Lycée Jean Bart pc* Mathématiques 2025-2026

DS 5* : vendredi 19 décembre

4h sans calculatrice

Le candidat encadrera ou soulignera les résultats, il numérotera aussi ses pages.

N.B. : le candidat attachera la plus grande importance & la clarté, & la précision et & la concision de la rédaction. Si
un candidat est amené & repérer ce qui peut lui sembler étre une erreur d’énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené & prendre.

Correction

Exercice 1 (sur les matrices compagnon : d’aprés CCP MP 2001 Maths 2).

Dans cet exercice K désigne R ou C, n un entier naturel, et x4 le polyndme caractéristique de la matrice A € M, (K).
On considére le polynéme P = X" 4+ a, 1 X" ' 4+ ...+ a1 X + ap de K, [X] et Cp sa matrice compagnon associée,
c’est-a dire la matrice de M,,(K) définie par :

0 0 0 —ap
1 0 0 —aq
Cp = 010 0 —a2
0 . 0 1 0 —Qp—2
0 . . 0 1 —Qnp—-1
(ie la matrice Cp = (¢; ;) est définie par ¢; ; =1 pour i —j =1, ¢;, = —a;—1 €t ¢; ; = 0 dans les autres cas).

1° Montrer que Cp est inversible si et seulement si P(0)7£0.

2° Calculer le polynome caractéristique de la matrice Cp et déterminer une constante k telle que xc, = kP.

3° Soit @ un polynome de K, [X], déterminer une condition nécessaire et suffisante pour qu’il existe une matrice A de
M, (K) telle que x4 = Q.

4° On note C}, la transposée de la matrice Cp.

a) Justifier la proposition : Sp(Cp) = Sp(Cp).

b) Soit A élément de Sp(C}), déterminer (ie. I’écrire avec un Vect) le sous-espace propre de C'} associé a .
c¢) Montrer que C} est diagonalisable si et seulement si P est scindé sur K et a toutes ses racines simples.
d) On suppose que P admet n racines Ai, Ag, ..., A\, deux & deux distinctes, montrer que C; est diagonalisable
1 1 .o 1
A1 A2 . . A
et en déduire que le déterminant de VANDERMONDE det | A% A3 . . A2 | est non nul
- S -
AT Ay D Vi
e) (rajout) Question de cours : Donner (sans démonstration) lexpression factorisée du déterminant de VANDER-
MONDE.
Correction :

1° On développe par rapport a la premiére ligne et on trouve det Cp = (—1)"*1(—ag) = (=1)"ag = (—1)"P(0),
d’ou le résultat.
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2° On développe par rapport a la derniére colonne et on trouve :

X 0 0 aon
-1 X 0 ay
Xep(X)=|0 -1 X a2

. . . . 0 .

0 0 -1 X Gp—2

0O ... ... 0 -1 X+ap_
X 0 0 X 0 0
-1 X -1 X

= (X +an-1) 0o . . —an—2| +...

: o ... -1 X 0
0 ... -1 X 0 ... 0 -1

et on reconnait X" +a, 1 X" ' +...+a9= P(X). Donc k = 1.

3¢ 11 faut et il suffit que @ soit unitaire de degré n. En effet un polynéme caractéristique est toujours unitaire
de degré n, cette condition est donc nécessaire, et & la question précédente on a montré que la question était
suffisante.

4° a) Ce résultat n’est pas spécifique & Cp, il est vrai pour toute matrice A € M,,(K), en effet les valeurs propres
sont les racines de x4 qui se calcule par un déterminant, or le déterminant est invariant par transposition,
de plus la transposition est linéaire, ainsi on a XI,, — AT = XI,, — AT ce qui montre que y4 = x4+ et donc
Pégalité des spectres (car le spectre de A est I’ensemble des racines de x4).

0 1 0o ... 0 .
0 0 1 ... 0 .
2
b) ona C}, = : : ,s0it X = | . Ainsi X est vecteur propre de valeur propre
0 e 0 1 )
z7l
—ap —am . —Qnp—1

A si et seulement si il vérifie le systéme suivant :

To = )\.’El
T3 = )\.IQ .
z; = Nz, Vi € [1,n]
(—CLO — QA= ... — a,n_1)\n_1)331 = \"z;
T = ATp_1
—agT1 —...— Ap_1Typ = \p,

