Lycée Jean Bart pc* Mathématiques 2025-2026

DS 5 : vendredi 19 décembre

4h sans calculatrice

Le candidat encadrera ou soulignera les résultats, il numérotera aussi ses pages.

N.B. : le candidat attachera la plus grande importance & la clarté, & la précision et & la concision de la rédaction. Si
un candidat est amené & repérer ce qui peut lui sembler étre une erreur d’énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené & prendre.

Correction

Exercice 1 (proche du cours et/ou des TDs).
1° Donner dans Ms(R) (en justifiant) une matrice non diagonalisable mais trigonalisable.
Donner une matrice de M2 (R) qui n’est pas trigonalisable.

3 0 -1
2° Diagonaliser la matrice A = 2 4 2 € M3(R). En déduire la valeur de A™ pour n € N. On donnera
-1 0 3
explicitement tous les coefficients de A™.
1 0 1
3° Soit f I’endomorphisme de R3 dont la matrice dans la base canonique est M = [ -1 2 1
1 -1 1

(a) Déterminer xs et en déduire le spectre de f.

(b) Déterminer les deux sous-espaces propres de f. L’endomorphisme f est-il diagonalisable ?
On notera u un vecteur propre de valeur propre 1 et w un vecteur propre de valeur propre 2.

(c) Déterminer un vecteur v tel que f(v) =v + u.
(d) Montrer que (u,v,w) est une base de R?® et donner la matrice T' de f dans cette base.

4° On consideére, pour n € N*, le polynéme P,, = % [(1+iX)™ — (1 —1X)™]. Montrer que P, est & coefficients réels et
déterminer son degré.

5° Déterminer les polynomes P € R[X] tels que (P')? = 4P.

Correction :
1° Dans Ms(R), N = 0 0
bon étant donné qu’elle est triangulaire supérieure ...), elle n’est pas diagonalisable, en effet si elle ’était, il
existerait P € GLy(R) tel que N = PDP~! avec D = 0, ainsi on aurait N = 0, ce qui n’est pas le cas.

0 > a comme polynoéme caractéristique X? qui est scindé (ainsi N est trigonalisable,

Dans Ms(R), M = _01 é) a comme polyndme caractéristique X2 4+ 1 qui n’est pas scindé, ainsi M n’est
pas trigonalisable.
1 0 1 1 0 1
2° On trouve (il faut le détailler!) : A = PDP ' avec P = [ -2 1 0 |, Pt =112 2 2 et
1 0 -1 1 0 -1

D =

(el el V]
O = O
=~ O O

2" 447 0 2n —4n
Comme A™ = PD"P~! on trouve que : A" = [ 2(4" —2m) 24" 2(4" —2")
2n —4n 0 2" 47

3° (a) Ona:xs(X)=...= (X —1)*(X —2). Ainsi Sp(f) = {1,2}

(b) On note u = (1,1,0) et w = (1,0,1) et on trouve Ey(f) = Vect(u) et Ez(f) = Vect(w). Comme
dim(F1(f)) =1 # 2 =my, f n’est pas diagonalisable.
(c) On résout f(z,y,2) — (z,y,2) = (1,1,0) et on trouve que v = (0,0, 1) convient.
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= o O

1 1
(d) On pose P= (1 0 |, comme det(P) = —1, la famille (u,v,w) est une base de R3, comme f(u) = u,
0 1

fw)y=u+wvet f(w)=2w, on adonc T =

S O =
O~ =
N OO

4° Soit n € N*. On applique la formule du binéme :

P, = % <§n: (Z)ikX’“ - f: (Z)(—1)kikxk> - %i(l —(=1)H) (Z)i’“Xk.

k=0 k=0 k=0

0 sik pair
Or1—(-1)k= . p ., ainsi il ne reste que les valeurs impaires de k dans la somme, or si k est
2 si k impair

impair alors i* est un imaginaire pur, avec le % devant on remarque que tous les coefficients sont réels. Ainsi

