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ds 5 : vendredi 19 décembre

4h sans calculatrice

Le candidat encadrera ou soulignera les résultats, il numérotera aussi ses pages.
N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si
un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (proche du cours et/ou des TDs).
1o Donner dans M2(R) (en justi�ant) une matrice non diagonalisable mais trigonalisable.

Donner une matrice de M2(R) qui n'est pas trigonalisable.

2o Diagonaliser la matrice A =

 3 0 −1
2 4 2
−1 0 3

 ∈ M3(R). En déduire la valeur de An pour n ∈ N. On donnera

explicitement tous les coe�cients de An.

3o Soit f l'endomorphisme de R3 dont la matrice dans la base canonique est M =

 1 0 1
−1 2 1
1 −1 1

.

(a) Déterminer χf et en déduire le spectre de f .
(b) Déterminer les deux sous-espaces propres de f . L'endomorphisme f est-il diagonalisable ?

On notera u un vecteur propre de valeur propre 1 et w un vecteur propre de valeur propre 2.
(c) Déterminer un vecteur v tel que f(v) = v + u.
(d) Montrer que (u, v, w) est une base de R3 et donner la matrice T de f dans cette base.

4o On considère, pour n ∈ N⋆, le polynôme Pn = 1
2i
[(1 + iX)n − (1− iX)n]. Montrer que Pn est à coe�cients réels et

déterminer son degré.

5o Déterminer les polynômes P ∈ R[X] tels que (P ′)2 = 4P .

Correction :

1o Dans M2(R), N =

(
0 1
0 0

)
a comme polynôme caractéristique X2 qui est scindé (ainsi N est trigonalisable,

bon étant donné qu'elle est triangulaire supérieure ...), elle n'est pas diagonalisable, en e�et si elle l'était, il
existerait P ∈ GL2(R) tel que N = PDP−1 avec D = 0, ainsi on aurait N = 0, ce qui n'est pas le cas.

Dans M2(R), M =

(
0 1
−1 0

)
a comme polynôme caractéristique X2 + 1 qui n'est pas scindé, ainsi M n'est

pas trigonalisable.

2o On trouve (il faut le détailler !) : A = PDP−1 avec P =

 1 0 1
−2 1 0
1 0 −1

, P−1 = 1
2

 1 0 1
2 2 2
1 0 −1

 et

D =

 2 0 0
0 4 0
0 0 4

.

Comme An = PDnP−1 on trouve que : An = 1
2

 2n + 4n 0 2n − 4n

2(4n − 2n) 2.4n 2(4n − 2n)
2n − 4n 0 2n + 4n

.

3o (a) On a : χf (X) = . . . = (X − 1)2(X − 2). Ainsi Sp(f) = {1, 2}
(b) On note u = (1, 1, 0) et w = (1, 0, 1) et on trouve E1(f) = Vect(u) et E2(f) = Vect(w). Comme

dim(E1(f)) = 1 ̸= 2 = m1, f n'est pas diagonalisable.
(c) On résout f(x, y, z)− (x, y, z) = (1, 1, 0) et on trouve que v = (0, 0, 1) convient.
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(d) On pose P =

1 0 1
1 0 0
0 1 1

, comme det(P ) = −1, la famille (u, v, w) est une base de R3, comme f(u) = u,

f(v) = u+ v et f(w) = 2w, on a donc T =

1 1 0
0 1 0
0 0 2

.

4o Soit n ∈ N⋆. On applique la formule du binôme :

Pn =
1

2i

(
n∑

k=0

(
n

k

)
ikXk −

n∑
k=0

(
n

k

)
(−1)kikXk

)
=

1

2i

n∑
k=0

(1− (−1)k)

(
n

k

)
ikXk.

Or 1 − (−1)k =

{
0 si k pair

2 si k impair
, ainsi il ne reste que les valeurs impaires de k dans la somme, or si k est

impair alors ik est un imaginaire pur, avec le 1
i
devant on remarque que tous les coe�cients sont réels. Ainsi

Pn ∈ R[X].
On a deg(Pn) ≤ n, le coe�cient devant Xn est 1−(−1)n

2i
in, qui est non nul si n est impair, dans ce cas

deg(Pn) = n, si n est pair le coe�cient devant Xn vaut 0 et le coe�cient devant Xn−1 vaut 1−(−1)n−1

2i
nin qui

est non nul, ainsi deg(Pn) = n− 1 dans ce cas.