Donc, comme x1 ne peut étre nul (un vecteur propre n’est pas nul), on a donc que A est racine de P et tout
1

vecteur propre est multiple de Xy = .|, ie Ex (C)) = Vect (X)).
)\n‘—l
c¢) On vient de constater que les espaces propres sont des droites, si la matrice C'}, est diagonalisable alors la

somme des dimensions des sous-espaces propres vaut n, comme tous les sep sont de dimension 1 il doit donc
y en avoir n, ie P posséde n racines distinctes (elles sont donc toutes simples).
Réciproquement si P est scindé & racines simples alors le polyndéme caractéristique de C; I’est aussi, ainsi
C} est diagonalisable.

d) Si P est scindé a racines simples, comme on vient de le voir une matrice de passage qui diagonalise C; est

1 . 1
Al . A
V= . , qui est inversible puisque matrice de passage!
- B
AT coooAnTl
e) Clest : H Aj — A
0<i<j<n

LJB Maths - DS5e-cor 2 / 9



Lycée Jean Bart pc* Mathématiques 2025-2026

Exercice 2 (CENTRALE PC 2015, sans [V.F ni V).

Dans ce probléeme, K désigne le corps R ou le corps C et E est un K-espace vectoriel non nul.

Si f est un endomorphisme de F, pour tout sous-espace F' de F stable par f on note fr ’endomorphisme de F induit
par f, c’est-a-dire défini sur F par fr(z) = f(z) pour tout = dans F.

Pour tout endomorphisme f d’un K-espace vectoriel E on définit la suite (f™),en des puissances de f par

O =1dg,
ffl=fofk=fkof pour tout k dans N.

On note K[X] I’espace vectoriel sur K des polynomes a coefficients dans K et, pour tout n de N, K,,[X] le sous-espace
de K[X] des polynomes de degré au plus égal a n.
Pour n > 1, M,,(K) est 'espace des matrices carrées a n lignes et & éléments dans K et M,, 1(K) est I'espace des
matrices colonnes & n lignes et a éléments dans K.

I Premiére partie

Dans cette partie, f est un endomorphisme d’un K-espace vectoriel E.
LA — Montrer qu’une droite F' engendrée par un vecteur u est stable par f si et seulement si u est un vecteur propre
de f.
1B -
I.B.1) Montrer qu'’il existe au moins deux sous-espaces de E stables par f et donner un exemple d’un endomor-
phisme de R? qui n’admet que deux sous-espaces stables.

1.B.2) Montrer que si E est de dimension finie n > 2 et si f est non nul et non injectif, alors il existe au moins
trois sous-espaces de F stables par f et au moins quatre lorsque n est impair.
Donner un exemple d’endomorphisme de R? qui n’admet que trois sous-espaces stables.

I.C -
I.C.1) Montrer que tout sous-espace engendré par une famille de vecteurs propres de f est stable par f. Préciser
I’endomorphisme induit par f sur tout sous-espace propre de f.
I.C.2) Montrer que si f admet un sous-espace propre de dimension au moins égale & 2 alors il existe une infinité
de droites de E stables par f.
I.C.3) Que dire de f si tous les sous-espaces de E sont stables par f 7
I.D — Dans cette sous-partie, E est un espace de dimension finie.
I.D.1) Montrer que si f est diagonalisable alors tout sous-espace de E admet un supplémentaire dans E stable
par f. On pourra partir d’une base de F' et d’une base de E constituée de vecteurs propres de f.
1.D.2) Montrer que si K = C et si tout sous-espace de E stable par f admet un supplémentaire dans E stable
par f, alors f est diagonalisable. Qu’en est-il si K =R?

Correction :

I.A - Si F = Vect(u) est stable par f, f(u) € Vect(u) donc il existe A € K tel que f(u) = Au. Puisque F est une
droite vectorielle engendré par u, u est non nul donc u est bien un vecteur propre de f. Réciproquement si u
est un vecteur propre de f associé a une valeur propre A € K. u # 0 donc Vect(u) est une droite vectorielle.
De plus, si v € Vect(u), il existe k € K tel que v = ku. Par suite, f(v) = Mk donc f(v) € Vect(u). Vect(u)
est donc stable par f.

I.B -

I.B.1) Les sous-espaces {Og} et F sont clairement stables par F, il y a donc au moins deux sous-espaces
stables par F.
Considérons I’endomorphisme f de R? dont la matrice représentative dans la base canonique de R? est

0 -1

(13)
Si F est un sous-espace vectoriel stable autre que {Og} et E alors dim(F) = 1. D’aprés LA, f admet
alors un vecteur propre associé a une valeur propre réelle.
Le polynome caractéristique de f est X2+ 1. Celui-ci n’a pas de racines réelles, f n’admet donc pas de

valeurs propres réelles puisqu’elles sont racines du polynéme caractéristique.
f n’a donc que {Og} et F comme sous-espaces propres stables.