P, € R[X].
On a deg(P,) < n, le coefficient devant X" est 17(2;1) i, qui est non nul si n est impair, dans ce cas
(_1)7171

deg(P,) = n, si n est pair le coefficient devant X™ vaut 0 et le coefficient devant X"~! vaut 1= 5
est non nul, ainsi deg(P,) =n — 1 dans ce cas.

ni" qui

Ainsi deg(P,,) = n-1 ST " Palr .

n si n impair

5° Tout d’abord, si P = c alors :(P")2 = 4P <= P =0, ainsi le polynéme nul est 1'unique solution constante.
Si P est un polyn6éme non constant solution de (P’)? = 4P, alors en notant n = deg(P), on a deg(P’) =n —1
ainsi 2n — 2 = n ie n = 2. Ainsi les solutions non constante sont nécessairement de degré 2. Considérons
maintenant P = aX? + bX + ¢ un polynéme de degré 2 (ainsi a # 0). On a : (P')? = 4P <= (2aX +b)? =

4a? =4a a =1
4aX?+4bX +4c <= < dab =4b < 0 =0 (car a #=0), ainsi P est solution si et seulement
b? = 4c b = 4c

sia=1letc= %. En en déduit donc que les solutions sont les P = X2 +bX + % ou b € R ainsi que P = 0.

Exercice 2 (E3A PC 2020 Ez 1).

1 a O
Soit a € R et la matrice M, = [0 0 1
010

1° Pour quelles valeurs du réel a la matrice M, est-elle diagonalisable ?

2° Pour quelles valeurs du réel a la matrice M, est-elle inversible 7
1

o = O
= = O

3° Montrer que lorsqu’elle n’est pas diagonalisable, M, est semblable & la matrice | 0
0

Correction :
X—-1 —a 0 Y 1
1°Onaxp,=| O X —-1l=X-1 = (X -1)(X%2-1)= (X —1)3(X +1). Ainsi 1 est valeur
"l a1 ox X
propre double et —1 est valeur propre simple de M,.
0 a 0
On a ainsi que M, est diagonalisable si et seulement si dim(F1(A)) = 2. Ona M, —I3= |0 -1 1 |,
0o 1 -1

séparons en deux cas :

Si a = 0, alors cette matrice est de rang 1 et donc (d’aprés le théoréme du rang) dim(E;(A)) = 2, on a donc
M, diagonalisable.

Si a # 0, alors rg(M, — I3) = 2, ainsi (toujours d’aprés le théoréme du rang), dim(E;1(A)) = 1, on a donc que
M, n’est pas diagonalisable.

En conclusion : M, est diagonalisable si et seulement si a = 0

2° (0 n’est jamais valeur propre de M, donc M, est inversible pour tout a € R.

LJB Maths - DS5-cor 2 / 8



Lycée Jean Bart pc* Mathématiques 2025-2026

3° On suppose donc a # 0, et notons f, ’endomorphisme de R? canoniquement associé a M,.

2 a 0

Comme —1 est valeur propre simple, on a dim(E_1(f,)) =1,deplusOna: M,+I3= |0 1 1], comme
01 1

aCy — 2C3 + 2C3 = 0 (on peut aussi résoudre un systéme) on pose e; = (a, —2,2) et on a f,(e;) = —e;. On a

dim(E1(fa)) = 1, et clairement ez = (1,0,0) est tel que fy(e2) = ea.
Il reste donc & trouver ez = (z,y, z) tel que (e, ez, e3) soit une base de R? et tel que f,(e3) = ez + e3.

r+ay =14z ay =1
On doit donc avoir ¢ z =y — ¢-y+z =0.
Y =z Yy—z =0
On pose donc eg = (0,1/a,1/a), on a bien f,(es) = ea + es, il ne reste plus qu’a montrer que (e1, ez, e3) est
a 1 0
une base de R?, le plus rapide est de considérer la matrice P = [ —2 0 1/a |. En développant par rapport
2 0 1/a
a la deuxiéme colonne on a det(P) = —4/a ainsi (ej,es,e3) est une base de R, ainsi M, est semblable &
-1 0 0
T= Mat(el,eg,eg.)(fa) = 0 11
0 0 1

Exercice 3 (E3A PC 2024 Fz 3).
Question de cours

1° Soit z un réel positif. Comparer = et x2.

