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DNS 6 : pour le mercredi 7 janvier

Le candidat encadrera ou soulignera les résultats.
N.B. : le candidat attachera la plus grande importance a la clarté, a la précision et a la concision de la rédaction. Si
un candidat est amené & repérer ce qui peut lui sembler étre une erreur d’énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené & prendre.

Correction

CCP 2013 - PC - Maths 1

L’objectif du probleme est d’étudier des conditions pour que deur matrices admettent un vecteur propre
commun et d’en déduire une forme normale pour des vecteurs propres.
Les parties I et III traitent chacune de cas particuliers en dimension 3 et n. Elles sont indépendantes l'une de l’autre.
La partie II aborde la situation générale en faisant apparaitre une condition nécessaire et certaines autres conditions
suffisantes a l’existence d’un vecteur propre commun.
Les parties II, III et IV sont, pour une grande part, indépendantes les unes des autres.

Il est demandé, lorsqu’un raisonnement utilise un résultat obtenu
précédemment dans le probléme, d’indiquer précisément le numéro de la question utilisée.

Notations et définitions

Soient n et p deux entiers naturels non nuls, K ’ensemble R ou C.
Notons M,, ,(K) Pespace vectoriel des matrices & n lignes et p colonnes & coefficients dans K,

M, (K) Pespace vectoriel des matrices carrées d’ordre n & coefficients dans K,
0,, la matrice nulle d’ordre n
et I, la matrice identité d’ordre n.

Pour M € M, (K) et A € K, on note :
Ker(M) = {X € M, 1(K) tel que MX = 0},
Im(M) = {MX, X € M, (K)},
Sp(M) le spectre de M,
Ex(M) = Ker(M — \,,)
et Imy(M)=Im(M — \,).

Définitions :

e Soient (4, B) € (M, (K))? et e € M, 1(K);
on dit que e est un vecteur propre commun & A et B si :

i) e#0;
ii) il existe A € K tel que Ae = Xe;
iii) il existe u € K tel que Be = pe;

On définit [A, B] € M,,(K) par la formule : [A, B] = AB — BA.

e Soient f et g, deux endomorphismes d’un K- espace vectoriel F et e € F;
on dit de méme que e est un vecteur propre commun a f et g si:

i) e#0;
ii) il existe A € K tel que f(e) = Xe;
iii) il existe p € K tel que g(e) = pe;

On définit ’'endomorphisme [f, g] de E par la formule : [f,g] = fog—go f.

Partie I : ETUDE DANS UN CAS PARTICULIER

On considére les matrices suivantes :

0 -1 -1 3 -3 -1 -5 3 -1 00 0
A=|-1 0o -1|,B=[0 2 o], c=(-26 2 ]|etD={0 6 0
-1 -1 0 1 -3 1 5 3 -1 00 —6
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1 0
On note F = (uj,ug,uzg) oty = 0 |, upo=|[ 1 Jetuz=|(1
-1 -1 1
1 1
Onnoteaussiug = (0| etus=| 1
1 —2

I.1.
I.1.a. Déterminer le spectre de A.
I.1.b. Vérifier que la famille F est une base de M3 1(R) constituée de vecteurs propres de A.
I.1.c. A est-elle diagonalisable ?
I.1.d. Montrer qu’aucun des éléments de F n’est un vecteur propre commun a A et B.
I.2.
1.2.a. Déterminer le spectre de B.
I.2.b. Montrer que Imy(B) = Vect(uy) et que dim(E3(B)) = 2.
I.2.c. B est-elle diagonalisable?
I.3.
I.3.a. Montrer que F1(A) N Ey(B) = Vect(us).
1.3.b. Déterminer tous les vecteurs propres communs a A et B.
I.4.
I.4.a. Vérifier que [A,B] =C.
I.4.b. Montrer que C est semblable & la matrice D et déterminer le rang de C.

Correction :
I.1. Ll.a. On calcule le polynéme caractéristique de A : pour A € R, x4(A\) = (A +2)(\ — 1)%. Par conséquent
le spectre de A est {—2;1}.