I.B.2) Icin > 2. Si f est non nul, Ker(f) # E et si f est non injective f # {Og}. De plus, f(Ker(f)) = {0g}
donc Ker(f) est stable par f. Ainsi f admet au moins trois sous-espaces stables, {Og}, E et Ker(f).
Remarque : n > 2 est nécessaire car sinon on a Ker(f) = {0g} ou Ker(f) = E.

Supposons de plus n impair. On a f(Im(f)) = {f(f(u)); v € E} C Im(f), Im(f) est donc stable
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par f. Comme f est non injective, f étant un endomorphisme sur un espace de dimension finie f
est non surjective donc Im(f) # E. f est non nul donc Im(f) # {Og}. D’aprés le théoréme du rang
n = rg(f) + dim(Ker(f)). Par suite, si Im(f) = Ker(f) on a n = 2rg(f) et donc n est pair. Ce n’est
pas le cas donc Im(f) # Ker(f). Ainsi, Im(f) est un quatriéme sous-espace propre qui s’ajoute au trois
autres.

Considérons ’endomorphisme f de R? dont la matrice représentative dans la base canonique (e, es)

0 1
2
de R est(o O)'

f est non nul, non injective car Ker(f) = Vect(e;) donc f admet au moins trois sous-espaces stables.
Supposons que F' soit un autre sous-espace stable par f. On a alors dim(F) = 1 et de I.A. F est
engendré par un vecteur propre de f. Le polynome caractéristique de f est X2. f admet donc comme
seule valeur propre 0 donc F' = Ker(f). Il n’y a donc que trois sous-espaces stables par f.

I.C -

I.C.1) Soient (uy,us,--- ,ux) une famille de k vecteurs propres de f associés respectivement a des valeurs
propres (A1, Ag, -+, \g) et F' = Vect(uq,ug, - ,ug).
k k
Soit u € F. Il existe (a1,a0, -+ ,a) € K* tel que u = Zaiui. On a alors f(u) = Zai)\iui donc
i=1 i=1
f(u) € F. Ainsi F est stable par f.
L’endomorphisme induit par f sur un sous-espace propre F' associé a la valeur propre A € K est A dp.
I.C.2) Soit F' un sous-espace stable de f de dimension au moins 2. Soit (u, v) une famille libre de F. On vérifie
alors que pour tout (a,b) € (K*)? avec a # b, la famille (u + av,u + bv) est libre.
La famille (Vect(u + av))qer~ est donc une famille de droites vectorielles deux & deux distinctes, il y
en a donc une infinité. De plus, u est v sont des vecteurs propres donc, d’aprés 1.C.1) Vect(u 4 av) est
stable par f pour tout a € K*. Ainsi, f admet une infinité de droites vectorielles stables par f.
I.C.3) Si tout sous-espace vectoriel de f est stable par f toute droite vectorielle ’est aussi et donc tout vecteur
de F est vecteur propre de f. Montrons que f admet une seule valeur propre.
Soit, pour tout u € E, A\, € K tel que f(u) = A\yu. Soit (u,v) € E2.
Supposons (u, v) libre. On a f(u+4v) = Ay (u+v) = Ayu+Av donc (Aytp—Au) 4 (Auto —Ap)v = 0g.
La liberté de (u,v) impose Ayty = Ay = Ay
Supposons (u,v) liée. Si u = 0g, on a f(u) = A,0g et on peut convenir que A\, = \,. On peut conclure
la méme chose si v = 0g.
Siu+#0p et v#0g, il existe o € K* tel que v = au. Par suite, f(v) = af(u) = alu et f(v) =Aov =
alyu. Comme u # O, ad, = a\, et comme « #£ 0, Ay, = A\y.
Ainsi, f n’admet qu’une seule valeur propre et comme tout vecteur de E est vecteur propre f est une
homothétie vectorielle de rapport cette valeur propre.

I.LD -

I.D.1) Soit (e1,...,ep) une base de F' (ou p = dim(F'), si F' = {0} alors E est un supplémentaire stable par

f, de méme avec {0} si F' = E, on suppose donc p € [1,n — 1]). Comme f est diagonalisable il existe
une base (uy, - ,u,) de F constituée de vecteurs propres de f.
D’aprés le théoréme de la base incompléte (dans sa version forte), on peut compléter la famille libre
(e1,...,ep) (car c’est une base de F') en une base de E avec des vecteurs de (u1, - -, u,), quitte & changer
lordre on peut supposer que c’est (u1,...,Un—p). Ainsi G = Vect(uq, ..., un—p) est un supplémentaire
de F dans F (car la concaténation des deux bases donne une base de E) et comme il est engendré par
une famille de vecteurs propres, G est stable par f.