Ainsi deg(Pn) =

{
n− 1 si n pair

n si n impair
.

5o Tout d'abord, si P = c alors :(P ′)2 = 4P ⇐⇒ P = 0, ainsi le polynôme nul est l'unique solution constante.
Si P est un polynôme non constant solution de (P ′)2 = 4P , alors en notant n = deg(P ), on a deg(P ′) = n− 1
ainsi 2n − 2 = n ie n = 2. Ainsi les solutions non constante sont nécessairement de degré 2. Considérons
maintenant P = aX2 + bX + c un polynôme de degré 2 (ainsi a ̸= 0). On a : (P ′)2 = 4P ⇐⇒ (2aX + b)2 =

4aX2+4bX+4c ⇐⇒


4a2 = 4a

4ab = 4b

b2 = 4c

⇐⇒


a = 1

0 = 0

b2 = 4c

(car a ̸== 0), ainsi P est solution si et seulement

si a = 1 et c = b2

4 . En en déduit donc que les solutions sont les P = X2 + bX + b2

4 où b ∈ R ainsi que P = 0.

Exercice 2 (e3a pc 2020 Ex 1).

Soit a ∈ R et la matrice Ma =

1 a 0
0 0 1
0 1 0

.

1o Pour quelles valeurs du réel a la matrice Ma est-elle diagonalisable ?

2o Pour quelles valeurs du réel a la matrice Ma est-elle inversible ?

3o Montrer que lorsqu'elle n'est pas diagonalisable, Ma est semblable à la matrice

−1 0 0
0 1 1
0 0 1

.

Correction :

1o On a χMa =

∣∣∣∣∣∣
X − 1 −a 0

0 X −1
0 −1 X

∣∣∣∣∣∣ = (X − 1)

∣∣∣∣X −1
−1 X

∣∣∣∣ = (X − 1)(X2 − 1) = (X − 1)2(X + 1). Ainsi 1 est valeur

propre double et −1 est valeur propre simple de Ma.

On a ainsi que Ma est diagonalisable si et seulement si dim(E1(A)) = 2. On a Ma − I3 =

0 a 0
0 −1 1
0 1 −1

,

séparons en deux cas :
Si a = 0, alors cette matrice est de rang 1 et donc (d'après le théorème du rang) dim(E1(A)) = 2, on a donc
M0 diagonalisable.
Si a ̸= 0, alors rg(Ma − I3) = 2, ainsi (toujours d'après le théorème du rang), dim(E1(A)) = 1, on a donc que
Ma n'est pas diagonalisable.
En conclusion : Ma est diagonalisable si et seulement si a = 0

2o 0 n'est jamais valeur propre de Ma donc Ma est inversible pour tout a ∈ R.
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3o On suppose donc a ̸= 0, et notons fa l'endomorphisme de R3 canoniquement associé à Ma.

Comme −1 est valeur propre simple, on a dim(E−1(fa)) = 1, de plus On a : Ma + I3 =

2 a 0
0 1 1
0 1 1

, comme

aC1 − 2C2 + 2C3 = 0 (on peut aussi résoudre un système) on pose e1 = (a,−2, 2) et on a fa(e1) = −e1. On a
dim(E1(fa)) = 1, et clairement e2 = (1, 0, 0) est tel que fa(e2) = e2.
Il reste donc à trouver e3 = (x, y, z) tel que (e1, e2, e3) soit une base de R3 et tel que fa(e3) = e2 + e3.

On doit donc avoir


x+ ay = 1 + x

z = y

y = z

⇐⇒


ay = 1

−y + z = 0

y − z = 0

.

On pose donc e3 = (0, 1/a, 1/a), on a bien fa(e3) = e2 + e3, il ne reste plus qu'à montrer que (e1, e2, e3) est

une base de R3, le plus rapide est de considérer la matrice P =

 a 1 0
−2 0 1/a
2 0 1/a

. En développant par rapport

à la deuxième colonne on a det(P ) = −4/a ainsi (e1, e2, e3) est une base de R3, ainsi Ma est semblable à

T = Mat(e1,e2,e3)(fa) =

−1 0 0
0 1 1
0 0 1

.

Exercice 3 (e3a pc 2024 Ex 3).
Question de cours

1o Soit x un réel positif. Comparer x et x2.