Kook koo
Soit a €]0, 1[.
e L. . sin(n®)
On se propose d’étudier la série de terme général a,, = ,n>1.
n

2° On pose pour tout t > 1, ¢(t) = %

2.1 Justifier que la fonction ¢ — sin(t*) est dérivable sur [1,+o0o[ et déterminer sa dérivée.
2.2 Justifier que ¢ est dérivable sur [1, +o0[ et déterminer ¢'.

2.3 Montrer que l'on a : Vt € [1, +o0], |¢'(t)| < 14;#

2.4 En déduire que pour tout entier n > 1 :

1 o
€ [+ 1 16(0) - 9] < (5 + 5 ) o=l

n+1
3° On pose, pour tout n > 1 : u, = / o(t) dt.
n
Prouver que l'on a: Vn > 1, |u, — a,| < # + 2=,
+0oo o
t
4° Convergence de l’intégrale / %U dt.
1

cos(t)

= est intégrable sur [1, 400/

4.1 Démonter que t —
°° sin(t)

t

+
4.2 A ’aide d’une intégration par parties, démontrer alors que / dt converge.
1

“+oo o
sin(?
5° Démontrer, & ’aide d’un changement de variable, que l'intégrale / ¥ dt converge.
1
6° En déduire que la série de terme général u,, converge.
7° Prouver que la série de terme général u,, — a,, converge absolument.

8° Déduire des questions précédentes que la série E a, converge.
n>1

9° On suppose que la série E |an| est convergente.
n>1
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20«
. sin”(n
9.1 Montrer qu’alors la série Z # est convergente.
n>1 n
On pourra utiliser la question de cours.
+oo

cos(2z)

9.2 Prouver que l'intégrale dx converge.

1 x
On procédera comme a la question 4.2.

cos(2n®
9.3 On admet alors, en procédant comme précédemment, que la série Z y est convergente.

n>1 n
Conclure sur la nature de la série Z ay,-
n>1
On pourra utiliser la formule de duplication : cos(20) = 1 — 2sin?(0).

Correction :
1°Siz>1,onaz?>zetsizel0,1],onaz? <.
2° 2.1 La fonction ¢ — sin(t*) est dérivable sur [1,+oo] en tant que composée de fonction dérivables, et sa dérivée
est la fonction ¢ — at“~! cos(t®).
2.2 1l en va de méme pour ¢ par produit de fonctions dérivables, et, pour ¢ > 1, on a : ¢'(t) =
at® cos(t*) — sin(t%)
t2 '

at® |cos(t®)] + |sin(t®)] < at* + 1

2.3 Soit ¢t > 1, par inégalité triangulaire : |¢'(t)| < 2 <%

1
2.4 Soitn >1lett e [n,n+1],onal(t) = 2 + ﬁ%’

Comme ¢ est dérivable sur [n,n + 1] on peut donc appliquer inégalité des accroissements finis entre

1 «o
/
comme 2 — « > 0, on a donc |¢'(t)| < ﬁ+ﬂ'

1
t € [n,n+ 1] et n et ainsi on trouve bien : |p(t) — p(n)| < (712 + n2a_a) [t — nl.

n+1 n+1

3° Soit n > 1, on a u, — a, = / p(t)dt — o(n) / o(t) — o(n)dt, Ainsi, avec linéga-
n ntl n

lité triangulaire on a : |u, —a,| < / lo(t) — ¢(n)| dt, en utilisant la question précédente on a :

