
Lycée Jean Bart pc⋆ Mathématiques 2025�2026

ds 5⋆ : vendredi 19 décembre

4h sans calculatrice

Le candidat encadrera ou soulignera les résultats, il numérotera aussi ses pages.
N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si
un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (sur les matrices compagnon : d'après ccp mp 2001 Maths 2).
Dans cet exercice K désigne R ou C, n un entier naturel, et χA le polynôme caractéristique de la matrice A ∈ Mn(K).
On considère le polynôme P = Xn + an−1X

n−1 + . . . + a1X + a0 de Kn[X] et CP sa matrice compagnon associée,
c'est-à dire la matrice de Mn(K) dé�nie par :

CP =


0 0 . . 0 −a0
1 0 . . 0 −a1
0 1 0 . 0 −a2
. . . . . .
0 . 0 1 0 −an−2

0 . . 0 1 −an−1


(ie la matrice CP = (ci,j) est dé�nie par ci,j = 1 pour i− j = 1, ci,n = −ai−1 et ci,j = 0 dans les autres cas).

1o Montrer que CP est inversible si et seulement si P (0)̸=0.

2o Calculer le polynôme caractéristique de la matrice CP et déterminer une constante k telle que χCp = kP .

3o Soit Q un polynôme de Kn[X], déterminer une condition nécessaire et su�sante pour qu'il existe une matrice A de
Mn(K) telle que χA = Q.

4o On note C⊤
P la transposée de la matrice CP .

a) Justi�er la proposition : Sp(CP ) = Sp(C⊤
P ).

b) Soit λ élément de Sp(C⊤
P ), déterminer (ie. l'écrire avec un Vect) le sous-espace propre de C⊤

P associé à λ.

c) Montrer que C⊤
P est diagonalisable si et seulement si P est scindé sur K et a toutes ses racines simples.

d) On suppose que P admet n racines λ1, λ2, . . ., λn deux à deux distinctes, montrer que C⊤
P est diagonalisable

et en déduire que le déterminant de Vandermonde det


1 1 . . 1
λ1 λ2 . . λn

λ2
1 λ2

2 . . λ2
n

. . . . .
λn−1
1 λn−1

2 . . λn−1
n

 est non nul.

e) (rajout) Question de cours : Donner (sans démonstration) l'expression factorisée du déterminant de Vander-
monde.

Correction :

1o On développe par rapport à la première ligne et on trouve detCP = (−1)n+1(−a0) = (−1)na0 = (−1)nP (0),
d'où le résultat.
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2o On développe par rapport à la dernière colonne et on trouve :

χCP
(X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X 0 . . . . . . 0 a0

−1 X
. . . 0 a1

0 −1 X
. . .

... a2
...

. . .
. . .

. . . 0
...

0 0 −1 X an−2

0 . . . . . . 0 −1 X + an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (X + an−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

X 0 . . . 0

−1 X
. . .

0
. . .

. . .
...
0 . . . −1 X

∣∣∣∣∣∣∣∣∣∣∣∣∣
− an−2

∣∣∣∣∣∣∣∣∣∣∣∣

X 0 . . . 0

−1 X
. . .

...
0 . . . −1 X 0
0 . . . 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣
+ . . .

et on reconnaît Xn + an−1X
n−1 + . . .+ a0 = P (X). Donc k = 1.

3o Il faut et il su�t que Q soit unitaire de degré n. En e�et un polynôme caractéristique est toujours unitaire
de degré n, cette condition est donc nécessaire, et à la question précédente on a montré que la question était
su�sante.

4o a) Ce résultat n'est pas spéci�que à Cp, il est vrai pour toute matrice A ∈ Mn(K), en e�et les valeurs propres
sont les racines de χA qui se calcule par un déterminant, or le déterminant est invariant par transposition,
de plus la transposition est linéaire, ainsi on a XIn−A⊤ = XIn−A⊤ ce qui montre que χA = χA⊤ et donc
l'égalité des spectres (car le spectre de A est l'ensemble des racines de χA).

b) on a C⊤
P =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

...
0 . . . 0 1

−a0 −a1 . . . −an−1

, soit X =


x1

x2

. . .

xn

. Ainsi X est vecteur propre de valeur propre

λ si et seulement si il véri�e le système suivant :

x2 = λx1

x3 = λx2

...

xn = λxn−1

−a0x1 −. . .− an−1xn = λxn

⇐⇒

{
xi = λi−1x1, ∀i ∈ [[1, n]]

(−a0 − a1λ− . . .− an−1λ
n−1)x1 = λnx1

Donc, comme x1 ne peut être nul (un vecteur propre n'est pas nul), on a donc que λ est racine de P et tout

vecteur propre est multiple de Xλ =


1
λ
...

λn−1

, ie Eλ

(
C⊤

p

)
= Vect (Xλ).

c) On vient de constater que les espaces propres sont des droites, si la matrice C⊤
P est diagonalisable alors la

somme des dimensions des sous-espaces propres vaut n, comme tous les sep sont de dimension 1 il doit donc
y en avoir n, ie P possède n racines distinctes (elles sont donc toutes simples).

