
Lycée Jean Bart pc⋆ Informatique commune 2025�2026

ds 3 : lundi 5 janvier

Correction

Mines 2023 - MP-PC-PSI

Partie I � Préambule

Q1. En base 16, 100 correspond à 162 en base 10, ie à 256 cents, ie à 2.56 dollars.

Q2. Le glyphe (ne pas oublier de le dessiner) correspond à un 'j'

Partie II � Gestion de polices de caractères vectorielles

Q3. SELECT COUNT()
FROM Glyphe

WHERE groman=True

Q4. Une solution possible, on peut joindre la table Caractere (entre Caractere.code et Glyphe.code) plutôt que de
faire une sous-requête.

SELECT gdesc
FROM Glyphe

JOIN Police ON Glyphe.pid=Police.pid

WHERE code = (SELECT code FROM Caractere WHERE car="A") AND groman=False AND pnom="Helvetica"

Q5. Inutile de demander nbr>0, en e�et les familles qui n'ont pas de police n'apparaissent pas à la jointure

SELECT fnom, COUNT() AS nbr
FROM Famille

JOIN Police ON Police.fid=Famille.fid

GROUP BY fid

ORDER BY fnom

Partie III � Manipulation de descriptions vectorielles de glyphes

Q6. Si un point est présent dans plusieurs multi-lignes il apparaitra plusieurs fois (rajouter un if pt not in res

avant le rajout si on ne le désire pas)

def points(v:[[[float]]])->[[float]]:
res=[]

for mligne in v:

for pt in mligne:

res.append(pt)

return res

Q7. def dim(l:[[float]], n:int)->[float]:
res=[]

for elt in l:

res.append(elt[n])

return res

Q8. def largeur(v:[[[float]]])->float:
abs=dim(points(v),0) # La liste des abscisses des points

return max(abs)-min(abs)

Q9. def obtention_largeur(police:str)->[float]:
res=[]

for lettre in "abcdefghijklmnopqrstuvwxyz":

res.append(largeur(glyphe(lettre,police,True)))

res.append(largeur(glyphe(lettre,police,False)))

return res

LJB Maths - DS3-coru 1 / 4

Lycée Jean Bart pc⋆ Informatique commune 2025�2026

Q10. def transforme(f:callable, v:[[[float]]])->[[[float]]]:
res=[]

for mligne in v:

newmligne=[f(pt) for pt in mligne]

res.append(newmligne)

return res

Q11. Toutes les abscisses sont divisées par deux, cella correspond à déformer horizontalement le glyphe en le réduisant
de moitié.

Q12. def penche(v:[[[float]]])->[[[float]]]:
def f(pt:[float])->[float]:

x,y=pt

return [x+0.5*y,y]

return transforme(f,v)

Partie IV � Rasterisation

Q13. La ligne 15 doit tracer le segment reliant (0, 0) à (6, 2), ainsi dx = 6 et dy = 2 donc dy
dx = 1

3 , le premier pixel
encré est (0, 0) le second est (1, 0 + ⌊0.5 + 1

3⌋) = (1, 0), le suivant est (2, 0 + ⌊0.5 + 2
3⌋) = (2, 1), etc. La liste des

pixels encrés est donc (0, 0), (1, 0), (2, 1), (3, 1), (4, 1), (5, 2) et (6, 2).

Q14. La ligne 16 doit tracer le segment reliant (9, 8) à (1, 9), ainsi dx = −8 et dy = 1, ainsi on ne rentre pas dans la
boucle, les pixels encrés sont donc uniquement les deux pixels qui le sont à l'extérieur de la boucle, ie (9, 8) et
(1, 9). il faudrait donc mettre un : assert dx>0

Q15. La ligne 17 doit tracer le segment reliant (3, 0) et (5, 8), ainsi dx = 2 et dy = 8, les pixels encrés sont donc (3, 0),
(4, 4) et (5, 8), le tracé ne ressemble pas vraiment à un segment (les pixels ne se touchent pas), cela proviens du
fait que dy

dx > 1

Q16. Pour régler ce dernier problème, il su�t d'inverser les rôles de dx et de dy, et donc de tracer le segment de "haut
en bas" (mettre éventuellement un assert dy>0).

def trace_quadrant_sud(im:Image, p0:(int), p1:(int)):
x0, y0 = p0

x1, y1 = p1

dx, dy = x1-x0, y1-y0

im.putpixel(p0, 0)

for i in range(1, dy):

p = (x0 + floor(0.5 + dx * i / dy), y0 + i)

im.putpixel(p, 0)

im.putpixel(p1, 0)

Q17. def trace_segment(im:Image, p0:(int), p1:(int)):
x0, y0 = p0

x1, y1 = p1

dx, dy = x1-x0, y1-y0

if abs(dx)<abs(dy): # segment plutôt vertical

if dy<0:

trace_quadrant_sud(im,p1,p0)

else:

trace_quadrant_sud(im,p0,p1)

else: #segment plutôt horizontal

if dx<0:

trace_quadrant_est(im,p1,p0)

else:

trace_quadrant_est(im,p0,p1)

Partie V � A�chage de texte

Q18. J'ai considéré que p correspondait à des coordonnées tel que donnés dans la partie I (donc avec l'axe vertical
orienté vers le haut), que pz était un point de l'image (donc l'axe vertical orienté vers le bas).

def position(p:(float), pz:(int), taille:int)->(int):
x,y=p

x0,y0=pz

xn=x0+floor(taille*x)

yn=y0-floor(taille*y)

return [xn,yn]