KR! a : o
|t —an| < +——||t—n|dt,orsit € [n,n+1] alors [t —n| = t —n), ainsi : |u, —a,| <
n

n2 | p2-o
1 a (t—mn)2n+l 1 /1 « 1 !
et ) ] calmtes) Sm e
' ' la!
4° 4.1 La fonction t CO:—Z() est continue sur [1,+oo[, on a, pour ¢t > 1, que CO;() < %, comme / t—zdt
1
converge, en on déduit donc que ¢ — C°:2(t) est intégrable sur [1,4o0].
4.2 Pour ¢t > 1, posons u(t) = % et v(t) = — cos(t), ainsi u et v sont de classe C! sur [1,+o0[, et pour ¢ > 1, on
au'(t) = 3 et v/(t) = sin(t). De plus (produit d’une fonction qui tend vers 0 par une fonction bornée) :
. [T sin(t) +0 cos(t)
u(t)v(t) v 0 (convergence du crochet), ainsi / — dt et / 2 dt sont de méme nature,

sin(t)

+oo
cette derniére étant convergente, on a donc que / dt converge.

1
5° Posons le changement de variable u = t* (ie t = u!/* et donc dt = Lu~1*1/2du) qui est bien une bijection

“+o00o : o
sin(?
strictement croissante de classe C! de [1,+oo[ dans lui méme, ainsi / L dt est de méme nature que
1

T gin(u) 1 o0 sin(u) . s . . e
a1 a du= du qui est convergente d’aprés la question précédente, ainsi I'intégrale
1 ul/e qul-1/e 1 au

+oo : a
sin(?
/ 71115 ) dt converge.
1

n n+1
6° Pour n > 1, par relation de Chasles, on a :Z up = / ©(t)dt, on vient de montrer la convergence de
k=1 1

+oo
/ ©(t)dt, ainsi Zun converge.
1
1

7° Comme « €]0,1[, on a 2 — « €]1,2[, ainsi ) | —*+ converge, il en va de méme pour ) —, ainsi I'inégalité de la
question 3 donne la convergence de > |u,, — ay|, ie la convergence absolue de la série de terme général u,, — a,,.

LJB Maths - DS5-cor 4 / 8



Lycée Jean Bart pc* Mathématiques 2025-2026

8° Ainsi > u, — a, converge, comme on a montre que » u, était convergente, on a donc la convergence de la
série de terme général u, — (u, — an) = ap, ie E a, converge.
n>1
. a
Sm(n" )| = |ay,| (car |sin(n®)| € [0,1]), ce qui montre que la série E
n>1

9° 9.1 Soitn >1,0n a

sin?(n®)
n

sin?(n®)
<

est convergente.

9.2 Pour z > 1, poson u(z) =L et v(z) = 1 sin(2x), ainsi u et v sont de classe C' sur [1,+oo[, et pour z > 1,
on a u'(z) = =3 et v'(z) = cos(2x). De plus (produit d’une fonction qui tend vers 0 par une fonction

+oo +o00 .
2 — 2
bornée) : u(z)v(x) e 0 (convergence du crochet), ainsi / cos(2z) dz et / w dz sont de
1 1 €T

T—+ T

— sin(2z)

+oo
L. —sin(2z L
5o < L5, ainsi / # dx converge, et donc l'intégrale
1

méme nature, or pour x > 1, on a : ‘ 52T 972

—+o0

2

/ M dx converge.
1 :L.

9.3 Pourn>1,0na % =i- 25"175 ") e 1= COS(EL" ) 4 gsin (" ) , ainsi L est la somme de deux termes

généraux de séries convergentes on en dedu1t donc que ) - 1 converge ce qu1 est absurde, ainsi »_ a,, est
convergente mains n’est pas absolument convergente.

Exercice 4 (sur les matrices compagnon : d’aprés CCP MP 2001 Maths 2).

