cours et/ou des TDs).

1° On considère l'application f définie sur $E = \mathbb{R}^3$ par f(x,y,z) = (3x+4z, -2x-y-2z, -2x-3z).

- (a) Donner la matrice M de f dans la base canonique de \mathbb{R}^3 .
- (b) Déterminer le noyau de f, puis en déduire son image.
- (c) Déterminer les réels λ tels que $\det(M \lambda I_3) = 0$. On note λ_1 et λ_2 les deux réels trouvés.
- (d) Déterminer, pour $i \in \{1, 2\}$, les sev $E_{\lambda_i} = \text{Ker}(f \lambda_i \text{Id})$ (on en donnera des bases).
- (e) Montrer que $E = E_{\lambda_1} \oplus E_{\lambda_2}$
- (f) Donner la matrice D de f dans une base adaptée à $E = E_{\lambda_1} \oplus E_{\lambda_2}$.
- (g) Reconnaitre l'application linéaire f.
- (h) Pour $n \in \mathbb{N}$, donner explicitement M^n .

$$2^{\circ} \text{ Pour } n \in \mathbb{N}^{\star} \text{ on considère la matrice } C_n \in \mathcal{M}_n(\mathbb{R}) \text{ définie par } C_n = \begin{pmatrix} 5 & 3 & 0 & \dots & 0 \\ 2 & 5 & 3 & 0 & & \vdots \\ 0 & 2 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 3 & 0 \\ \vdots & & 0 & 2 & 5 & 3 \\ 0 & \dots & \dots & 0 & 2 & 5 \end{pmatrix} \text{ et on pose}$$

 $c_n = \det(C_n).$

- (a) Calculer c_1 et c_2 .
- (b) Pour tout $n \in \mathbb{N}^*$, déterminer une relation de récurrence entre c_{n+2} , c_{n+1} et c_n .
- (c) En déduire, pour tout $n \in \mathbb{N}^*$, l'expression de c_n en fonction de n.
- 3° Étudier la convergence et calculer $\int_0^{+\infty} \exp(-t) \sin t \, dt$.
- $4^{\rm o}$ Justifier de l'éventuelle existence des intégrales suivantes :

(a)
$$\int_{-\infty}^{+\infty} \sin t \exp(-t^2) dt;$$

(b)
$$\int_{1}^{+\infty} \frac{\ln t}{\sqrt{t}} \, \mathrm{d}t;$$

(c)
$$\int_0^{+\infty} \frac{\mathrm{d}t}{\sqrt{t(t+1)}}.$$

Exercice 2 (Problème d'algèbre linéaire : BANQUE PT 2017 Maths A (sans la partie 3)).

Pour tous entiers strictement positifs n, p, $\mathcal{M}_{n,p}(\mathbb{R})$ désigne l'ensemble des matrices à n lignes et p colonnes à coefficients réels. Pour tout entier $n \geq 1$, on note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels. I_n désigne la matrice identité d'ordre n.

Pour une matrice A, ^tA désigne sa matrice transposée

Partie I

Soit A la matrice de \mathcal{M}_3 (**R**) définie par

$$A = \left(\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{array}\right).$$

LJB Maths - DS4 1/3

- 1° On pose $P_A(X) = \det(XI_3 A)$, déterminer les deux racines de ce polynôme P_A . Déterminer (ie trouver des bases) les deux sous espaces $\ker(A - \lambda I_3)$ où λ est une racine de P_A . 1.
- 2° Des trois vecteurs trouvés à la question précédente, en déduire une matrice P inversible telle que $A = PDP^{-1}$ où D est une matrice diagonale à déterminer. ².
- 3° Déterminer une relation entre A^2 , A et I_n . En déduire une relation entre A^{n+1} , A^n et A^{n-1} pour tout entier $n \ge 1$.
- 4º Montrer par récurrence qu'il existe deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, \quad A^n = \left(\begin{array}{ccc} u_n & v_n & v_n \\ v_n & u_n & v_n \\ v_n & v_n & u_n \end{array}\right)$$

qui vérifient la relation de récurrence

$$\forall n \ge 1, \quad \left\{ \begin{array}{lcl} u_{n+1} & = & u_n + 2u_{n-1} \\ v_{n+1} & = & v_n + 2v_{n-1} \end{array} \right.$$

5° Déterminer, pour tout entier naturel n, l'expression de u_n et v_n en fonction de n.

Partie II

Dans toute cette partie, on se fixe un entier $n \geq 1$. Soit A une matrice de $\mathcal{M}_n(\mathbf{R})$. On suppose qu'il existe deux matrices U, V de $\mathcal{M}_n(\mathbf{R})$ et deux réels λ et μ tels que $\lambda \mu \neq 0$ et $\lambda \neq \mu$ vérifiant :

$$A = \lambda U + \mu V \tag{1}$$

$$A^2 = \lambda^2 U + \mu^2 V \tag{2}$$

$$A^3 = \lambda^3 U + \mu^3 V. \tag{3}$$

1° Exprimer U et V en fonction de A et A^2 . En déduire que

$$A^3 = (\lambda + \mu) A^2 - \lambda \mu A.$$

 2° Montrer que, pour tout entier $p \geq 1$,

$$A^p = \lambda^p U + \mu^p V.$$

- 3° Soit f l'endomorphisme de \mathbb{R}^n dont A est la matrice dans la base canonique. On note $f^p = f \circ \cdots \circ f$ la $p^{\text{ième}}$ composée de f. Soit $p \in \mathbb{N}^*$.
 - a) Montrer que Ker $f \subset \text{Ker } f^p$.
 - b) Montrer que pour tout $x \in \mathbb{R}^n$,

$$\lambda \mu f^{p-1}(x) = (\lambda + \mu) f^p(x) - f^{p+1}(x).$$

- c) En déduire que Ker $f^p \subset \text{Ker } f$.
- d) Montrer que $\operatorname{rg}(A) = \operatorname{rg}(A^p)$.

