Lycée Jean Bart pc* Informatique commune 2025-2026

DS 3 : lundi 5 janvier

Correction

Mines 2023 - MP-PC-PSI

Partie I — Préambule
Q1. En base 16, 100 correspond & 162 en base 10, ie a 256 cents, ie & 2.56 dollars.

Q2. Le glyphe (ne pas oublier de le dessiner) correspond & un ’j’

Partie II — Gestion de polices de caractéres vectorielles

Q3. SELECT COUNT()
FROM Glyphe
WHERE groman=True

Q4. Une solution possible, on peut joindre la table Caractere (entre Caractere.code et Glyphe.code) plutot que de
faire une sous-requéte.

SELECT gdesc
FROM Glyphe
JOIN Police ON Glyphe.pid=Police.pid
WHERE code = (SELECT code FROM Caractere WHERE car="A") AND groman=False AND pnom="Helvetica"

Q5. Inutile de demander nbr>0, en effet les familles qui n’ont pas de police n’apparaissent pas a la jointure

SELECT fnom, COUNT() AS nbr
FROM Famille
JOIN Police ON Police.fid=Famille.fid
GROUP BY fid
ORDER BY fnom

Partie III — Manipulation de descriptions vectorielles de glyphes

Q6. Si un point est présent dans plusieurs multi-lignes il apparaitra plusieurs fois (rajouter un if pt not in res
avant le rajout si on ne le désire pas)

def points(v:[[[floatl]])->[[floatl]:
res=[]
for mligne in v:
for pt in mligne:
res.append (pt)
return res

Q7. def dim(1:[[float]], n:int)->[float]:
res=[]
for elt in 1:
res.append(elt[n])
return res

Q8. def largeur(v:[[[float]]])->float:
abs=dim(points(v),0) # La liste des abscisses des points
return max(abs)-min(abs)

Q9. def obtention_largeur(police:str)->[float]:
res=[]
for lettre in "abcdefghijklmnopqrstuvwxyz":
res.append(largeur(glyphe(lettre,police,True)))
res.append(largeur(glyphe(lettre,police,False)))
return res

LJB Maths - DS3-coru 1 / 4

Lycée Jean Bart pc* Informatique commune 2025-2026

Q1o.

Q11.

Q12.

def transforme(f:callable, v:[[[float]]])->[[[float]]]:
res=[]
for mligne in v:
newmligne=[f (pt) for pt in mligne]
res.append (newmligne)
return res

Toutes les abscisses sont divisées par deux, cella correspond a déformer horizontalement le glyphe en le réduisant
de moitié.
def penche(v:[[[float]]])->[[[float]]]:
def f(pt:[float])->[float]:
X,y=pt
return [x+0.5%y,y]
return transforme(f,v)

Partie IV — Rasterisation

Q13.

Q14.

Q15.

Q16.

La ligne 15 doit tracer le segment reliant (0,0) & (6,2), ainsi dz = 6 et dy = 2 donc %

encré est (0,0) le second est (1,04 [0.5+ %) = (1,0), le suivant est (2,04 [0.5+ 2])
pixels encrés est donc (0,0), (1,0), (2,1), (3,1), (4,1), (5,2) et (6,2).

La ligne 16 doit tracer le segment reliant (9,8) & (1,9), ainsi de = —8 et dy = 1, ainsi on ne rentre pas daus la
boucle, les pixels encrés sont donc uniquement les deux pixels qui le sont & I’extérieur de la boucle, ie (9, 8) et
(1,9). il faudrait donc mettre un : assert dx>0

= %, le premier pixel
(2,1), etc. La liste des

La ligne 17 doit tracer le segment reliant (3,0) et (5,8), ainsi do = 2 et dy = 8, les pixels encrés sont donc (3,0),
(4,4) et (5,8), le tracé ne ressemble pas vraiment & un segment (les pixels ne se touchent pas), cela proviens du
fait que % >1

Pour régler ce dernier probléme, il suffit d’inverser les roles de dz et de dy, et donc de tracer le segment de "haut
en bas" (mettre éventuellement un assert dy>0).

def trace_quadrant_sud(im:Image, pO:(int), pl:(int)):

x0, y0O = pO
x1, y1 = p1
dx, dy = x1-x0, y1-yO0

im.putpixel (p0, 0)

for i in range(l, dy):
p = (x0 + floor(0.5 + dx * i / dy), yO + 1)
im.putpixel(p, 0)

im.putpixel(pl, 0)

Q17. def trace_segment(im:Image, pO:(int), pl:(int)):

x0, y0O = pO
xl, y1 = p1
dx, dy = x1-x0, yl-yO
if abs(dx)<abs(dy): # segment plutét vertical
if dy<0:
trace_quadrant_sud(im,p1,p0)
else:
trace_quadrant_sud(im,pO,pl)
else: #segment plutdt horizontal
if dx<0:
trace_quadrant_est (im,p1,p0)
else:
trace_quadrant_est (im,p0,pl)

Partie V — Affichage de texte

Q18. Jai considéré que p correspondait & des coordonnées tel que donnés dans la partie I (donc avec 'axe vertical

orienté vers le haut), que pz était un point de I'image (donc I’axe vertical orienté vers le bas).

def position(p:(float), pz:(int), taille:int)->(int):
X,y=P
x0,y0=pz
xn=x0+floor (taillex*x)
yn=y0-floor (taillexy)
return [xn,yn]