******

Soit α ∈]0, 1[.

On se propose d'étudier la série de terme général an =
sin(nα)

n
, n ≥ 1.

2o On pose pour tout t ≥ 1, φ(t) = sin(tα)
t .

2.1 Justi�er que la fonction t 7→ sin(tα) est dérivable sur [1,+∞[ et déterminer sa dérivée.
2.2 Justi�er que φ est dérivable sur [1,+∞[ et déterminer φ′.
2.3 Montrer que l'on a : ∀t ∈ [1,+∞[, |φ′(t)| ≤ 1+αtα

t2 .
2.4 En déduire que pour tout entier n ≥ 1 :

∀t ∈ [n, n+ 1], |φ(t)− φ(n)| ≤
(

1

n2
+

α

n2−α

)
|t− n| .

3o On pose, pour tout n ≥ 1 : un =

∫ n+1

n

φ(t) dt.

Prouver que l'on a : ∀n ≥ 1, |un − an| ≤ 1
n2 + α

n2−α .

4o Convergence de l'intégrale

∫ +∞

1

sin(t)

t
dt.

4.1 Démonter que t 7→ cos(t)
t2 est intégrable sur [1,+∞[.

4.2 À l'aide d'une intégration par parties, démontrer alors que
∫ +∞

1

sin(t)

t
dt converge.

5o Démontrer, à l'aide d'un changement de variable, que l'intégrale
∫ +∞

1

sin(tα)

t
dt converge.

6o En déduire que la série de terme général un converge.

7o Prouver que la série de terme général un − an converge absolument.

8o Déduire des questions précédentes que la série
∑
n≥1

an converge.

9o On suppose que la série
∑
n≥1

|an| est convergente.
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9.1 Montrer qu'alors la série
∑
n≥1

sin2(nα)

n
est convergente.

On pourra utiliser la question de cours.

9.2 Prouver que l'intégrale
∫ +∞

1

cos(2x)

x
dx converge.

On procédera comme à la question 4.2.

9.3 On admet alors, en procédant comme précédemment, que la série
∑
n≥1

cos(2nα)

n
est convergente.

Conclure sur la nature de la série
∑
n≥1

an.

On pourra utiliser la formule de duplication : cos(2θ) = 1− 2 sin2(θ).

Correction :

1o Si x ≥ 1, on a x2 ≥ x et si x ∈ [0, 1], on a x2 ≤ x.

2o 2.1 La fonction t 7→ sin(tα) est dérivable sur [1,+∞[ en tant que composée de fonction dérivables, et sa dérivée
est la fonction t 7→ αtα−1 cos(tα).

2.2 Il en va de même pour φ par produit de fonctions dérivables, et, pour t ≥ 1, on a : φ′(t) =
αtα cos(tα)− sin(tα)

t2
.

2.3 Soit t ≥ 1, par inégalité triangulaire : |φ′(t)| ≤ αtα |cos(tα)|+ |sin(tα)|
t2

≤ αtα + 1

t2
.

2.4 Soit n ≥ 1 et t ∈ [n, n + 1], on a |φ′(t)| = 1

t2
+

α

t2−α
, comme 2 − α > 0, on a donc |φ′(t)| ≤ 1

n2
+

α

n2−α
.

Comme φ est dérivable sur [n, n + 1] on peut donc appliquer l'inégalité des accroissements �nis entre

t ∈ [n, n+ 1] et n et ainsi on trouve bien : |φ(t)− φ(n)| ≤
(

1

n2
+

α

n2−α

)
|t− n|.

3o Soit n ≥ 1, on a un − an =

∫ n+1

n

φ(t) dt − φ(n) =

∫ n+1

n

φ(t) − φ(n) dt, Ainsi, avec l'inéga-

lité triangulaire on a : |un − an| ≤
∫ n+1

n

|φ(t)− φ(n)| dt, en utilisant la question précédente on a :

|un − an| ≤
∫ n+1

n

(
1

n2
+

α

n2−α

)
|t− n| dt, or si t ∈ [n, n + 1] alors |t− n| = t − n), ainsi : |un − an| ≤(

1

n2
+

α

n2−α

)[ (t− n)2

2

]n+1

n
=

1

2

(
1

n2
+

α

n2−α

)
≤ 1

n2
+

α

n2−α
.