L1.b. Au; = uy, Aus = us et uy, uy ne sont pas colinéaires donc (uj,us) est une famille libre de deux
vecteurs dans F1(A). Cet espace propre ne peut pas étre de dimension strictement supérieure a 2 donc
(u1,usz) est une base de E7(A).
Auz = —2ugz et uz n’est pas nul donc (u3) est une base de E_5(A).
Les sous espaces propres d’une matrice sont en somme directe donc (u1,us,u3) est une famille libre.
Elle est de cardinal 3, égal & la dimension de M3 1(R) donc c’est une base de Mj1(R) constituée de
vecteurs propres de A.
On peut aussi démontrer a priori que (u1, ug, us) est une base (par exemple en calculant le déterminant
de cette famille dans la base canonique) puis que chacun de ces vecteurs est propre pour A.

I.1.c. On vient de trouver une base de M3 1(R) constituée de vecteurs propres de A donc A est diagonali-

sable.
On peut aussi remarquer que A est une matrice symétrique réelle donc diagonalisable.
4
I.1.d. Bu;y = | 0| n’est pas colinéaire & u; et de méme pour us et uz donc aucun élément de F n’est
0

vecteur propre de B donc a fortiori commun & A et B.
1.2. 1.2.a. Pour A € K, xg(\) = (A —2)? (on développe par rapport a la deuxiéme ligne) donc le spectre de B

est {2}.
1 -3 -1
I12b. B—-2I3=(0 0 0 |]. Les trois colonnes de cette matrice sont colinéaires a uy donc I'mq(B) C
1 -3 -1

Vect(uyg) et ug est la premiére colonne donc Vect(uys) C Ima(B). Par conséquent Ims(B) = Vect(uy).
Le théoréme du rang nous dit alors que dim F»(B) = 2.

I.2.c. La somme des dimensions des sous espaces propres de B est égale & 2 < 3 donc B n’est pas diagona-

lisable.

1.3. 1.3.a. Bus = 2us et Aus = uy donc Vect(us) C E1(A) N Ey(B).
E4(A) et E5(B) sont de dimension 2 donc cette intersection est de dimension 1 ou 2 (on a déja un vecteur
non nul dans Pintersection). Si elle est de dimension 2, alors E1(A) = E5(B) ce qui est absurde car u; est
dans E;(A) mais pas dans E5(B). Par conséquent 'intersection est de dimension 1 et Eq(A) N Ey(B) =
Vect(us).

[.3.b. Comme ug n’est pas vecteur propre de B et qu’il engendre E_5(A), il n’y a pas de vecteur propre
commun & A et B dans E_5(A). De plus 2 est la seule valeur propre de B donc les vecteurs propres
communs & A et B sont dans F1(A4) N Ey(B).

D’aprés la question précédente, les vecteurs propres communs & A et B sont les vecteurs de la forme
Aus, A € R*,
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-1 1 -1 4 -2 0
14. Ida AB=|-4 6 0 |etBA=|[-2 0 —2] donc[4, B]=C.
-3 1 1 2 -2 2
A+5 =3 1
L.4.b. On calcule le polynome caractéristique de C. Pour A € R, xo(\) = 2 A—6 =2 |.On
5 -3 A+1
remplace L par L; — L3 :
A 0 —-A
xc(A) = A—6 =2 |. On utilise la linéarité par rapport & la premiére ligne puis on remplace

2
5 =3 A+1
0 0 -1
Cy par C1 +Cs : xo(N) = A 0 A—6 —2 |. Enfin, on développe par rapport a la premiére
A+6 -3 A+1
ligne : xc(A) = A(A —6)(A +6).
xc est scindé & racines simples donc C' est diagonalisable. De plus les valeurs propres de C' sont —6, 0
et 6 donc C est semblable & D.
Le rangs de C et de D sont alors égaux et rg(C) = 2.

Partie II : CONDITION NECESSAIRE ET SUFFISANTE

Soit n € N* et soit (A, B) € (M,(K))?.