LJB Maths - DS3-coru 2 / 4

Lycée Jean Bart pc* Informatique commune 2025-2026

Q19. def affiche_car(page:Image, c:str, police:str, roman:bool, pz:(int), taille:int)->int:
v=glyphe(c,police,roman)
for mligne in v: # pour chaque multiligne
pO=mligne[0]
pOn=position(p0,pz,taille)
if len(mligne)==1:
trace_segment (page,pOn,pOn)
else:
for i in range(l,len(mligne)):
pO=mligne[i-1]
pOn=position(p0,pz,taille)
pl=mligne[i]
pln=position(pl,pz,taille)
trace_segment (page,pOn,pln)
return taillexlargeur(v)

Q20. def affiche_mot(page:Image, mot:str, ic:int, police:str, roman:bool, pz:(int), taille:int)->int:
x0,y0=pz
pz0=[x0,y0]
for ¢ in mot:
dpz=affiche_car(page,c,police,roman,pz0,taille)
x0 += dpz + ic
pz0=[x0,y0]
return [x0-ic,y0]

Partie VI — Justification d’un paragraphe

Q21. L’algorithme rajoute des mots a la ligne tant que ce rajout ne provoque pas un dépassement de la largeur maximal,
si I’ajout provoque un dépassement alors on met le mot dans une nouvelle ligne et on continue.
C’est un algorithme glouton car il essai de mettre un maximum de mot dans chaque ligne sans considérer la ligne
suivante (optimisation local), dans certains cas il peut étre préférable de ne pas rajouter un mot dans la ligne
(alors qu’on le peut) pour pouvoir mieux remplir les lignes suivantes.

Q22. Pour le premier découpage, la premiére ligne coute cout(0,2), la deuxiéme coute cout(3,3) et la troisiéme coute
cout(4,4), soit un total de (10— (2—0) — (24+4+6))?+ (10— (3—3) —6)>+ (10— (4 —4) —6)> = 0+ 16+ 16 = 32.
Pour le deuxiéme découpage, la premiére ligne coute cout(0, 1), la deuxiéme coute cout(2, 3) et la troisiéme coute
cout(4,4), soit un total de (10 — (1 —0) — (24+4))%2 4+ (10— (3—2) — (24+6))2+ (10— (4 —4) —6)> = 9+ 1+ 16 = 26.
Ainsi la solution par programmation dynamique donne une solution plus harmonieuse.

Q23. memo={len(m):0} # len(lmots) auratt été plus parlant IMHO
def progd_memo(i:int,lmots:[int],L:int,memo:{int:int}):
if i in memo: # déja calculé
return memo[i]
sinon (else inutile 4 cause du return) on calcul
mini=float("inf")
for j in range(i+1l,len(lmots)+1):
d=progd_memo (j,1lmots,L)+cout (i, j-1,1lmots,L)
if d<mini:
mini=d
memo [i]=mini
return mini
Q24. On remarque que cout(i, j) a une complexité de I'ordre de j —i + 1
n
Pour lalgorithme récursif naif, en notant C; la complexité de I’appel avec i, on a C; = Z Cij+j—1) =
j=i+1

n—i)(n—i+1 = o
()(2) + > Cj. Ainsisi C, = lalors Cp oy =Cp+1=2¢t Cy 5 =Cn1+1+Cpy+2=8, par
j=it1
récurrence directe on a donc que pour tout ¢ on a C;_1 > 2C; (et largement), ainsi Cy > 2™, ce qui montre que
la complexité est au moins exponentielle (sans doute trop fastidieux d’étre plus précis). Cette complexité n’est
donc pas raisonnable.

n—1 n -
— — 1
Pour l'algorithme de bas en haut la complexité est Z Z (j—1) Z (n=in—i+t), on est donc en
i=0 j=i+1 i=0

O(n?). Ce qui est bien meilleurs que pour I’algorithme récursif naif.
Q25. def lignes(mots:[str],t:[int],L:int):

LJB Maths - DS3-coru 3 / 4

Lycée Jean Bart pc* Informatique commune 2025-2026

i=0

res=[]

while i<len(t):
res.append(mots[i:t[i]])
i=t[i]

return res

Q26. def formatage(lignesdemots:[[str]],L:int)->str:
res:ll n
for ligne in lignesdemots:
lmots=sum([len(mot) for mot in lignel)
nbesp=L-1lmots
if len(ligne)==1:
res += ligne[0]+" "*nbesp+"\n"
else:
#Nombre d'espaces entre chaque mot (pb cela ne tombe pas juste, d'ou reste)
nbespmotsmin=nbesp//(len(ligne)-1)
nbespmotsreste=nbesp/ (len(ligne)-1)
lesespaces=[nbespmotsmin] *(len(ligne)-1)

pas claire sur comment rTépartir ces espaces supplémentaires, on doit rajouter
+1 a nbespmotsreste éléments de cette liste, on procéde de maniére réguliére
if nbespmotsreste>0:
eespsup=(len(ligne)-1)//nbespmotsreste #un esp de plus tous les eespsup mots
for k in range(nbespmotsreste):
i=k*eespsup
lesespaces[i]+=1

for i in range(len(ligne)-1):
res += ligne[i] + " "xlesespaces[i]
res += ligne[len(ligne)-1] + "\n"
return res

LJB Maths - DS3-coru 4: / 4