Dans cet exercice K désigne R ou C, n un entier naturel, et x4 le polyndome caractéristique de la matrice A € M,,(K).
On considére le polynéme P = X" + a,, 1 X" '+ ...+ a1 X + ag de K, [X] et Cp sa matrice compagnon associée,
c’est-a dire la matrice de M,,(K) définie par :

0 0 0 —ap
10 . . O —aq
Cp — 01 0 . 0 —as
0O . 0 1 0 —ap_e
0 . . 01 —0n—1
(ie la matrice Cp = (¢; ;) est définie par ¢; ; =1 pour i —j =1, ¢;,, = —a;—1 et ¢; ; = 0 dans les autres cas).

1° Montrer que Cp est inversible si et seulement si P(0)£0.
2¢° Calculer le polynéme caractéristique de la matrice Cp et déterminer une constante k telle que xc, = kP.

3° Soit @ un polynome de K, [X], déterminer une condition nécessaire et suffisante pour qu’il existe une matrice A de
M, (K) telle que x4 = Q.
4° On note C}, la transposée de la matrice Cp.

a) Justifier la proposition : Sp(Cp) = Sp(Cp).
b) Soit A élément de Sp(C}), déterminer (ie. I’écrire avec un Vect) le sous-espace propre de C'} associé a .
c¢) Montrer que C} est diagonalisable si et seulement si P est scindé sur K et a toutes ses racines simples.
d) On suppose que P admet n racines Ay, Ag, ..., A, deux & deux distinctes, montrer que C’II est diagonalisable
1 1 .o 1
A1 D O Y
et en déduire que le déterminant de VANDERMONDE det | A% A3 . . A2 | est non nul
D Y D

e) (rajout) Question de cours : Donner (sans démonstration) l'expression factorisée du déterminant de VANDER-
MONDE.

Correction :

1° On développe par rapport a la premiére ligne et on trouve det Cp = (—1)"*1(—ag) = (=1)"ag = (—1)"P(0),
d’ou le résultat.

LJB Maths - DS5-cor 5 / 8



Lycée Jean Bart pc* Mathématiques 2025-2026

2° On développe par rapport a la derniére colonne et on trouve :

X 0 0 aon
-1 X 0 ay
Xep(X)=|0 -1 X a2

. . . . 0 .

0 0 -1 X Gp—2

0O ... ... 0 -1 X+ap_
X 0 0 X 0 0
-1 X -1 X

= (X +an-1) 0o . . —an—2| +...

: o ... -1 X 0
0 ... -1 X 0 ... 0 -1

et on reconnait X" +a, 1 X" ' +...+a9= P(X). Donc k = 1.

3¢ 11 faut et il suffit que @ soit unitaire de degré n. En effet un polynéme caractéristique est toujours unitaire
de degré n, cette condition est donc nécessaire, et & la question précédente on a montré que la question était
suffisante.

4° a) Ce résultat n’est pas spécifique & Cp, il est vrai pour toute matrice A € M,,(K), en effet les valeurs propres
sont les racines de x4 qui se calcule par un déterminant, or le déterminant est invariant par transposition,
de plus la transposition est linéaire, ainsi on a XI,, — AT = XI,, — AT ce qui montre que y4 = x4+ et donc
Pégalité des spectres (car le spectre de A est I’ensemble des racines de x4).

0 1 0o ... 0 .
0 0 1 ... 0 .
2
b) ona C}, = : : ,s0it X = | . Ainsi X est vecteur propre de valeur propre
0 e 0 1 )
z7l
—ap —am . —Qnp—1

A si et seulement si il vérifie le systéme suivant :

To = )\.’El
T3 = )\.IQ .
z; = Nz, Vi € [1,n]
(—CLO — QA= ... — a,n_1)\n_1)331 = \"z;
T = ATp_1
—agT1 —...— Ap_1Typ = \p,