I1.1. Dans cette question, on suppose que e est un vecteur propre commun & A et B.
II.1.a. Montrer que e € Ker([A4, B]).
II.1.b. Vérifier que rg([4, B]) < n.

Dans toute la suite de cette partie II, on suppose que K = C.

On dit que A et B vérifient la propriété H s’il existe A € Sp(A4) tel que :
E\(A) C Ker([4, B]).

I1.2. Montrer que si [A, B] = 0, alors A et B vérifient la propriété H.

I1.3. Dans cette question, on suppose que A et B vérifient la propriété H.
I1.3.a. Pour tout X € E)(A), on pose ¢(X) = BX. Montrer que ¢ définit un endomorphisme de E)(A).
I1.3.b. En déduire I'existence d’un vecteur propre commun & A et B.

Pour k£ € N*, on note P, la propriété suivante :

pour tout C-espace vectoriel E de dimension k et pour tout couple d’endomorphismes (p, ) de E tels que
rg([e, ¥]) < 1, il existe un vecteur propre commun a @ et 1.

11.4. Vérifier la propriété P;.
I1.5. Dans cette question, on suppose que Pj est vérifiée pour tout entier k € [1,n — 1] et que A et B ne
vérifient pas la propriété H.

On note C = [A, B], on suppose que rg(C) =1 et on considére A € C une valeur propre de A.
II.5.a. Justifier l'existence de u € M,, 1(C) tel que Au= Au et Cu # 0.
IL.5.b. Vérifier que Im(C) = Vect(v) ou v = Cu.
I1.5.c. Montrer que Im(C) C Imy(A4).
I1.5.d. Etablir les inégalités suivantes : 1 < dim(Imy(4)) <n — 1.
Pour tout X € Imjy(A), on pose p(X) = AX et ¥(X) = BX.
IL.5.e. Montrer que [A,A — A[,] =0, et [B,A—\I,|]=—C.
En déduire que ¢ et ¢ définissent des endomorphismes de Imy (4).

I1.5.f. Montrer I'existence d’un vecteur propre commun a ¢ et ¢ ; en déduire qu’il en est de méme pour A et
B

I1.6. Montrer que pour tout n € N*, P, est vraie.

Correction :
II.1. II.1.a. Soient A et u tels que Ae = Ae et Be = pe. Alors ABe = 1Ae = Aue et de méme pour BAe donc
e € Ker([A, B)).
II.1.b. e est non nul (car vecteur propre) donc [A, B] n’est pas injectif et comme il s’agit d’une matrice
carrée (endomorphisme en dimension finie), cela prouve que [A, B] n’est pas inversible et rg([4, B]) < n.
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I1.2. On suppose [4, B] = 0,,. Comme K = C, A a au moins une valeur propre : soit A € Sp(4). [A, B] =0,
donc Ker([A, B]) = M,,1(K) et Ex(A) C Ker([A, B)]) : A et B vérifient la propriété H.

I1.3. I1.3.a. Soit X € Ey(A). Par hypothése (AB — BA)X = 0 soit ABX = BAX. Or AX = AX donc
A(BX) = ABX ce qui signifie que BX € E)(A) : ¢ : X — BX est une application de Ey(A) dans
lui méme. De plus, par propriété du produit matriciel, ¢ est linéaire donc v est un endomorphisme de
E\(A).

I1.3.b. X est valeur propre de A donc Ey(A) est de dimension non nulle et comme K = C, ¢ a au moins
une valeur propre : il existe u € C et X € E)(A) non nul tels que ¢(X) = uX. On a donc BX = pX,
AX = AX et X non nul : X est un vecteur propre commun & A et B.

II.4. En dimension 1, tous les vecteurs non nuls sont des vecteurs propres donc P; est vérifiée.

IL.5. I1.5.a. A et B ne vérifient pas H donc E)(A) n’est pas inclus dans Ker(C) : il existe u € Ey(A) tel que
u & Ker(C) : uest donc un élément de M,, 1(C) qui vérifie Au = Au et Cu # 0.