Réciproquement si P est scindé à racines simples alors le polynôme caractéristique de C⊤
P l'est aussi, ainsi

C⊤
P est diagonalisable.

d) Si P est scindé à racines simples, comme on vient de le voir une matrice de passage qui diagonalise C⊤
P est

V =


1 . . . 1
λ1 . . . λn

...
λn−1
1 . . . λn−1

n

, qui est inversible puisque matrice de passage !

e) C'est :
∏

0≤i<j≤n

λj − λi.
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Exercice 2 (Centrale pc 2015, sans IV.F ni V).
Dans ce problème, K désigne le corps R ou le corps C et E est un K-espace vectoriel non nul.
Si f est un endomorphisme de E, pour tout sous-espace F de E stable par f on note fF l'endomorphisme de F induit
par f , c'est-à-dire dé�ni sur F par fF (x) = f(x) pour tout x dans F .
Pour tout endomorphisme f d'un K-espace vectoriel E on dé�nit la suite (fn)n∈N des puissances de f par{

f0 = IdE ,

fk+1 = f ◦ fk = fk ◦ f pour tout k dans N.

On note K[X] l'espace vectoriel sur K des polynômes à coe�cients dans K et, pour tout n de N, Kn[X] le sous-espace
de K[X] des polynômes de degré au plus égal à n.
Pour n ⩾ 1, Mn(K) est l'espace des matrices carrées à n lignes et à éléments dans K et Mn,1(K) est l'espace des
matrices colonnes à n lignes et à éléments dans K.

I Première partie

Dans cette partie, f est un endomorphisme d'un K-espace vectoriel E.

I.A � Montrer qu'une droite F engendrée par un vecteur u est stable par f si et seulement si u est un vecteur propre
de f .

I.B �

I.B.1) Montrer qu'il existe au moins deux sous-espaces de E stables par f et donner un exemple d'un endomor-
phisme de R2 qui n'admet que deux sous-espaces stables.

I.B.2) Montrer que si E est de dimension �nie n ⩾ 2 et si f est non nul et non injectif, alors il existe au moins
trois sous-espaces de E stables par f et au moins quatre lorsque n est impair.
Donner un exemple d'endomorphisme de R2 qui n'admet que trois sous-espaces stables.

I.C �

I.C.1) Montrer que tout sous-espace engendré par une famille de vecteurs propres de f est stable par f . Préciser
l'endomorphisme induit par f sur tout sous-espace propre de f .

I.C.2) Montrer que si f admet un sous-espace propre de dimension au moins égale à 2 alors il existe une in�nité
de droites de E stables par f .

I.C.3) Que dire de f si tous les sous-espaces de E sont stables par f ?

I.D � Dans cette sous-partie, E est un espace de dimension �nie.

I.D.1) Montrer que si f est diagonalisable alors tout sous-espace de E admet un supplémentaire dans E stable
par f . On pourra partir d'une base de F et d'une base de E constituée de vecteurs propres de f .

I.D.2) Montrer que si K = C et si tout sous-espace de E stable par f admet un supplémentaire dans E stable
par f , alors f est diagonalisable. Qu'en est-il si K = R ?

Correction :

I.A � Si F = Vect(u) est stable par f , f(u) ∈ Vect(u) donc il existe λ ∈ K tel que f(u) = λu. Puisque F est une
droite vectorielle engendré par u, u est non nul donc u est bien un vecteur propre de f . Réciproquement si u
est un vecteur propre de f associé à une valeur propre λ ∈ K. u ̸= 0E donc Vect(u) est une droite vectorielle.
De plus, si v ∈ Vect(u), il existe k ∈ K tel que v = ku. Par suite, f(v) = λku donc f(v) ∈ Vect(u). Vect(u)
est donc stable par f .

I.B �

I.B.1) Les sous-espaces {0E} et E sont clairement stables par F , il y a donc au moins deux sous-espaces
stables par F .
Considérons l'endomorphisme f de R2 dont la matrice représentative dans la base canonique de R2 est(

0 −1
1 0

)
.

Si F est un sous-espace vectoriel stable autre que {0E} et E alors dim(F ) = 1. D'après I.A, f admet
alors un vecteur propre associé à une valeur propre réelle.
Le polynôme caractéristique de f est X2 +1. Celui-ci n'a pas de racines réelles, f n'admet donc pas de
valeurs propres réelles puisqu'elles sont racines du polynôme caractéristique.
f n'a donc que {0E} et E comme sous-espaces propres stables.