LJB Maths - DS3-coru 2 / 4

Lycée Jean Bart pc⋆ Informatique commune 2025�2026

Q19. def affiche_car(page:Image, c:str, police:str, roman:bool, pz:(int), taille:int)->int:
v=glyphe(c,police,roman)

for mligne in v: # pour chaque multiligne

p0=mligne[0]

p0n=position(p0,pz,taille)

if len(mligne)==1:

trace_segment(page,p0n,p0n)

else:

for i in range(1,len(mligne)):

p0=mligne[i-1]

p0n=position(p0,pz,taille)

p1=mligne[i]

p1n=position(p1,pz,taille)

trace_segment(page,p0n,p1n)

return taille*largeur(v)

Q20. def affiche_mot(page:Image, mot:str, ic:int, police:str, roman:bool, pz:(int), taille:int)->int:
x0,y0=pz

pz0=[x0,y0]

for c in mot:

dpz=affiche_car(page,c,police,roman,pz0,taille)

x0 += dpz + ic

pz0=[x0,y0]

return [x0-ic,y0]

Partie VI � Justi�cation d'un paragraphe

Q21. L'algorithme rajoute des mots à la ligne tant que ce rajout ne provoque pas un dépassement de la largeur maximal,
si l'ajout provoque un dépassement alors on met le mot dans une nouvelle ligne et on continue.
C'est un algorithme glouton car il essai de mettre un maximum de mot dans chaque ligne sans considérer la ligne
suivante (optimisation local), dans certains cas il peut être préférable de ne pas rajouter un mot dans la ligne
(alors qu'on le peut) pour pouvoir mieux remplir les lignes suivantes.

Q22. Pour le premier découpage, la première ligne coute cout(0, 2), la deuxième coute cout(3, 3) et la troisième coute
cout(4, 4), soit un total de (10− (2−0)− (2+4+6))2+(10− (3−3)−6)2+(10− (4−4)−6)2 = 0+16+16 = 32.
Pour le deuxième découpage, la première ligne coute cout(0, 1), la deuxième coute cout(2, 3) et la troisième coute
cout(4, 4), soit un total de (10− (1−0)− (2+4))2+(10− (3−2)− (2+6))2+(10− (4−4)−6)2 = 9+1+16 = 26.
Ainsi la solution par programmation dynamique donne une solution plus harmonieuse.

Q23. memo={len(m):0} # len(lmots) aurait été plus parlant IMHO

def progd_memo(i:int,lmots:[int],L:int,memo:{int:int}):

if i in memo: # déjà calculé

return memo[i]

sinon (else inutile à cause du return) on calcul

mini=float("inf")

for j in range(i+1,len(lmots)+1):

d=progd_memo(j,lmots,L)+cout(i,j-1,lmots,L)

if d<mini:

mini=d

memo[i]=mini

return mini

Q24. On remarque que cout(i, j) a une complexité de l'ordre de j − i+ 1

Pour l'algorithme récursif naïf, en notant Ci la complexité de l'appel avec i, on a Ci =

n∑
j=i+1

(Cj + j − i) =

(n− i)(n− i+ 1)

2
+

n∑
j=i+1

Cj . Ainsi si Cn = 1 alors Cn−1 = Cn + 1 = 2 et Cn−2 = Cn−1 + 1 + Cn + 2 = 8, par

récurrence directe on a donc que pour tout i on a Ci−1 ≥ 2Ci (et largement), ainsi C0 ≥ 2n, ce qui montre que
la complexité est au moins exponentielle (sans doute trop fastidieux d'être plus précis). Cette complexité n'est
donc pas raisonnable.

Pour l'algorithme de bas en haut la complexité est

n−1∑
i=0

n∑
j=i+1

(j − i) =

n−1∑
i=0

(n− i)(n− i+ 1)

2
, on est donc en

O(n3). Ce qui est bien meilleurs que pour l'algorithme récursif naïf.

Q25. def lignes(mots:[str],t:[int],L:int):

LJB Maths - DS3-coru 3 / 4

Lycée Jean Bart pc⋆ Informatique commune 2025�2026

i=0

res=[]

while i<len(t):

res.append(mots[i:t[i]])

i=t[i]

return res

Q26. def formatage(lignesdemots:[[str]],L:int)->str:
res=""

for ligne in lignesdemots:

lmots=sum([len(mot) for mot in ligne])

nbesp=L-lmots

if len(ligne)==1:

res += ligne[0]+" "*nbesp+"\n"

else:

#Nombre d'espaces entre chaque mot (pb cela ne tombe pas juste, d'où reste)

nbespmotsmin=nbesp//(len(ligne)-1)

nbespmotsreste=nbesp%(len(ligne)-1)

lesespaces=[nbespmotsmin]*(len(ligne)-1)

pas claire sur comment répartir ces espaces supplémentaires, on doit rajouter

+1 à nbespmotsreste éléments de cette liste, on procède de manière régulière

if nbespmotsreste>0:

eespsup=(len(ligne)-1)//nbespmotsreste #un esp de plus tous les eespsup mots

for k in range(nbespmotsreste):

i=k*eespsup

lesespaces[i]+=1

for i in range(len(ligne)-1):

res += ligne[i] + " "*lesespaces[i]

res += ligne[len(ligne)-1] + "\n"

return res

LJB Maths - DS3-coru 4 / 4