I1.5.b. Par hypothése Im(C) est de dimension 1 et v = Cu est un vecteur non nul de cette image donc
Im(C) = Vect(v).

II.5.c. v=Cu donc v = ABu — BAu = ABu — ABu soit v = (A — AI)(Bu) : v € Imx(A). La question
précédente permet alors de dire que Im(C) C Imy (A).

IL5.d. Im(C') est de dimension 1 donc 1 < dim(Imy(A)).
A est valeur propre de A donc F)(A) a une dimension non nulle et, d’aprés le théoréme du rang,
dim(Imy(4)) <n — 1.
Finalement

1 < dim(Imy(A)) <n-—1.

I1.5.e Aet A— A\, commutent donc [A, A — A\I,] = 0,.
Par définition [B, A— \,,| = B(A— AI,,) — (A—\,,)B = BA— AB = —[A, B] d'ott [B, A— \I,,| = —C.
@ et 1) sont des applications linéaires par propriétés du produit matriciel.
Soit X € Imy(A) : X = (A—-A,)Y ouY € M, 1(C).
Comme [A; A — A,] = 0,, AX = (A — A,)(AY) donc AX € Im,(A). Par conséquent ¢ est un
endomorphisme de Imjy (A4).
De méme BX = (A — A\,)(BY) — CY. CY € Im(C) et Im(C) C Imy(A) donc CY € Imy(A); on a
aussi (A — A[,)(BY) € Imy(A) donc BX € Imy(A). On en conclut que ¢ est un endomorphisme de

IL.5.f. Im([p,¥]) C Im(C) donc rg([¢,4]) < 1. On peut donc appliquer ’hypothése de récurrence a ¢ et
1, endomorphismes de Imy (A) qui est de dimension non nulle et strictement inférieure & n : ¢ et 1) ont
un vecteur propre commun. A fortiori A et B ont un vecteur propre commun.

I1.6. P; est vraie.

Soit n € N, n > 2. On suppose que Py, est vérifiée pour tout entier k € [1,n — 1].

Soit E de dimension n.

Soit ¢ et ¢ deux d’endomorphismes de E tels que rg([¢,]) < 1.

On considére A et B les matrices associées respectivement & ¢ et ¢ dans une base de £, C = AB — BA.

Sirg(C) =1 et si Aet B une vérifient pas H, alors, d’aprés I11.5., A et B ont un vecteur propre commun :

© et ¢ ont un vecteur propre commun (K = C donc A a au moins une valeur propre.

Sirg(C)=1et A, B vérifient H, alors d’aprés I1.3., ¢ et ¢ ont un vecteur propre commun.

Si rg(C) =0, alors [A, B] =0 et, d’aprés I1.2. et I1.3., ¢ et ¢ ont un vecteur propre commun.

On en déduit que P, est vérifiée.

Par récurrence, on peut conclure que, pour tout n € N*, P,, est vraie.

Partie ITI : ETUDE D’UN AUTRE CAS PARTICULIER

Soit n € N*. On note F = C,,[X] le C-espace vectoriel des polynomes & coefficients complexes de degré inférieur
ou égal a 2n.
Pour P € E, on désigne par P’ le polyndome dérivé de P.

Pour tout polynome P de E, on pose f(P) = P’ et g(P) = X*"P (%) .

2n 2n

II1.1. Soient (ag,as,...,as,) € C*"*tlet P = Zaka. Montrer que g(P) = Zamkak-
k=0 k=0

II1.2. Montrer que f et g définissent des endomorphismes de F.

I11.3.
II1.3.a. Vérifier que si P est un vecteur propre de g, alors deg(P) > n.
IT1.3.b. Montrer que X" est un vecteur propre de g.

Soit i € [1,2n]. f* correspond & la composée fo fo---o f ou f est prise i fois.
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I11.4.
II1.4.a. Vérifier que Ker(f?) = C;_1[X].
II1.4.b. Montrer que Sp(f?) = {0}.
II1.5. Montrer que f? et g possédent un vecteur propre commun si et seulement si ¢ > n + 1.