1.D.2) Ici K = C. D’aprés le théoréme de De d’Alembert-Gauss, le polynome caractéristique de f admet au
moins une racine dans C donc f admet au moins un vecteur propre. Soit F' la somme directe des
sous-espaces propres de f. F' # {Og} d’aprés ce qui précéde.

Supposons F' # E. F admet un supplémentaire G stable par G et G # {0g} car F # E. L’endomor-
phisme f|g a aussi un polynéme caractéristique scindé dans C et donc un vecteur propre u. u est alors
immédiatement vecteur propre de f et est donc dans F. Or, F' et GG sont supplémentaires donc u = Og
ce qui est contradictoire avec u vecteur propre. Ainsi F' = F et donc f est diagonalisable.

Alternative : On peut construire & la main une base de vecteurs propres (de maniére récurrente) :
comme on est dans C et comme n > 1, on a Sp(f) # 0, prenons \; € Sp(f), ainsi il existe un
vecteur propre e; de valeur propre \;, comme e; # 0 alors F; = Vect(e;) est un sous-espace
de dimension 1 de E, il posséde donc un supplémentaire G (de dimension n — 1) stable par f,
notons f; I'endomorphisme induit par f sur G;. On répéte lopération (si » — 1 > 1, sinon on
a terminé) : il existe un vecteur propre es de valeur propre Ay de fi; dans Gy, c’est donc aussi
un vecteur propre de f de valeur propre Ao, comme F; et G; sont en somme directe, la famille
(e1,e2) est libre. On pose alors Fy = Vect(er,ez) qui est un sev de E de dimension 2, donc il
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posséde un supplémentaire G5, de dimension n — 2, stable par f et on note f; ’endomorphisme
induit par f sur Ga, on réitére n fois, ie jusqu’a avoir F,, = Vect(es,...,e,) et donc G, = {0},
la famille (eq, ..., e, ) ainsi construite est une base de diagonalisation de de f, ainsi f est diagonalisable.

Si K = R, on ne peut pas conclure que f est diagonalisable dans R. Prenons par exemple l’en-
domorphisme de la question I1.B.1) pour lequel les seuls sous-espaces stables sont {Og} et E et donc
tout sous-espace stable admet un supplémentaire stable et cet endomorphisme n’est pas diagonalisable
dans R.

IT Deuxiéme partie

Dans cette partie, n et p sont deux entiers naturels au moins égaux a 2, f est un endomorphisme diagonalisable
d’un K-espace vectoriel E de dimension n, qui admet p valeurs propres distinctes {A,...,A,} et, pour tout i dans
[1,p], on note E; le sous-espace propre de f associé a la valeur propre \,;.

II.LA -1l s’agit ici de montrer qu’un sous-espace F' de F est stable par f si et seulement si ' = @le(F NE;).

I1.A.1) Montrer que tout sous-espace F' de E tel que F' = @Y | (F N E;) est stable par f.

I1.A.2) Soit F' un sous-espace de E stable par f et x un vecteur non nul de F. Justifier 'existence et 1'unicité de
(wi)1<i<p dans By X --- X E, tel que z = >0 x;.

I1.A.3) Si on pose H, = {i € [1,p] | z; # 0}, H, est non vide et, quitte & renuméroter les valeurs propres (et les
sous-espaces propres), on peut supposer que H, = [1,7] avec 1 < r < p. Ainsi on a z = Y_._, z; avec
z; € E; \ {0} pour tout i de [1,7].
On pose V,, = Vect(x1, ..., x,).
Montrer que B, = (z1,...,x,) est une base de V.

I1.A.4) Montrer que pour tout j de [1,r], f/~!(z) appartient & V,, et donner la matrice de la famille (7~ (z))1<j<r
dans la base B,.

I1.A.5) Montrer que (f/~'(z))1< <, est une base de V.

I1.A.6) En déduire que pour tout ¢ de [1,7], z; appartient & F et conclure.
II.B — Dans cette sous-partie, on se place dans le cas ou p = n.

I1.B.1) Préciser la dimension de E; pour tout ¢ dans [1,p].

I1.B.2)

II.B.3) Sin >3 et k € [2,n — 1], combien y a-t-il de sous-espaces de E de dimension k et stables par f?

II.B.4)

Combien y a-t-il de droites de E stables par f?

Combien y a-t-il de sous-espaces de E stables par f dans ce cas? Les donner tous.

Correction :
II.A) -
P P
IT.A.1) Soit v € F. Il existe (u;)icq1,... p} € H FNE; tel que u= Zul
i=1 i=1
Par suite, f(u Z Aiu;. Comme, pour tout i € {1,--- ,p}, F et E; sont des sous-espaces vectoriels

FNE; lest au551et donc il GFﬂE
Ainsi f(u @F NE;. F= @F N FE; est donc stable par f.