I.B.2) Ici n ≥ 2. Si f est non nul, Ker(f) ̸= E et si f est non injective f ̸= {0E}. De plus, f(Ker(f)) = {0E}
donc Ker(f) est stable par f . Ainsi f admet au moins trois sous-espaces stables, {0E}, E et Ker(f).
Remarque : n ≥ 2 est nécessaire car sinon on a Ker(f) = {0E} ou Ker(f) = E.
Supposons de plus n impair. On a f(Im(f)) = {f(f(u)) ; u ∈ E} ⊂ Im(f), Im(f) est donc stable
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par f . Comme f est non injective, f étant un endomorphisme sur un espace de dimension �nie f
est non surjective donc Im(f) ̸= E. f est non nul donc Im(f) ̸= {0E}. D'après le théorème du rang
n = rg(f) + dim(Ker(f)). Par suite, si Im(f) = Ker(f) on a n = 2rg(f) et donc n est pair. Ce n'est
pas le cas donc Im(f) ̸= Ker(f). Ainsi, Im(f) est un quatrième sous-espace propre qui s'ajoute au trois
autres.
Considérons l'endomorphisme f de R2 dont la matrice représentative dans la base canonique (e1, e2)

de R2 est

(
0 1
0 0

)
.

f est non nul, non injective car Ker(f) = Vect(e1) donc f admet au moins trois sous-espaces stables.
Supposons que F soit un autre sous-espace stable par f . On a alors dim(F ) = 1 et de I.A. F est
engendré par un vecteur propre de f . Le polynôme caractéristique de f est X2. f admet donc comme
seule valeur propre 0 donc F = Ker(f). Il n'y a donc que trois sous-espaces stables par f .

I.C �

I.C.1) Soient (u1, u2, · · · , uk) une famille de k vecteurs propres de f associés respectivement à des valeurs
propres (λ1, λ2, · · · , λk) et F = Vect(u1, u2, · · · , uk).

Soit u ∈ F . Il existe (α1, α2, · · · , αk) ∈ Kk tel que u =

k∑
i=1

αiui. On a alors f(u) =

k∑
i=1

αiλiui donc

f(u) ∈ F . Ainsi F est stable par f .
L'endomorphisme induit par f sur un sous-espace propre F associé à la valeur propre λ ∈ K est λIdF .

I.C.2) Soit F un sous-espace stable de f de dimension au moins 2. Soit (u, v) une famille libre de F . On véri�e
alors que pour tout (a, b) ∈ (K∗)2 avec a ̸= b, la famille (u+ av, u+ bv) est libre.
La famille (Vect(u + av))a∈K∗ est donc une famille de droites vectorielles deux à deux distinctes, il y
en a donc une in�nité. De plus, u est v sont des vecteurs propres donc, d'après I.C.1) Vect(u+ av) est
stable par f pour tout a ∈ K∗. Ainsi, f admet une in�nité de droites vectorielles stables par f .

I.C.3) Si tout sous-espace vectoriel de f est stable par f toute droite vectorielle l'est aussi et donc tout vecteur
de E est vecteur propre de f . Montrons que f admet une seule valeur propre.
Soit, pour tout u ∈ E, λu ∈ K tel que f(u) = λuu. Soit (u, v) ∈ E2.
Supposons (u, v) libre. On a f(u+v) = λu+v(u+v) = λuu+λvv donc (λu+v−λu)u+(λu+v−λv)v = 0E .
La liberté de (u, v) impose λu+v = λu = λv.
Supposons (u, v) liée. Si u = 0E , on a f(u) = λv0E et on peut convenir que λu = λv. On peut conclure
la même chose si v = 0E .
Si u ̸= 0E et v ̸= 0E , il existe α ∈ K∗ tel que v = αu. Par suite, f(v) = αf(u) = αλuu et f(v) = λvv =
αλvu. Comme u ̸= 0E , αλu = αλv et comme α ̸= 0, λu = λv.
Ainsi, f n'admet qu'une seule valeur propre et comme tout vecteur de E est vecteur propre f est une
homothétie vectorielle de rapport cette valeur propre.

I.D �

I.D.1) Soit (e1, . . . , ep) une base de F (où p = dim(F ), si F = {0} alors E est un supplémentaire stable par
f , de même avec {0} si F = E, on suppose donc p ∈ [[1, n− 1]]). Comme f est diagonalisable il existe
une base (u1, · · · , un) de E constituée de vecteurs propres de f .
D'après le théorème de la base incomplète (dans sa version forte), on peut compléter la famille libre
(e1, . . . , ep) (car c'est une base de F ) en une base de E avec des vecteurs de (u1, · · · , un), quitte à changer
l'ordre on peut supposer que c'est (u1, . . . , un−p). Ainsi G = Vect(u1, . . . , un−p) est un supplémentaire
de F dans E (car la concaténation des deux bases donne une base de E) et comme il est engendré par
une famille de vecteurs propres, G est stable par f .