B. désigne la base canonique de E définie par : B. = (1, X, ..., X?").
On note A,, la matrice de f dans la base B, et B,, celle de g dans la méme base.

IT1.6. Déterminer A,, et B,,.
II1.7. Dans cette question, on suppose que n = 1.

0 1 0 0 0 1
III.7.a. Montrer que Ay = [0 0 2] et By= [0 1 0] eten déduire I'expression de (A41)? et (A;)>.
0 0 O 1 0 0

II1.7.b. Déterminer le rang de [(A;)?, By] pour i = 1 et i = 2.
II1.7.c. En déduire que la condition nécessaire de la question II.1.b n’est pas suffisante et que la condition
suffisante de la question I1.6 n’est pas nécessaire.

Correction :
2n 2n

IIL.1. g(P) = Z ap X% On pose | = 2n — k pour obtenir g(P) = Zagn_le.
k=0 1=0

II1.2. Pour tout polynéme P, degP’ < degP et la dérivation des polynémes est linéaire donc f est un
endomorphisme de F.
La question précédente prouve que g est une application de E dans F.
Si (P,Q) € E?et A€ C,alors :

g(P+2Q) = X*(P +)Q) ()1() — x¥p ()1() L xQ ()1() — g(P) + Mg(Q)

donc g est linéaire. g est donc un endomorphisme de E.
II1.3. III.3.a. Soit P un vecteur propre de g et A la valeur propre associée, on a : g(P) = A\P.
La question IIL.1. prouve que g est injective donc A ne peut pas étre nul. Par conséquent P et g(P) ont
le méme degré que on appelle d. (P n’est pas nul car vecteur propre).
On reprend les notations de la question III.1.. ag # 0 donc si k = 2n — d, asp—x # 0 et donc
deg(g(P)) > 2n — d. Par conséquent d > 2n — d et donc deg(P) > n.
Alternative : Soit P un vecteur propre de g et A la valeur propre associée, ainsi g(P) = AP. Cette
derniére égalité est équivalente, en utilisant III.1, & as, = Aay, ..., a9 = Aag,, ainsi si deg P < n, alors
asp = ... = a, = 0, et les n derniéres égalités donnent alors que a9 = ... = a,_1 = 0 et donc que
P =0, ce qui est absurde (P vecteur propre donc non nul), ce qui montre que deg P > n.
IT1.3.b. g(X™) = X™ et X" n’est pas le polynéme nul donc X™ est un vecteur propre de g.
II1.4. Il.4.a. f4(P) = P P’ est nul si et seulement P est un polynome constant c’est-a-dire un polynome
de degré < 0.
On suppose que Ker f = C;_1[X] pour un entier i entre 1 et 2n — 1.
P € Ker f+! si seulement si P’ € Ker f* donc si et seulement si P’ € C;_1[X] donc Ker fi+! = C;[X].
Par récurrence, pour tout i entre 1 et 2n, Ker f = C;_1[X].
II1.4.b. Si P est non nul de degré i — 1, alors f¢(P) =0 =0 x P donc 0 € Sp(f?).
(fH2rtl = (fnH+1)i et si P € E, sa dérivée d’ordre 2n + 1 est nul donc X2"*! est un polynome
annulateur de f%. 0 est sa seule racine donc 0 est la seule valeur propre possible de f?.
Finalement Sp(f%) = {0}.
Alternative : comme f(1) =0 on a fi(1) =0 et donc 0 € Sp(f?).
Soit A € Sp(f?), on suppose que A # 0. Comme )\ est valeur propre il existe P non nul tel que
fi(P) = AP, ie P9 = AP, or deg P'i) = degP — i et deg AP = deg P ce qui est absurde (en effet
deg P € N puisque P # 0, ainsi il n’existe pas de valeur propre non nulle de f*. D’ou Sp(f*) = {0}.
L5 Sii>n+1, f{(X") = 0X"™ donc X" est vecteur propre de f%. Avec la question II1.3.b. on peut en
déduire que X" est un vecteur propre commun a f et g.
On suppose réciproquement que 7 est tel que f et g ont un vecteur propre commun.
Soit, P un vecteur propre commun. D’aprés I11.3.a., deg(P) > n et d’aprés I11.4.b. P € Ker f* donc d’apreés
II1.4.a. deg(P) <i—1. Ainsi, n <i—1soit i > n+ 1.
Finalement f et g ont un vecteur propre commun si et seulement si ¢ > n + 1.