=1 i=1
IT.A.2) Les valeurs propres (A;)ie(i,... p} dont deux a deux distinctes donc les sous-espaces vectoriels
p
(Ei)ieq1,... py sont en somme directe. De plus, f est diagonalisable donc E = @ FE;. Par conséquent, il
i=1
p p '
existe (2;)1<i<p € H FE; unique tel que z = Z ;.
i=1 =1
I1.A.3) (x1,---,x,) est une famille de vecteurs propres associés a des valeurs propres distinctes donc c’est une
famille libre. De plus, (z1,- -, z,) est immédiatement une famille génératrice de Vect(z1,- -+ ,x,) donc
(z1,- -+ ,x,) est une base de V.
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T

I1.A.4) On a, pour tout j € {1,---,r}, fi71(z) = Z)\gflxi € V,. La matrice de (f/~*(2));e(1,.. » dans la

i=1
[P VD ¢ A Vi
1 A A3 ..o At
base B, est .. .
1A A2 oAt
II.A.5) Le déterminant de la matrice de (f7~*(z)),e(1,... , dans la base B, est un déterminant de Vendermonde
qui vaut : H (Aj = Ai). Comme (X;);eq, est une famille de scalaires deux a deux distincts, ce
1<i<j<n

déterminant est non nul. Par suite, la famille (f7~'(x));c(1,... ,} est libre et étant de cardinal a égal &
r, dimension de V,, c’est une base de V.

I1.A.6) Soit i € [1,p]. D’apres IL.A.5) il existe () je(1,... »} tel que z; = Zaiyjfjfl(:c). Comme F est stable
j=1
par f, F est de facon immédiate stable par f* pour tout k € N. Comme = € F, on a donc f/~1(z) € F

pour tout 5 € {1,--- ,r}. Par suite, Zai,jfjil(l') € F et donc z; € F, ceci pour tout ¢ € {1,--- ,p}..
j=1

p p
On a donc x € @ FNE;, ceci étant aussi immédiatement vrai pour Og, on déduit que F' C @ FNE;
i=1 i=1

p
puis par double inclusion immédiate on a F' = @ FNE,;.
i=1

I1.B) -

I1.B.1) Soiti € {1,---,p}. Comme p = n et que (\;) eq,p] sont deux a deux distincts, A; est une valeur propre
d’ordre de multiplicité un. Par suite, dim(E;) = 1.

I1.B.2) D’aprés II.B.1), pour tout i € {1,--- ,n}, E; est engendré par un vecteur propre et donc d’aprés LA E;
est stable par f. De plus, si D est une droite vectorielle stable par f, elle est engendrée par un vecteur
propre d’aprés encore I.A et est donc I'un des sous-espaces propres F; puisque pour tout i € {1,--- ,n},
dim(E;) = dim(D) = 1. Par conséquent, Ey, Fs,--- , E, sont les seules droite vectorielles stables par
f. 11y en a donc n.

I1.B.3) Montrons que F est stable par f et dim(F) = k si et seulement si il existe H C {1,---,n} avec
Card(H) = k tel que F = @ E;.
Soit H C {1,---,n} avec zceaid(H) = k. Soit, pour tout ¢ € {1,--- ,n}, un vecteur propre u; € E tel
que E; = Vect(u;). On a donc @El = Vect((u;)iem). D’aprés 1.C-1), Vect((u;);cq) est stable par f

icH
donc @El I’est aussi.
icH

P
Soit F' un sous-espace de dimension k et stable par f. D’aprés II.A.6), F = F C @F N E;.. Soit

i=1
i€{l,---,n}. Comme dim(F;) = 1, on a ou bien FF N E; = E; ou bien FNE; = {0g}. Soit H = {i €
[1,n]; FNE; = E;}. On adonc F = @ E;. De plus, dim(F) = dim(@P E;) = > dim(E;) = card(H),
ieH ieH ieH
donc card(H) = k. F est donc stable par f et dim(F) = k si et seulement si il existe H C {1,--- ,n}
avec card(H) = k tel que F = @El
icH
On déduit que le nombre de sous-espaces stables par f et de dimension k est le nombre de k-combinaisons
de {1,...,n} c’est-a-dire, (7).
I1.B.4) Sin =2, d’aprés I1.B.2), Les sous-espaces stables sont {Og}, E, E; et Es.