Donc, comme x1 ne peut étre nul (un vecteur propre n’est pas nul), on a donc que A est racine de P et tout
1

vecteur propre est multiple de Xy = .|, ie Ex (C)) = Vect (X)).
)\n‘—l
c¢) On vient de constater que les espaces propres sont des droites, si la matrice C'}, est diagonalisable alors la

somme des dimensions des sous-espaces propres vaut n, comme tous les sep sont de dimension 1 il doit donc
y en avoir n, ie P posséde n racines distinctes (elles sont donc toutes simples).
Réciproquement si P est scindé & racines simples alors le polyndéme caractéristique de C; I’est aussi, ainsi
C} est diagonalisable.

d) Si P est scindé a racines simples, comme on vient de le voir une matrice de passage qui diagonalise C; est

1 . 1
Al . A
V= . , qui est inversible puisque matrice de passage!
- B
AT coooAnTl
e) Clest : H Aj — A
0<i<j<n
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Exercice 5 (E3A PC 2019 Maths 1 exercice 4).
1. Question de cours 1 : Rappeler sans démonstration l’écriture sous forme de série de exp(z) pour z € C.

2. Question de cours 2 : Soit p € N. Prouver que si deux matrices carrées M et N de taille d sont semblables,
alors les matrices MP et NP sont semblables.

+o00o
—1)"
Pour toute matrice A € .#5(C), on pose, lorsque cela est possible, ¢(A) = nz:% (2(n+)1)!A2”+1 -
. (D" anga
1 — LAl
m=s oo HZ:O 2n+1)!
3. Pour tout z € C, on pose s(z) = % [exp(iz) — exp(—iz)] et ¢(z) = i[exp(iz) + exp(—iz)] ot i vérifie i* = —1.

“+o0
—1)"
(a) Verifier que pour tout z € C, on a : s(z) = Z Mzznﬂ

n=0
(b) Déterminer une formule analogue pour ¢(z), z € C.

4. Si A =~I, avec v € C, déterminer p(A).
5. On suppose que A posséde deux valeurs propres distinctes a et .

(a) Justifier existence d’une matrice P € GLa(C) telle que : B = <g g) =P lAP.
(b) Déterminer ¢(B) puis ¢(A) a laide de la matrice P.

6. On suppose que les valeurs propres de A sont égales : 5= a.

(a) Justifier l’existence d’une matrice @) € GL2(C) et d’'un nombre complexe y tels que C = (g Z) =Q TAQ.

(b) Calculer C™ pour tout n € N.
(c) En déduire p(A) a laide de la matrice Q.
7. Justifier I'existence de ¢(A) pour toute matrice A de .#2(C).

8. Existe-t-il une matrice de .#5(C) telle que 'on ait : p(X) = <1 2019> ?

0 1
Correction :
+oo P
1. Pour tout z € C, on a exp(z) = ZOJ
n—=

2. Comme M et N sont semblables il existe P € GL4(K) tel que M = PNP~! ainsi M? = PNP !PNP~! =
PN?P~! et par récurrence directe (la rédiger) on a MP = PNPP~! ainsi MP et NP sont semblables.

+00 .p n

+oo nin ,n
3. (a) Onas(z):% 21:‘ —Z( D

n!
n=0 n=0

1

12" n 0 sin pair
o) D (LA Y ={

. . . )
s 2 sin impair
+oo .
1 jZrtl 2+l

on en déduit donc que s(z) = ip:[)?W’ et comme (i)??T! = i(—1)?, on trouve bien que
“+o0
(D" onta
s(z) = Z — T
|
o (2n+1)!
(D",
(b) De méme on trouve que c(z) = Z )l z2°".
n)!
n=0
m _1)
4. Pour tout n € N on a A" = ~"Ily, ainsi pour m > 0, on trouve Z QAQ”Jrl
o 2n+1)!

m _1 n
Z ()1)'72"“[2 —  s(7)1s, ainsi p(A) existe et on a : p(A) = s(v)Is.