4o 4.1 La fonction t 7→ cos(t)
t2 est continue sur [1,+∞[, on a, pour t ≥ 1, que cos(t)

t2 ≤ 1
t2 , comme

∫ +∞

1

1

t2
dt

converge, en on déduit donc que t 7→ cos(t)
t2 est intégrable sur [1,+∞[.

4.2 Pour t ≥ 1, posons u(t) = 1
t et v(t) = − cos(t), ainsi u et v sont de classe C1 sur [1,+∞[, et pour t ≥ 1, on

a u′(t) = −1
t2 et v′(t) = sin(t). De plus (produit d'une fonction qui tend vers 0 par une fonction bornée) :

u(t)v(t) −→
t→+∞

0 (convergence du crochet), ainsi
∫ +∞

1

sin(t)

t
dt et

∫ +∞

1

cos(t)

t2
dt sont de même nature,

cette dernière étant convergente, on a donc que
∫ +∞

1

sin(t)

t
dt converge.

5o Posons le changement de variable u = tα (ie t = u1/α et donc dt = 1
αu

−1+1/αdu) qui est bien une bijection

strictement croissante de classe C1 de [1,+∞[ dans lui même, ainsi
∫ +∞

1

sin(tα)

t
dt est de même nature que∫ +∞

1

sin(u)

u1/α

1

αu1−1/α
du =

∫ +∞

1

sin(u)

αu
du qui est convergente d'après la question précédente, ainsi l'intégrale∫ +∞

1

sin(tα)

t
dt converge.

6o Pour n ≥ 1, par relation de Chasles, on a :
n∑

k=1

uk =

∫ n+1

1

φ(t)dt, on vient de montrer la convergence de∫ +∞

1

φ(t)dt, ainsi
∑

un converge.

7o Comme α ∈]0, 1[, on a 2−α ∈]1, 2[, ainsi
∑

α
n2−α converge, il en va de même pour

∑
1
n2 , ainsi l'inégalité de la

question 3 donne la convergence de
∑

|un − an|, ie la convergence absolue de la série de terme général un−an.
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8o Ainsi
∑

un − an converge, comme on a montre que
∑

un était convergente, on a donc la convergence de la

série de terme général un − (un − an) = an, ie
∑
n≥1

an converge.

9o 9.1 Soit n ≥ 1, on a
∣∣∣ sin2(nα)

n

∣∣∣ ≤ ∣∣∣ sin(nα)
n

∣∣∣ = |an| (car |sin(nα)| ∈ [0, 1]), ce qui montre que la série
∑
n≥1

sin2(nα)

n

est convergente.
9.2 Pour x ≥ 1, posons u(x) = 1

x et v(x) = 1
2 sin(2x), ainsi u et v sont de classe C1 sur [1,+∞[, et pour x ≥ 1,

on a u′(x) = −1
x2 et v′(x) = cos(2x). De plus (produit d'une fonction qui tend vers 0 par une fonction

bornée) : u(x)v(x) −→
x→+∞

0 (convergence du crochet), ainsi
∫ +∞

1

cos(2x)

x
dx et

∫ +∞

1

− sin(2x)

2x2
dx sont de

même nature, or pour x ≥ 1, on a :
∣∣∣− sin(2x)

2x2

∣∣∣ ≤ 1
2x2 , ainsi

∫ +∞

1

− sin(2x)

2x2
dx converge, et donc l'intégrale∫ +∞

1

cos(2x)

x
dx converge.

9.3 Pour n ≥ 1, on a cos(2nα)
n = 1

n − 2 sin2(nα)
n , ie 1

n = cos(2nα)
n +2 sin2(nα)

n , ainsi 1
n est la somme de deux termes

généraux de séries convergentes, on en déduit donc que
∑

1
n converge, ce qui est absurde, ainsi

∑
an est

convergente mains n'est pas absolument convergente.

Exercice 4 (sur les matrices compagnon : d'après ccp mp 2001 Maths 2).
Dans cet exercice K désigne R ou C, n un entier naturel, et χA le polynôme caractéristique de la matrice A ∈ Mn(K).
On considère le polynôme P = Xn + an−1X

n−1 + . . . + a1X + a0 de Kn[X] et CP sa matrice compagnon associée,
c'est-à dire la matrice de Mn(K) dé�nie par :

CP =


0 0 . . 0 −a0
1 0 . . 0 −a1
0 1 0 . 0 −a2
. . . . . .
0 . 0 1 0 −an−2

0 . . 0 1 −an−1


(ie la matrice CP = (ci,j) est dé�nie par ci,j = 1 pour i− j = 1, ci,n = −ai−1 et ci,j = 0 dans les autres cas).