n—1 n
Sin >3, d’aprés ILB.2) et ILB.3),ily al+ (7) + kz::z (Z) +1= kZ:O (Z) = 2", cette formule étant
d’ailleurs valable pour n =2 et n = 1.
Les sous-espaces stables de f sont {Og}, F;, i € [1,n] et @Ei, avec H C {1,---,n} 2 < Card(H) <
ieH
n—1.
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II1 Troisiéme partie

ITII.A - On considére ’endomorphisme D de dérivation sur K[X] défini par D(P) = P’ pour tout P dans K[X].
ITI.A.1) Vérifier que pour tout n de N, K,,[X] est stable par D et donner la matrice A,, de ’endomorphisme induit
par D sur K, [X] dans la base canonique de K,,[X].
IT1.A.2) Soit F un sous-espace de K[X], de dimension finie non nulle, stable par D.
a) Justifier 'existence d’un entier naturel n et d’un polynoéme R de degré n tels que R € F' et F' C K, [X].
b) Montrer que la famille (D*(R))o<i<n est une famille libre de F.
c) En déduire que F = K, [X].
ITI.A.3) Donner tous les sous-espaces de K[X] stables par D.

III.B - On considére un endomorphisme f d’un K-espace vectoriel E de dimension n > 2 tel que f* =0 et f*! #£0.
II1.B.1) Déterminer ensemble des vecteurs u de E tels que la famille By, = (f""*(u))1<i<n soit une base de E.
III.B.2) Dans le cas ou By, est une base de E, quelle est la matrice de f dans By, ?

II1.B.3) Déterminer une base de F telle que la matrice de f dans cette base soit A, _1.

)

II1.B.4) Donner tous les sous-espaces de F stables par f. Combien y en a-t-il? Donner une relation simple entre ces

sous-espaces stables et les noyaux ker(f?) pour i dans [0, n].

Correction :
III.A) -

ITI.A.1) Soit n € N. Soit P € K,[X]. Si deg(P) < 0, P = 0 et donc D(P) € K,[X]. Si deg(P) > 1,
de(P'") = deg(P) — 1 donc D(P) € K,,[X]. K,,[X] est donc stable par D.
0 1 0 - 0

0 O 2
Ona A, = 0

I11.A.2)

a) Soit L = {p € N; 3P € Favec deg(P) = p}. Cet ensemble est non vide vu que F est de dimension

non nulle, il contient un polyndéme non nul dont le degré est dans L. Supposons L non majorée.
En ce cas, il existe une suite (P;);eny de polyndomes tous non nuls de F et de degré strictement
croissant. Cette famille est donc de degré echelonné donc est libre. Ce qui impose F' de dimension
infinie. Or, dim(F") est finie, donc L est majorée. L C N donc L admet un plus grand élément. Soit
n celui-ci. Par suite, il existe R € F tel que deg(R) = n. De plus, pour tout P € F, deg(P) <n
donc F C K, [X].
Alternative : F' est de dimension finie non nulle, notons la k, ainsi il existe une base (P, ..., Pk)
de F, notons n le plus grand élément de I’ensemble (fini) {deg(P;),...,deg(Px)} et ¢ un entier
entre 1 et k tel que deg(FPy) = n Notons R = P,. Par définition du maximum, pour tout i € [1, k]
on a deg(P;) < n, ainsi si P € F, comme P est combinaison linéaire de P, ..., Py on a deg(P) < n,
ce qui montre F' C K,,[X] et on a bien montré l'existence d’un R € F tel que deg(R) = n.

b) Pour tout ¢ € {0,---,n}, on montre par récurrence que deg(D'(R)) = n — i. Or, pour tout
i€{0,---,n},0<n—1i<n. Parsuite, (D'(R))o<i<n est une famille de polynémes tous non nuls
et de degré échelonné donc (D*(R))o<i<n est libre.

¢) La famille (D*(R))o<i<n est libre d’aprés la question précédente. Elle posséde n + 1 éléments
qui sont tous dans K, [X] et dim(K,[X]) = n + 1 donc c’est une base de K,[X] donc K, [X] =
Vect(D'(R))o<i<n). Par suite, K, [X] C F. De l'inclusion de III.A.1.a), on a F = K, [X].

ITI.A.3) D’aprés III.A.1) et III.A.2) F est un sous-espace de dimension finie stable par D si et seulement si
F = {Og[x)} ou bien il existe n € N tel que F' = K, [X]. Soit & présent F' un sous espace stable par D
de dimension infinie. Montrons que D = K[X].