I.D.2) Ici K = C. D'après le théorème de De d'Alembert-Gauss, le polynôme caractéristique de f admet au
moins une racine dans C donc f admet au moins un vecteur propre. Soit F la somme directe des
sous-espaces propres de f . F ̸= {0E} d'après ce qui précède.
Supposons F ̸= E. F admet un supplémentaire G stable par G et G ̸= {0E} car F ̸= E. L'endomor-
phisme f|G a aussi un polynôme caractéristique scindé dans C et donc un vecteur propre u. u est alors
immédiatement vecteur propre de f et est donc dans F . Or, F et G sont supplémentaires donc u = 0E
ce qui est contradictoire avec u vecteur propre. Ainsi F = E et donc f est diagonalisable.
Alternative : On peut construire à la main une base de vecteurs propres (de manière récurrente) :
comme on est dans C et comme n ≥ 1, on a Sp(f) ̸= ∅, prenons λ1 ∈ Sp(f), ainsi il existe un
vecteur propre e1 de valeur propre λ1, comme e1 ̸= 0 alors F1 = Vect(e1) est un sous-espace
de dimension 1 de E, il possède donc un supplémentaire G1 (de dimension n − 1) stable par f ,
notons f1 l'endomorphisme induit par f sur G1. On répète l'opération (si n − 1 ≥ 1, sinon on
a terminé) : il existe un vecteur propre e2 de valeur propre λ2 de f1 dans G1, c'est donc aussi
un vecteur propre de f de valeur propre λ2, comme F1 et G1 sont en somme directe, la famille
(e1, e2) est libre. On pose alors F2 = Vect(e1, e2) qui est un sev de E de dimension 2, donc il
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possède un supplémentaire G2, de dimension n − 2, stable par f et on note f2 l'endomorphisme
induit par f sur G2, on réitère n fois, ie jusqu'à avoir Fn = Vect(e1, . . . , en) et donc Gn = {0},
la famille (e1, . . . , en) ainsi construite est une base de diagonalisation de de f , ainsi f est diagonalisable.

Si K = R, on ne peut pas conclure que f est diagonalisable dans R. Prenons par exemple l'en-
domorphisme de la question I.B.1) pour lequel les seuls sous-espaces stables sont {0E} et E et donc
tout sous-espace stable admet un supplémentaire stable et cet endomorphisme n'est pas diagonalisable
dans R.

II Deuxième partie

Dans cette partie, n et p sont deux entiers naturels au moins égaux à 2, f est un endomorphisme diagonalisable
d'un K-espace vectoriel E de dimension n, qui admet p valeurs propres distinctes {λ1, . . . , λp} et, pour tout i dans
[[1, p]], on note Ei le sous-espace propre de f associé à la valeur propre λi.

II.A � Il s'agit ici de montrer qu'un sous-espace F de E est stable par f si et seulement si F =
⊕p

i=1(F ∩ Ei).

II.A.1) Montrer que tout sous-espace F de E tel que F = ⊕p
i=1(F ∩ Ei) est stable par f .

II.A.2) Soit F un sous-espace de E stable par f et x un vecteur non nul de F . Justi�er l'existence et l'unicité de
(xi)1⩽i⩽p dans E1 × · · · × Ep tel que x =

∑p
i=1 xi.

II.A.3) Si on pose Hx = {i ∈ [[1, p]] | xi ̸= 0}, Hx est non vide et, quitte à renuméroter les valeurs propres (et les
sous-espaces propres), on peut supposer que Hx = [[1, r]] avec 1 ⩽ r ⩽ p. Ainsi on a x =

∑r
i=1 xi avec

xi ∈ Ei \ {0} pour tout i de [[1, r]].
On pose Vx = Vect(x1, . . . , xr).
Montrer que Bx = (x1, . . . , xr) est une base de Vx.

II.A.4) Montrer que pour tout j de [[1, r]], f j−1(x) appartient à Vx et donner la matrice de la famille (f j−1(x))1⩽j⩽r

dans la base Bx.

II.A.5) Montrer que (f j−1(x))1⩽j⩽r est une base de Vx.

II.A.6) En déduire que pour tout i de [[1, r]], xi appartient à F et conclure.

II.B � Dans cette sous-partie, on se place dans le cas où p = n.

II.B.1) Préciser la dimension de Ei pour tout i dans [[1, p]].

II.B.2) Combien y a-t-il de droites de E stables par f ?

II.B.3) Si n ⩾ 3 et k ∈ [[2, n− 1]], combien y a-t-il de sous-espaces de E de dimension k et stables par f ?

II.B.4) Combien y a-t-il de sous-espaces de E stables par f dans ce cas ? Les donner tous.

Correction :

II.A) �

II.A.1) Soit u ∈ F . Il existe (ui)i∈{1,··· ,p} ∈
p∏

i=1

F ∩ Ei tel que u =

p∑
i=1

ui.

Par suite, f(u) =

p∑
i=1

λiui. Comme, pour tout i ∈ {1, · · · , p}, F et Ei sont des sous-espaces vectoriels

F ∩ Ei l'est aussi et donc λiui ∈ F ∩ Ei.

Ainsi f(u) ∈
p⊕

i=1

F ∩ Ei. F =

p⊕
i=1

F ∩ Ei est donc stable par f .

II.A.2) Les valeurs propres (λi)i∈{1,··· ,p} dont deux à deux distinctes donc les sous-espaces vectoriels

(Ei)i∈{1,··· ,p} sont en somme directe. De plus, f est diagonalisable donc E =

p⊕
i=1

Ei. Par conséquent, il

existe (xi)1≤i≤p ∈
p∏

i=1

Ei unique tel que x =

p∑
i=1

xi.