1o Montrer que CP est inversible si et seulement si P (0)̸=0.

2o Calculer le polynôme caractéristique de la matrice CP et déterminer une constante k telle que χCp
= kP .

3o Soit Q un polynôme de Kn[X], déterminer une condition nécessaire et su�sante pour qu'il existe une matrice A de
Mn(K) telle que χA = Q.

4o On note C⊤
P la transposée de la matrice CP .

a) Justi�er la proposition : Sp(CP ) = Sp(C⊤
P ).

b) Soit λ élément de Sp(C⊤
P ), déterminer (ie. l'écrire avec un Vect) le sous-espace propre de C⊤

P associé à λ.
c) Montrer que C⊤

P est diagonalisable si et seulement si P est scindé sur K et a toutes ses racines simples.
d) On suppose que P admet n racines λ1, λ2, . . ., λn deux à deux distinctes, montrer que C⊤

P est diagonalisable

et en déduire que le déterminant de Vandermonde det


1 1 . . 1
λ1 λ2 . . λn

λ2
1 λ2

2 . . λ2
n

. . . . .
λn−1
1 λn−1

2 . . λn−1
n

 est non nul.

e) (rajout) Question de cours : Donner (sans démonstration) l'expression factorisée du déterminant de Vander-
monde.

Correction :

1o On développe par rapport à la première ligne et on trouve detCP = (−1)n+1(−a0) = (−1)na0 = (−1)nP (0),
d'où le résultat.
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2o On développe par rapport à la dernière colonne et on trouve :

χCP
(X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X 0 . . . . . . 0 a0

−1 X
. . . 0 a1

0 −1 X
. . .

... a2
...

. . .
. . .

. . . 0
...

0 0 −1 X an−2

0 . . . . . . 0 −1 X + an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (X + an−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

X 0 . . . 0

−1 X
. . .

0
. . .

. . .
...
0 . . . −1 X

∣∣∣∣∣∣∣∣∣∣∣∣∣
− an−2

∣∣∣∣∣∣∣∣∣∣∣∣

X 0 . . . 0

−1 X
. . .

...
0 . . . −1 X 0
0 . . . 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣
+ . . .

et on reconnaît Xn + an−1X
n−1 + . . .+ a0 = P (X). Donc k = 1.

3o Il faut et il su�t que Q soit unitaire de degré n. En e�et un polynôme caractéristique est toujours unitaire
de degré n, cette condition est donc nécessaire, et à la question précédente on a montré que la question était
su�sante.

4o a) Ce résultat n'est pas spéci�que à Cp, il est vrai pour toute matrice A ∈ Mn(K), en e�et les valeurs propres
sont les racines de χA qui se calcule par un déterminant, or le déterminant est invariant par transposition,
de plus la transposition est linéaire, ainsi on a XIn−A⊤ = XIn−A⊤ ce qui montre que χA = χA⊤ et donc
l'égalité des spectres (car le spectre de A est l'ensemble des racines de χA).

b) on a C⊤
P =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

...
0 . . . 0 1

−a0 −a1 . . . −an−1

, soit X =


x1

x2

. . .
xn

. Ainsi X est vecteur propre de valeur propre

λ si et seulement si il véri�e le système suivant :

x2 = λx1

x3 = λx2

...

xn = λxn−1

−a0x1 −. . .− an−1xn = λxn

⇐⇒

{
xi = λi−1x1, ∀i ∈ [[1, n]]

(−a0 − a1λ− . . .− an−1λ
n−1)x1 = λnx1

Donc, comme x1 ne peut être nul (un vecteur propre n'est pas nul), on a donc que λ est racine de P et tout

vecteur propre est multiple de Xλ =


1
λ
...