Soit P € K[X]. Si P est nul, P € D. Supposons P non nul. Comme F est de dimension infinie il existe
Q € F avec deg(Q) > deq(P). En effet, dans le cas contraire, on aurait F' C K,[X], ou p = deg(P) et
F serait de dimension finie. Soit ¢ = deg(Q). Comme F' et K,[X] sont stables, F' NK,[X] I'est aussi.
De plus, K,[X] N F est de dimension finie donc il existe r € N tel que K,[X] N F = K, [X]. On a donc
K, [X] C K,[X] donc r < ¢. De plus, Q € K,[X]NF donc Q € K,[X] donc ¢ < r. Ainsi r = ¢ donc
Kq[X]NF =K, [X]. Or, deq(P) < deq(Q) donc P € K,[X] donc P € F. Ainsi K[X]| C F et par double
inclusion immédiate, F = K[X].

Les sous espaces stables de K[X] par D sont donc les sous-espaces Og[x], K,[X], n € N et K[X].

LJB Maths - DS5e-cor 7 / 9



Lycée Jean Bart pc* Mathématiques 2025-2026

III.B. -

II1.B.1) Soit M = {u € E; By, est un base de E}. Montrons que M = E\Ker(f"1).
Si By, est une base de E, f"~!(u) # 0 donc u € E\Ker(f"1). L’inclusion M C E\Ker(f" ') s’en
déduit. Soit v € E\Ker(f"!). Montrons que By, est libre.

Soit (ay,- -+ ,a,) € K™ tel que Zaif"*i(u) = Og. Supposons ai,--- ,a, non tous nuls. Soit alors
i=1

ig
io = max{i € [1,n]; a; # 0}. On a donc Zaif”*i(u) = 0p. Comme f" =0, f¥ = 0 pour tout k > n,

i=1
en composant par fi~! & chaque membre de I’égalité précédente, on obtient donc a;, f*~*(u) = Og.
Comme f"~1(u) # 0, a;, = 0 ce qui contredit a;, # 0. Par suite, pour tout i € {1,--- ,n}, a; = 0 et

donc By, est libre. Il ’agit d’une famille de n vecteurs et comme dim(E) = n, By, est une base de E.
Ainsi E\Ker(f"~!) € M et par double inclusion M = E\Ker(f"1).

o 1 o0 --- 0
0o 0 1

ITII.B.2) La matrice de f dans By, est : [ : 0
: o1
0 -+ v i 0

IT1.B.3) Soit u € E tel que By, soit une base de E.

Soit B, = ((i — DI (u))1<i<n- B}, est alors clairement aussi une base de E. De plus, pour tout
e {20, S(G— ) = (- 1) (= 1) — DYV (w)) et pour i = 1, (=11 () =
0p. Par conséquent, la matrice de f dans B/ .« €st bien A,_q.

I11.B.4) Tout d’abord, pour i € [0,n] et z € Ker(f%) on a fi(f(z)) = f*(x) = f(f(z)) = f(0) = 0 donc
Ker(f?) est stable par f (on a aussi montré Ker(f%) C Ker(f"™1)). Or les inclusions sont strictes, en
effet si pour i € [0,n— 1] on a Ker(f?) = Ker(fi*1), alors Ker(f*1) = Ker(f**2) (car si x € Ker(fi*2)
alors f(z) € Ker(f*1) donc f(z) € Ker(f*) donc z € Ker(f*+! ainsi Ker(f*2 C Ker(f**! et Pautre
inclusion a déja été démontrée) donc par récurrence direct Ker(f"~!) = Ker(f"), ce qui est absurde
puisque f""'#0et f? =0.

En conclusion on a trouvé n + 1 sous-espaces stables par f : les Ker(f?) pour i € [0,n]. Reste a
Montrer que ce sont les seules.

Soit u € E tel que By, soit une base de E. D’aprés IIL.B.3), f et D), - ont la méme ma-

1[X]
trice représentative dans respectivement les bases (X'~ ')i1<i<n €t B}, = (ui—1)i<i<n, OU On a noté,
ui—1 = (i — )1 f""%(u) pour tout i € [1,n].
Dit autrement f et D), _,1x sont semblable. On introduit ’application linéaire g de E dans K,,_1[X]
telle que pour tout i € {1,---,n}, g(X*~1) = u;_;, alors comme g transforme une base en une base
c’est un isomorphisme et on a ainsi : f =go D og~!. Ainsi g7 lo f = D, 71[)(]09_1

x]

I, 1 1]
Soit F un sous-espace de E, montrons que F est stable par F si et seulement si g~*(F) est stable par

D, ..
n—1[X]
— Si F est stable par f alors g~ '(f(F)) C g~'(F). Et donc D},

est stable par Dy,

(g7 (F)) C g~ !(F) donc g=(F)

10X

— Si g~'(F) soit stable par Dy, ,ona Dy (¢7(F)) C g '(F) donc g~ ' (f(F)) C g~ '(F)
donc gog= ((f(F)) C g(g~*(F)) donc f(F) C F donc F est stable par f.