II.A.3) (x1, · · · , xr) est une famille de vecteurs propres associés à des valeurs propres distinctes donc c'est une
famille libre. De plus, (x1, · · · , xr) est immédiatement une famille génératrice de Vect(x1, · · · , xr) donc
(x1, · · · , xr) est une base de Vx.
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II.A.4) On a, pour tout j ∈ {1, · · · , r}, f j−1(x) =

r∑
i=1

λj−1
i xi ∈ Vx. La matrice de (f j−1(x))j∈{1,··· ,r} dans la

base Bx est


1 λ1 λ2

1 . . . λr−1
1

1 λ2 λ2
2 . . . λr−1

2
...

...
...

...
1 λr λ2

r . . . λr−1
r

.

II.A.5) Le déterminant de la matrice de (f j−1(x))j∈{1,··· ,r} dans la base Bx est un déterminant de Vendermonde

qui vaut :
∏

1≤i<j≤n

(λj − λi). Comme (λi)i∈[[1,r]] est une famille de scalaires deux à deux distincts, ce

déterminant est non nul. Par suite, la famille (f j−1(x))j∈{1,··· ,r} est libre et étant de cardinal à égal à
r, dimension de Vx, c'est une base de Vx.

II.A.6) Soit i ∈ [[1, p]]. D'après II.A.5) il existe (αi,j)j∈{1,··· ,r} tel que xi =

r∑
j=1

αi,jf
j−1(x). Comme F est stable

par f , F est de façon immédiate stable par fk pour tout k ∈ N. Comme x ∈ F , on a donc f j−1(x) ∈ F

pour tout j ∈ {1, · · · , r}. Par suite,
r∑

j=1

αi,jf
j−1(x) ∈ F et donc xi ∈ F , ceci pour tout i ∈ {1, · · · , p}..

On a donc x ∈
p⊕

i=1

F ∩Ei, ceci étant aussi immédiatement vrai pour 0E , on déduit que F ⊂
p⊕

i=1

F ∩Ei

puis par double inclusion immédiate on a F =

p⊕
i=1

F ∩ Ei.

II.B) �

II.B.1) Soit i ∈ {1, · · · , p}. Comme p = n et que (λj)j∈[[1,p]] sont deux à deux distincts, λi est une valeur propre
d'ordre de multiplicité un. Par suite, dim(Ei) = 1.

II.B.2) D'après II.B.1), pour tout i ∈ {1, · · · , n}, Ei est engendré par un vecteur propre et donc d'après I.A Ei

est stable par f . De plus, si D est une droite vectorielle stable par f , elle est engendrée par un vecteur
propre d'après encore I.A et est donc l'un des sous-espaces propres Ei puisque pour tout i ∈ {1, · · · , n},
dim(Ei) = dim(D) = 1. Par conséquent, E1, E2, · · · , En sont les seules droite vectorielles stables par
f . Il y en a donc n.

II.B.3) Montrons que F est stable par f et dim(F ) = k si et seulement si il existe H ⊂ {1, · · · , n} avec

Card(H) = k tel que F =
⊕
i∈H

Ei.

Soit H ⊂ {1, · · · , n} avec card(H) = k. Soit, pour tout i ∈ {1, · · · , n}, un vecteur propre ui ∈ E tel

que Ei = Vect(ui). On a donc
⊕
i∈H

Ei = Vect((ui)i∈H). D'après I.C-1), Vect((ui)i∈H) est stable par f

donc
⊕
i∈H

Ei l'est aussi.

Soit F un sous-espace de dimension k et stable par f . D'après II.A.6), F = F ⊂
p⊕

i=1

F ∩ Ei.. Soit

i ∈ {1, · · · , n}. Comme dim(Ei) = 1, on a ou bien F ∩ Ei = Ei ou bien F ∩ Ei = {0E}. Soit H = {i ∈
[[1, n]] ; F ∩Ei = Ei}. On a donc F =

⊕
i∈H

Ei. De plus, dim(F ) = dim(
⊕
i∈H

Ei) =
∑
i∈H

dim(Ei) = card(H),

donc card(H) = k. F est donc stable par f et dim(F ) = k si et seulement si il existe H ⊂ {1, · · · , n}
avec card(H) = k tel que F =

⊕
i∈H

Ei.

On déduit que le nombre de sous-espaces stables par f et de dimension k est le nombre de k-combinaisons
de {1, . . . , n} c'est-à-dire,

(
n
k

)
.

II.B.4) Si n = 2, d'après II.B.2), Les sous-espaces stables sont {0E}, E, E1 et E2.

Si n ≥ 3, d'après II.B.2) et II.B.3), il y a 1 +
(
n
1

)
+

n−1∑
k=2

(
n

k

)
+ 1 =

n∑
k=0

(
n

k

)
= 2n, cette formule étant

d'ailleurs valable pour n = 2 et n = 1.

Les sous-espaces stables de f sont {0E}, Ei, i ∈ [[1, n]] et
⊕
i∈H

Ei, avec H ⊂ {1, · · · , n} 2 ≤ Card(H) ≤

n− 1.
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III Troisième partie

III.A � On considère l'endomorphisme D de dérivation sur K[X] dé�ni par D(P ) = P ′ pour tout P dans K[X].