λn−1

, ie Eλ

(
C⊤

p

)
= Vect (Xλ).

c) On vient de constater que les espaces propres sont des droites, si la matrice C⊤
P est diagonalisable alors la

somme des dimensions des sous-espaces propres vaut n, comme tous les sep sont de dimension 1 il doit donc
y en avoir n, ie P possède n racines distinctes (elles sont donc toutes simples).
Réciproquement si P est scindé à racines simples alors le polynôme caractéristique de C⊤

P l'est aussi, ainsi
C⊤

P est diagonalisable.
d) Si P est scindé à racines simples, comme on vient de le voir une matrice de passage qui diagonalise C⊤

P est

V =


1 . . . 1
λ1 . . . λn

...
λn−1
1 . . . λn−1

n

, qui est inversible puisque matrice de passage !

e) C'est :
∏

0≤i<j≤n

λj − λi.
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Exercice 5 (e3a pc 2019 Maths 1 exercice 4).
1. Question de cours 1 : Rappeler sans démonstration l'écriture sous forme de série de exp(z) pour z ∈ C.
2. Question de cours 2 : Soit p ∈ N. Prouver que si deux matrices carrées M et N de taille d sont semblables,

alors les matrices Mp et Np sont semblables.

Pour toute matrice A ∈ M2(C), on pose, lorsque cela est possible, φ(A) =

+∞∑
n=0

(−1)n

(2n+ 1)!
A2n+1 =

lim
m→+∞

m∑
n=0

(−1)n

(2n+ 1)!
A2n+1.

3. Pour tout z ∈ C, on pose s(z) = 1
2i
[exp(iz)− exp(−iz)] et c(z) = 1

2 [exp(iz) + exp(−iz)] où i véri�e i2 = −1.

(a) Véri�er que pour tout z ∈ C, on a : s(z) =
+∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1.

(b) Déterminer une formule analogue pour c(z), z ∈ C.
4. Si A = γI2 avec γ ∈ C, déterminer φ(A).

5. On suppose que A possède deux valeurs propres distinctes α et β.

(a) Justi�er l'existence d'une matrice P ∈ GL2(C) telle que : B =

(
α 0
0 β

)
= P−1AP .

(b) Déterminer φ(B) puis φ(A) à l'aide de la matrice P .
6. On suppose que les valeurs propres de A sont égales : β = α.

(a) Justi�er l'existence d'une matrice Q ∈ GL2(C) et d'un nombre complexe y tels que C =

(
α y
0 α

)
= Q−1AQ.

(b) Calculer Cn pour tout n ∈ N.
(c) En déduire φ(A) à l'aide de la matrice Q.

7. Justi�er l'existence de φ(A) pour toute matrice A de M2(C).

8. Existe-t-il une matrice de M2(C) telle que l'on ait : φ(X) =

(
1 2019
0 1

)
?

Correction :

1. Pour tout z ∈ C, on a exp(z) =

+∞∑
n=0

zn

n!
.

2. Comme M et N sont semblables il existe P ∈ GLd(K) tel que M = PNP−1, ainsi M2 = PNP−1PNP−1 =
PN2P−1 et par récurrence directe (la rédiger) on a Mp = PNpP−1, ainsi Mp et Np sont semblables.

3. (a) On a s(z) =
1

2i

[
+∞∑
n=0

inzn

n!
−

+∞∑
n=0

(−1)ninzn

n!

]
=

1

2i

+∞∑
n=0

(1−(−1)n)
inzn

n!
, or 1−(−1)n =

{
0 si n pair

2 si n impair
,

on en déduit donc que s(z) =
1

2i

+∞∑
p=0

2
i2p+1z2p+1

(2p+ 1)!
, et comme (i)2p+1 = i(−1)p, on trouve bien que

s(z) =

+∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1.

(b) De même on trouve que c(z) =

+∞∑
n=0

(−1)n

(2n)!
z2n.

4. Pour tout n ∈ N on a An = γnI2, ainsi pour m ≥ 0, on trouve
m∑

n=0

(−1)n

(2n+ 1)!
A2n+1 =

m∑
n=0

(−1)n

(2n+ 1)!
γ2n+1I2 −→

m→+∞
s(γ)I2, ainsi φ(A) existe et on a : φ(A) = s(γ)I2.

5. (a) les valeurs propres étant racines du polynôme caractéristique (unitaire de degré 2), on a χA(X) =
(X − α)(X − β), ainsi χA est scindé simple, donc A est diagonalisable, il existe donc P ∈ GL2(C) telle

que A = PBP−1 avec B =

(
α 0
0 β

)
(ainsi B = P−1AP ).