Comme g est un isomorphisme on a donc autant de sous-espaces stable par f que de sous-espaces

stables par D), .. Comme on a montré en IILA.3 qu’il y en avait n + 1 ({0} et les K;[X] pour

i € [0,n—1]). Il n’y a donc pas de sous-espaces stable par f en plus des n + 1 trouves.

En conclusion les sous-espaces stables par f sont les Ker(f*) pour i € [0,n], et il y en a n + 1.

IV Quatriéme partie

Dans cette partie, n est un entier naturel non nul, M est dans M,,(R) et f est 'endomorphisme de E = M,, 1(R)
défini par f(X) = M X pour tout X de E.
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1 sik=1/¢

IV.A — Si on pose X; = : oil O ¢ = {0 ST k4 £7 et B, = (Xi)i<ign la base canonique de E, quelle est la
: S1

5n,i

matrice de f dans B, 7

IV.B — Montrer que si n est impair, alors f admet au moins une valeur propre réelle.

IV.C - Dans cette question, A\ = a + i3, avec (o, 3) dans R?, est une valeur propre non réelle de M et Z de M,, 1(C),
non nul est tel que MZ = \Z.

: T / A —— : p
Si M = (m,j)i<i,j<n, 00 pose M = (m; ;)1<i j<n avec m; ; = M, ; (conjugué du nombre complexe m; ;) pour
21 2]
tout (i,7) de [1,n]*etsi Z=| : |,onpose Z= | : | avec z; =z pour tout i de [1,n].
Zn 20

Onpose X =1(Z+ Z)et Y = 5-(Z — 7).
IV.C.1) Vérifier que X et Y sont dans E et montrer que la famille (X,Y) est libre dans F.

IV.C.2) Montrer que le plan vectoriel F' engendré par X et Y est stable par f et donner la matrice de fr dans la
base (X,Y).

IV.D — Que penser de laffirmation : « tout endomorphisme d’un espace vectoriel réel de dimension finie admet au
moins une droite ou un plan stable » 7

IV.E — Existe-t-il un endomorphisme de R[X] n’admettant ni droite ni plan stable ?

Correction :

IV.A — M X; étant la colonne i de M, par définition de la matrice d’'un endomorphisme dans une base, la matrice
de f dans B, est M.

IV.B - Le polyndme caractéristique x; de f étant unitaire de degré n, il tend vers —oo en —oo et +o00 en +00;
comme il change de signe et est une fonction continue réelle, il admet au moins une racine réelle donc f a
au moins une valeur propre.

IvVv.C -
IV.C.1) X et Y sont bien des vecteurs de R™ puisque pour tout 4, x; = Re(z;) et y; = Sm(z;).
Soient (a,b) un couple de réels tels que aX + bY = 0 ce qui équivaut a (a — ib)Z + (a + ib)Z = 0.
comme MZ =\Z, MZ = A\Z. Z et Z sont des vecteurs propres de M associés & deux valeurs propres
distinctes (car A ¢ R), ils forment une famille libre donc @ —ib = a+ib = 0 ce qui équivaut A a =b =10
ce qui prouve que (X,Y) est libre.
IV.C.2) On a immédiatement :

2MX =MZ + MZ =2Re (o +iB)(X +1iY)) = 2(aX — BY)
2MY =1 (MZ - MZ) =23m ((a +iB)(X +iY)) = 2(BX + aY)

ce qui prouve que le plan vectoriel F' est stable par f et la matrice de fr dans la base (X,Y) est

a B
MF:(—B a)

IV.D - Soit E un espace vectoriel de dimension n non nulle et un endomorphisme f de F admet de matrice
M dans une base B donnée de E. Si f a une valeur propre réelle A, tout vecteur propre de f associé a A
engendre une droite stable par f.

Si f n’a pas de valeur propre réelle, sa matrice M admet au moins une valeur propre complexe A (n # 0).
En reprenant les notations de la question C, les vecteurs = et y de E de matrices X et Y dans la base B
engendrent un plan stable par F.Ainsi :

tout endomorphisme d’un espace vectoriel réel de dimension finie non nulle admet une droite ou un plan
stable.

IV.E - Soit 'endomorphisme de R[X] défini par f(P) = PX. Si P est non nul, deg(f(P)) = deg(P) + 1 donc
f(P) ne peut pas étre colinéaire & P ; de plus P, f(P), f?(P) est une famille libre (car étagée en degré) donc
P ne peut pas appartenir & un plan stable.
L’endomorphisme de R[X] défini par f(P) = PX n’admet ni droite ni plan stable.
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