m——+oo

5. (a) les valeurs propres étant racines du polynome caractéristique (unitaire de degré 2), on a xa(X) =
(X —a)(X — B), ainsi x4 est scindé simple, donc A est diagonalisable, il existe donc P € GL3(C) telle

que A= PBP~! avech(By g) (ainsi B = P~1AP).

m (_1)n — B m (_1)n a2n+l 0 B
(b) Pour m € Noona Do = Xyl e ogen) S

n=0 n=0

3 (;;i)lyaznﬂ 0

o ! - . (8(5) 8(06)), ainsi  o(B) existe et
2n+1

0 ;)(Qn—&—l)!ﬂ
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o(B) - (5(5” 8(05))

% (_1)n 2n+1 __ G (_1)n 2n+1 p—1 -1 ol
Pour m € N, on a ;mA = PZmA P ST Py(B)P~". Ainsi ¢(A)

n=0

existe et p(A) = P (5(61) 5(05)) Pt

6. (a) La matrice A ne posséde qu’une valeur propre, comme x4 (X) est scindé (on est dans C), la matrice A
est donc trigonalisable, il existe donc une matrice @ € GL2(C) et une matrice C' triangulaire supérieure

de la forme C = ((g Z) telle que A = QCQ~! (ie C = Q1AQ).

(b) Notons N = (8 g), ainsi C = aly + yN, on a N2 = 0, comme al, et yN commutent, on peut

n

n
appliquer la formule du binéme de Newton et ainsi, pour n > 1 on a : C" = Z <k> aRyFNF =

k=0
n n—1
oIy + a”_lycf)N = (06 nozan y) Cette formule reste vrai pour n = 0.
~ D" - (D)7 n+1-1

no L [ L@t
(¢c) Pour m € N, on a 27'0 il = | n=0 =0 N =

2 2n 1)l . S CU"

= (2n 4+ 1)!

- (D" o & (_1)na2n

=0 m — (S(Q) yc(a)) Ainsi ¢(C) existe et ¢(C) =
0 Z (=" a2+l m—+oo 0 s(a)
— (2n+1)!
S(Oa) ‘7{;(5))). Par suite, comme en 5°(b) on a lexistence de ¢(A) et on a ¢(4) =

s(a)  ye(a) 51
Q ( 0 s(a) Q-
7. Le polynome caractéristique de A est de degré deux, comme il est scindé il posséde soit deux racines distinctes,
soit une racine double, on a montré dans les deux cas I'existence de ¢(A), ainsi p(A) existe toujours.

1 201 . . . . .
8. Notons Y = 0 01 9), notons tout d’abord que Y n’est pas diagonalisable, en effet si elle ’était elle serait
semblable & I, et donc serait égal & I, ce qui n’est pas le cas.

Supposons ’existence de X tel que p(X) = Y. La matrice X posséde soit deux valeurs propres distinctes

soit une valeur propre double.

— Cas 1 : X posséde deux valeurs propres distinctes « et (3, alors d’aprés 5° il existe P inversible tel que
p(X)=P (s((;x) S(%)> P! ainsi Y est semblable & une matrice diagonale, ce qui n’est pas le cas. Ce
cas est donc exclus.

— Cas 2 : X posséde une valeurs propre double a, alors d’aprés 6° il existe @ inversible tel que p(X) =
Q s(a) ye(e) Q~!. Ainsi Y est semblable & s(a)  ye(a) , elle a donc les mémes valeurs propres,

0 s(a) 0 s(a)
ainsi s(a) = 1. Or on peut remarquer que c(a)?+ s(a)? = em*'%f'efm +
et on a encore Y semblable & une matrice diagonale, ce qui est encore exclus.

On viens donc de montrer, par 'absurde, qu’il n’existe pas de matrice X tel que p(X) =Y.

Q2 g o—2ia
—4

=1, ainsi ¢(a) =0
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