(b) Pour m ∈ N, on a
m∑

n=0

(−1)n

(2n+ 1)!
B2n+1 =

m∑
n=0

(−1)n

(2n+ 1)!

(
α2n+1 0

0 β2n+1

)
=

m∑
n=0

(−1)n

(2n+ 1)!
α2n+1 0

0

m∑
n=0

(−1)n

(2n+ 1)!
β2n+1

 −→
m→+∞

(
s(α) 0
0 s(β)

)
, ainsi φ(B) existe et
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φ(B) =

(
s(α) 0
0 s(β)

)
.

Pour m ∈ N, on a
m∑

n=0

(−1)n

(2n+ 1)!
A2n+1 = P

m∑
n=0

(−1)n

(2n+ 1)!
A2n+1P−1 −→

m→+∞
Pφ(B)P−1. Ainsi φ(A)

existe et φ(A) = P

(
s(α) 0
0 s(β)

)
P−1.

6. (a) La matrice A ne possède qu'une valeur propre, comme χA(X) est scindé (on est dans C), la matrice A
est donc trigonalisable, il existe donc une matrice Q ∈ GL2(C) et une matrice C triangulaire supérieure

de la forme C =

(
α y
0 α

)
telle que A = QCQ−1 (ie C = Q−1AQ).

(b) Notons N =

(
0 y
0 0

)
, ainsi C = αI2 + yN , on a N2 = 0, comme αI2 et yN commutent, on peut

appliquer la formule du binôme de Newton et ainsi, pour n ≥ 1 on a : Cn =

n∑
k=0

(
n

k

)
αn−kykNk =

αnI2 + αn−1y

(
n

1

)
N =

(
αn nαn−1y
0 αn

)
. Cette formule reste vrai pour n = 0.

(c) Pour m ∈ N, on a
m∑

n=0

(−1)n

(2n+ 1)!
C2n+1 =


m∑

n=0

(−1)n

(2n+ 1)!
α2n+1

m∑
n=0

(−1)n

(2n+ 1)!
(2n+ 1)α2n+1−1y

0

m∑
n=0

(−1)n

(2n+ 1)!
α2n+1

 =


m∑

n=0

(−1)n

(2n+ 1)!
α2n+1 y

m∑
n=0

(−1)nα2n

(2n)!

0

m∑
n=0

(−1)n

(2n+ 1)!
α2n+1

 −→
m→+∞

(
s(α) yc(α)
0 s(α)

)
. Ainsi φ(C) existe et φ(C) =

(
s(α) yc(α)
0 s(α)

)
. Par suite, comme en 5o(b) on a l'existence de φ(A) et on a φ(A) =

Q

(
s(α) yc(α)
0 s(α)

)
Q−1.

7. Le polynôme caractéristique de A est de degré deux, comme il est scindé il possède soit deux racines distinctes,
soit une racine double, on a montré dans les deux cas l'existence de φ(A), ainsi φ(A) existe toujours.

8. Notons Y =

(
1 2019
0 1

)
, notons tout d'abord que Y n'est pas diagonalisable, en e�et si elle l'était elle serait

semblable à I2, et donc serait égal à I2, ce qui n'est pas le cas.
Supposons l'existence de X tel que φ(X) = Y . La matrice X possède soit deux valeurs propres distinctes
soit une valeur propre double.
� Cas 1 : X possède deux valeurs propres distinctes α et β, alors d'après 5o il existe P inversible tel que

φ(X) = P

(
s(α) 0
0 s(β)

)
P−1 ainsi Y est semblable à une matrice diagonale, ce qui n'est pas le cas. Ce

cas est donc exclus.
� Cas 2 : X possède une valeurs propre double α, alors d'après 6o il existe Q inversible tel que φ(X) =

Q

(
s(α) yc(α)
0 s(α)

)
Q−1. Ainsi Y est semblable à

(
s(α) yc(α)
0 s(α)

)
, elle a donc les mêmes valeurs propres,

ainsi s(α) = 1. Or on peut remarquer que c(α)2+ s(α)2 = e2iα+2+e−2iα

4 + e2iα−2+e−2iα

−4 = 1, ainsi c(α) = 0
et on a encore Y semblable à une matrice diagonale, ce qui est encore exclus.

On viens donc de montrer, par l'absurde, qu'il n'existe pas de matrice X tel que φ(X) = Y .
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