Exercice 3 (Intégrale de Gauss d'après E3A PSI 2012). 1° Étudier la convergence de l'intégrale $I = \int_{\mathbb{R}} \mathrm{e}^{-x^2} \mathrm{d}x = \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \mathrm{d}x.$

- 2° Pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$ on pose $f_n(x) = \left(1 \frac{x^2}{n}\right)^n$ si $|x| < \sqrt{n}$ et $f_n(x) = 0$ sinon.
 - (a) Donner, sur un même schéma, l'allure des représentations graphiques de f_1 et f_4 .
 - (b) Étudier la convergence pour tout réel x de la suite $(f_n(x))_{n\in\mathbb{N}^*}$ on notera f(x) la limite éventuelle.
 - (c) Montrer que si $n \in \mathbb{N}^*$ et si u est un réel strictement supérieur à -n alors $\left(1 + \frac{u}{n}\right)^n \leq e^u$.
 - (d) Prouver l'existence de $u_n = \int_{-\infty}^{+\infty} f_n(x) dx$.
 - (e) On admet (les 5/2 peuvent le démontrer) que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers $I=\int_{\mathbb{R}} e^{-x^2} dx$.
 - 1. La question était : Déterminer les valeurs propres et les sous-espaces propres de A
 - 2. La question était : Montrer que la matrice A est diagonalisable

- 3° On pose, pour tout $k \in \mathbb{N}, J_k = \int_0^{\pi/2} \cos^k(t) dt$.
 - (a) Calculer J_0, J_1 et J_2 .
 - (b) Trouver une relation de récurrence reliant J_k et J_{k+2} .
 - (c) Montrer: $\forall n \in \mathbb{N}^*$, $J_{2n+1} = \prod_{k=1}^n \frac{2k}{2k+1} = \frac{2 \cdot 4 \cdot 6 \cdot 8 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdot 7 \cdots (2n+1)}$.
 - (d) En déduire une expression de J_{2n+1} faisant intervenir $(n!)^2$ et (2n+1)!.
 - (e) Rappeler la formule de Stirling et déduire de ce qui précède un équivalent de J_{2n+1} lorsque $n \to +\infty$.
- 4° À l'aide d'un changement de variable 3, donner, pour tout $n \in \mathbb{N}^*$, une relation simple entre J_{2n+1} et u_n .
- 5° En déduire la valeur de $\int_{-\infty}^{+\infty} e^{-x^2} dx$.

Exercice 4 (Intégration d'après E3A PC, Maths B, 2010).

- 1° a) Montrer que pour tout $x \in \mathbb{R}$, $\sin(3x) = -4\sin^3(x) + 3\sin(x)$.
 - b) Soit $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ telle que : $\forall x \in \mathbb{R}^*, f(x) = \frac{\sin(x)}{x^2} \frac{1}{x}$
 - (i) Montrer que f admet un prolongement continue sur \mathbb{R} ; on notera φ ce prolongement.
 - (ii) Montrer que φ est de classe \mathcal{C}^1 sur \mathbb{R} .
- 2° On pose $I = \int_0^{+\infty} \frac{\sin^3(x)}{x^2} dx$.
 - a) Montrer que I existe.
 - b) Pour tout $a \in \mathbb{R}_+^*$, on pose : $I(a) = \int_a^{+\infty} \frac{\sin^3(x)}{x^2} dx$.
 - i) Montrer, et justifier leur convergence, que : $\int_a^{+\infty} \frac{\sin(3x)}{x^2} \mathsf{d}x = 3 \int_{3a}^{+\infty} \frac{\sin(x)}{x^2} \mathsf{d}x.$
 - ii) Montrer qu'il existe deux constantes C et D que l'on déterminera telles que : $I(a) = C \int_a^{3a} \varphi(x) dx + D$ où φ est la fonction définie en 1° b)i).
 - iii) En déduire la valeur de I.

Exercice 5 (calcul d'intégrales généralisées).

On pose
$$I = \int_0^{\pi/2} \ln(\sin(t)) dt$$
 et $J = \int_0^{\pi/2} \ln(\cos(t)) dt$.

- 1° (a) Montrer que $\ln(\sin(t)) \sim \lim_{t \to 0} \ln(t)$.
 - (b) En déduire la convergence de I.
- 2° Déterminer un changement de variable de classe \mathcal{C}^1 , strictement décroissant afin de montrer que I=J.
- 3° Après avoir rappelé la formule de duplication du sinus (ie. sin(2a) = ...), montrer que (on pourra utiliser le changement de variable u = 2t) : $I + J = \frac{1}{2} \int_0^{\pi} \ln(\sin(u)) du \frac{\pi}{2} \ln(2)$.
- 4° Montrer, à l'aide du changement de variable $v=\pi-u$, que $\int_{\pi/2}^{\pi} \ln(\sin(u)) du = \int_{0}^{\pi/2} \ln(\sin(v)) dv$.
- 5° En déduire I.

LJB Maths - DS4 3 / 3

^{3.} Indication : $x \mapsto \arcsin(x/\sqrt{n})$