III.A.1) Véri�er que pour tout n de N, Kn[X] est stable par D et donner la matrice An de l'endomorphisme induit
par D sur Kn[X] dans la base canonique de Kn[X].

III.A.2) Soit F un sous-espace de K[X], de dimension �nie non nulle, stable par D.

a) Justi�er l'existence d'un entier naturel n et d'un polynôme R de degré n tels que R ∈ F et F ⊂ Kn[X].

b) Montrer que la famille (Di(R))0⩽i⩽n est une famille libre de F .

c) En déduire que F = Kn[X].

III.A.3) Donner tous les sous-espaces de K[X] stables par D.

III.B � On considère un endomorphisme f d'un K-espace vectoriel E de dimension n ⩾ 2 tel que fn = 0 et fn−1 ̸= 0.

III.B.1) Déterminer l'ensemble des vecteurs u de E tels que la famille Bf,u = (fn−i(u))1⩽i⩽n soit une base de E.

III.B.2) Dans le cas où Bf,u est une base de E, quelle est la matrice de f dans Bf,u ?

III.B.3) Déterminer une base de E telle que la matrice de f dans cette base soit An−1.

III.B.4) Donner tous les sous-espaces de E stables par f . Combien y en a-t-il ? Donner une relation simple entre ces
sous-espaces stables et les noyaux ker(f i) pour i dans [[0, n]].

Correction :

III.A) �

III.A.1) Soit n ∈ N. Soit P ∈ Kn[X]. Si deg(P ) ≤ 0, P ′ = 0 et donc D(P ) ∈ Kn[X]. Si deg(P ) ≥ 1,
de(P ′) = deg(P )− 1 donc D(P ) ∈ Kn[X]. Kn[X] est donc stable par D.

On a An =



0 1 0 · · · 0

0 0 2
. . .

...
...

. . .
. . . 0

...
. . . n

0 · · · · · · · · · 0


.

III.A.2)

a) Soit L = {p ∈ N ; ∃P ∈ F avec deg(P ) = p}. Cet ensemble est non vide vu que F est de dimension
non nulle, il contient un polynôme non nul dont le degré est dans L. Supposons L non majorée.
En ce cas, il existe une suite (Pi)i∈N de polynômes tous non nuls de F et de degré strictement
croissant. Cette famille est donc de degré echelonné donc est libre. Ce qui impose F de dimension
in�nie. Or, dim(F ) est �nie, donc L est majorée. L ⊂ N donc L admet un plus grand élément. Soit
n celui-ci. Par suite, il existe R ∈ F tel que deg(R) = n. De plus, pour tout P ∈ F , deg(P ) ≤ n
donc F ⊂ Kn[X].
Alternative : F est de dimension �nie non nulle, notons la k, ainsi il existe une base (P1, . . . , Pk)
de F , notons n le plus grand élément de l'ensemble (�ni) {deg(P1), . . . ,deg(Pk)} et ℓ un entier
entre 1 et k tel que deg(Pℓ) = n Notons R = Pℓ. Par dé�nition du maximum, pour tout i ∈ [[1, k]]
on a deg(Pi) ≤ n, ainsi si P ∈ F , comme P est combinaison linéaire de P1, . . . , Pk on a deg(P ) ≤ n,
ce qui montre F ⊂ Kn[X] et on a bien montré l'existence d'un R ∈ F tel que deg(R) = n.

b) Pour tout i ∈ {0, · · · , n}, on montre par récurrence que deg(Di(R)) = n − i. Or, pour tout
i ∈ {0, · · · , n}, 0 ≤ n− i ≤ n. Par suite, (Di(R))0≤i≤n est une famille de polynômes tous non nuls
et de degré échelonné donc (Di(R))0≤i≤n est libre.

c) La famille (Di(R))0≤i≤n est libre d'après la question précédente. Elle possède n + 1 éléments
qui sont tous dans Kn[X] et dim(Kn[X]) = n + 1 donc c'est une base de Kn[X] donc Kn[X] =
Vect(Di(R))0≤i≤n). Par suite, Kn[X] ⊂ F. De l'inclusion de III.A.1.a), on a F = Kn[X].

III.A.3) D'après III.A.1) et III.A.2) F est un sous-espace de dimension �nie stable par D si et seulement si
F = {0K[X]} ou bien il existe n ∈ N tel que F = Kn[X]. Soit à présent F un sous espace stable par D
de dimension in�nie. Montrons que D = K[X].
Soit P ∈ K[X]. Si P est nul, P ∈ D. Supposons P non nul. Comme F est de dimension in�nie il existe
Q ∈ F avec deg(Q) > deq(P ). En e�et, dans le cas contraire, on aurait F ⊂ Kp[X], où p = deg(P ) et
F serait de dimension �nie. Soit q = deg(Q). Comme F et Kq[X] sont stables, F ∩ Kq[X] l'est aussi.
De plus, Kq[X] ∩ F est de dimension �nie donc il existe r ∈ N tel que Kq[X] ∩ F = Kr[X]. On a donc
Kr[X] ⊂ Kq[X] donc r ≤ q. De plus, Q ∈ Kq[X] ∩ F donc Q ∈ Kr[X] donc q ≤ r. Ainsi r = q donc
Kq[X]∩F = Kq[X]. Or, deq(P ) < deq(Q) donc P ∈ Kq[X] donc P ∈ F . Ainsi K[X] ⊂ F et par double
inclusion immédiate, F = K[X].
Les sous espaces stables de K[X] par D sont donc les sous-espaces 0K[X], Kn[X], n ∈ N et K[X].
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III.B. �

III.B.1) Soit M = {u ∈ E ; Bf,u est un base de E}. Montrons que M = E\Ker(fn−1).
Si Bf,u est une base de E, fn−1(u) ̸= 0E donc u ∈ E\Ker(fn−1). L'inclusion M ⊂ E\Ker(fn−1) s'en
déduit. Soit u ∈ E\Ker(fn−1). Montrons que Bf,u est libre.

Soit (a1, · · · , an) ∈ Kn tel que

n∑
i=1

aif
n−i(u) = 0E . Supposons a1, · · · , an non tous nuls. Soit alors

i0 = max{i ∈ [[1, n]] ; ai ̸= 0}. On a donc

i0∑
i=1

aif
n−i(u) = 0E . Comme fn = 0, fk = 0 pour tout k ≥ n,

en composant par f i0−1 à chaque membre de l'égalité précédente, on obtient donc ai0f
n−1(u) = 0E .

Comme fn−1(u) ̸= 0E , ai0 = 0 ce qui contredit ai0 ̸= 0. Par suite, pour tout i ∈ {1, · · · , n}, ai = 0 et
donc Bf,u est libre. Il s'agit d'une famille de n vecteurs et comme dim(E) = n, Bf,u est une base de E.
Ainsi E\Ker(fn−1) ⊂ M et par double inclusion M = E\Ker(fn−1).

III.B.2) La matrice de f dans Bf,u est :



0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . . 0

...
. . . 1

0 · · · · · · · · · 0


.

III.B.3) Soit u ∈ E tel que Bf,u soit une base de E.
Soit B′

f,u = ((i − 1)!fn−i(u))1≤i≤n. B′
f,u est alors clairement aussi une base de E. De plus, pour tout

i ∈ {2, · · · , n}, f((i−1)!fn−i(u)) = (i−1)
(
((i− 1)− 1)!fn−(i−1)(u)

)
et pour i = 1, f((i−1)!fn−i(u)) =

0E . Par conséquent, la matrice de f dans B′
f,u est bien An−1.

III.B.4) Tout d'abord, pour i ∈ [[0, n]] et x ∈ Ker(f i) on a f i(f(x)) = f i+1(x) = f(f i(x)) = f(0) = 0 donc
Ker(f i) est stable par f (on a aussi montré Ker(f i) ⊂ Ker(f i+1)). Or les inclusions sont strictes, en
e�et si pour i ∈ [[0, n−1]] on a Ker(f i) = Ker(f i+1), alors Ker(f i+1) = Ker(f i+2) (car si x ∈ Ker(f i+2)
alors f(x) ∈ Ker(f i+1) donc f(x) ∈ Ker(f i) donc x ∈ Ker(f i+1 ainsi Ker(f i+2 ⊂ Ker(f i+1 et l'autre
inclusion a déjà été démontrée) donc par récurrence direct Ker(fn−1) = Ker(fn), ce qui est absurde
puisque fn−1 ̸= 0 et fn = 0.
En conclusion on a trouvé n + 1 sous-espaces stables par f : les Ker(f i) pour i ∈ [[0, n]]. Reste à
Montrer que ce sont les seules.

Soit u ∈ E tel que Bf,u soit une base de E. D'après III.B.3), f et D|Kn−1[X]
ont la même ma-

trice représentative dans respectivement les bases (Xi−1)1≤i≤n et B′
f,u = (ui−1)1≤i≤n, où on a noté,

ui−1 = (i− 1)!fn−i(u) pour tout i ∈ [[1, n]].
Dit autrement f et D|Kn−1[X]

sont semblable. On introduit l'application linéaire g de E dans Kn−1[X]

telle que pour tout i ∈ {1, · · · , n}, g(Xi−1) = ui−1, alors comme g transforme une base en une base
c'est un isomorphisme et on a ainsi : f = g ◦D|Kn−1[X]

og−1. Ainsi g−1 ◦ f = D|Kn−1[X]
og−1.

Soit F un sous-espace de E, montrons que F est stable par F si et seulement si g−1(F ) est stable par
D|Kn−1[X]

.

� Si F est stable par f alors g−1(f(F )) ⊂ g−1(F ). Et donc D|Kn−1[X]
(g−1(F )) ⊂ g−1(F ) donc g−1(F )

est stable par D|Kn−1[X]
.

� Si g−1(F ) soit stable par D|Kn−1[X]
, on a D|Kn−1[X]

(g−1(F )) ⊂ g−1(F ) donc g−1(f(F )) ⊂ g−1(F )

donc gog−1((f(F )) ⊂ g(g−1(F )) donc f(F ) ⊂ F donc F est stable par f .
Comme g est un isomorphisme on a donc autant de sous-espaces stable par f que de sous-espaces
stables par D|Kn−1[X]

. Comme on a montré en III.A.3 qu'il y en avait n + 1 ({0} et les Ki[X] pour

i ∈ [[0, n− 1]]). Il n'y a donc pas de sous-espaces stable par f en plus des n+ 1 trouvés.

En conclusion les sous-espaces stables par f sont les Ker(f i) pour i ∈ [[0, n]], et il y en a n+ 1.

IV Quatrième partie

Dans cette partie, n est un entier naturel non nul, M est dans Mn(R) et f est l'endomorphisme de E = Mn,1(R)
dé�ni par f(X) = MX pour tout X de E.
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IV.A � Si on pose Xi =

δ1,i
...

δn,i

 où δk,ℓ =

{
1 si k = ℓ,

0 si k ̸= ℓ
et Bn = (Xi)1⩽i⩽n la base canonique de E, quelle est la

matrice de f dans Bn ?

IV.B � Montrer que si n est impair, alors f admet au moins une valeur propre réelle.

IV.C � Dans cette question, λ = α+ iβ, avec (α, β) dans R2, est une valeur propre non réelle de M et Z de Mn,1(C),
non nul est tel que MZ = λZ.
Si M = (mi,j)1⩽i,j⩽n, on pose M = (m′

i,j)1⩽i,j⩽n avec m′
i,j = mi,j (conjugué du nombre complexe mi,j) pour

tout (i, j) de [[1, n]]2 et si Z =

z1
...
zn

, on pose Z =

z′1
...
z′n

 avec z′i = zi pour tout i de [[1, n]].

On pose X = 1
2 (Z + Z) et Y = 1

2i (Z − Z).

IV.C.1) Véri�er que X et Y sont dans E et montrer que la famille (X,Y ) est libre dans E.

IV.C.2) Montrer que le plan vectoriel F engendré par X et Y est stable par f et donner la matrice de fF dans la
base (X,Y ).

IV.D � Que penser de l'a�rmation : � tout endomorphisme d'un espace vectoriel réel de dimension �nie admet au
moins une droite ou un plan stable � ?

IV.E � Existe-t-il un endomorphisme de R[X] n'admettant ni droite ni plan stable ?

Correction :

IV.A � MXi étant la colonne i de M , par dé�nition de la matrice d'un endomorphisme dans une base, la matrice
de f dans Bn est M .

IV.B � Le polynôme caractéristique χf de f étant unitaire de degré n, il tend vers −∞ en −∞ et +∞ en +∞ ;
comme il change de signe et est une fonction continue réelle, il admet au moins une racine réelle donc f a
au moins une valeur propre.

IV.C �

IV.C.1) X et Y sont bien des vecteurs de Rn puisque pour tout i, xi = ℜe(zi) et yi = ℑm(zi).
Soient (a, b) un couple de réels tels que aX + bY = 0 ce qui équivaut à (a − ib)Z + (a + ib)Z = 0.
comme MZ = λZ, MZ = λZ. Z et Z sont des vecteurs propres de M associés à deux valeurs propres
distinctes (car λ /∈ R), ils forment une famille libre donc a− ib = a+ ib = 0 ce qui équivaut à a = b = 0
ce qui prouve que (X,Y ) est libre.

IV.C.2) On a immédiatement :{
2MX = MZ +MZ = 2ℜe ((α+ iβ)(X + iY )) = 2(αX − βY )

2MY = 1
i

(
MZ −MZ

)
= 2ℑm ((α+ iβ)(X + iY )) = 2(βX + αY )

ce qui prouve que le plan vectoriel F est stable par f et la matrice de fF dans la base (X,Y ) est

MF =

(
α β
−β α

)
IV.D � Soit E un espace vectoriel de dimension n non nulle et un endomorphisme f de E admet de matrice

M dans une base B donnée de E. Si f a une valeur propre réelle λ, tout vecteur propre de f associé à λ
engendre une droite stable par f .
Si f n'a pas de valeur propre réelle, sa matrice M admet au moins une valeur propre complexe λ (n ̸= 0).
En reprenant les notations de la question C, les vecteurs x et y de E de matrices X et Y dans la base B
engendrent un plan stable par E.Ainsi :
tout endomorphisme d'un espace vectoriel réel de dimension �nie non nulle admet une droite ou un plan
stable.

IV.E � Soit l'endomorphisme de R[X] dé�ni par f(P ) = PX. Si P est non nul, deg(f(P )) = deg(P ) + 1 donc
f(P ) ne peut pas être colinéaire à P ; de plus P, f(P ), f2(P ) est une famille libre (car étagée en degré) donc
P ne peut pas appartenir à un plan stable.
L'endomorphisme de R[X] dé�ni par f(P ) = PX n'admet ni droite ni plan stable.
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