LJB Maths - DNS6-cor 5 / 8



Lycée Jean Bart pc* Mathématiques 2025-2026

IIL6. A, = (aij)1<ij<on+1 OU pour i entre 2 et 2n, a;;—1 =1 — 1 et tous les autres coeflicients nuls :

0 1 0 0
2
An = 0
2n
0 0

Pour k entre 0 et 2n, g(X*) = X2"=F donc B, = (bij)1<i,j<on+t1 OU pour tout i entre 1 et 2n + 1,
bi 2n+2—i = 1, tous les autres coefficients étant nuls.

01 0
III.7. IIL.7.a. En prenant n = 1 dans la question précédente, on obtient bien A4, = [0 0 2| et By =
0 0 0
0 0 1
010
1 00
0 0 2
Par produit matriciel, (4;)2= [0 0 0] et (4;)? est la matrice nulle.
0 0 O
0 1 0
III.7.b. On trouve [A1,B1]= (2 0 —2] qui est de rang 2.
0 -1 0
20 0
[(A1)%,B1]= [0 0 0 | quiest aussi de rang 2.
0 0 -2

MI.7.c. Quand i =2,i>1+ 1 donc (A;)? et By ont un vecteur propre commun alors que la condition de
la question I1.6. n’est pas vérifiée ; celle-ci n’est donc pas nécessaire.
Quand i = 1, rg([A1, B1]) < 3 mais A; et B; n’ont pas de vecteur propre commun donc la condition de
la question II.1.b. n’est pas suffisante.

Partie IV : FORME NORMALE POUR UN VECTEUR PROPRE
T
Soit n € N avec n > 2. On note N = i | € My 1(C)| Fi € [1,n] tel que z; =0
Ty
Soit A € M,,(C) et X un vecteur propre de A.
On dit que X est sous forme normale si :
e XeN

ou
o il existe M € Sp(A) et il existe U € N tel que X = (A — N1I,,)U.
IV.1. Dans cette question, on suppose que A posséde une valeur propre A telle que
dim(Ey(A)) = 2.
Montrer que A admet un vecteur propre sous forme normale associé & la valeur propre A.

On note A,,(C) le C-espace vectoriel des matrices M € M,,(C) antisymétriques, c’est-a-dire telles que

MT =—-M.
Pour tout M € A, (C), on pose : (M) =AM + MAT et (M) = AMAT.
Iv.2.

IV.2.a. Montrer que A, (C) # {0,}.
IV.2.b. Montrer que les colonnes d’une matrice M € A, (C) sont des éléments de N.
IV.2.c. Montrer que ¢ et ¢ définissent des endomorphismes de A, (C).
IV.2.d. Vérifier que p o) =1 o .
IV.3. Dans cette question, on suppose que A posséde au moins deux valeurs propres distinctes, notées \; et As.

On considére X, un vecteur propre de A associé a la valeur propre A1 et X5 un vecteur propre de A associé
a la valeur propre \s.

On note B = X1 X, — Xo X/ .
IV.3.a. Montrer que B vérifie chacune des propriétés suivantes :
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i) B € A,(C);
ii) B # On;
iii) AB+ BAT = (A + \2)B;
iV) 14BA—r == ()\1)\2)B

IV.3.b. En déduire que (A — A\11,)(A — \o1,,) B = 0,,.

IV.3.c. Dans cette question, on suppose que (A — A\21,,) B = 0,,. Montrer qu’au moins 'une des colonnes de B
est un vecteur propre de A sous forme normale.

IV.3.d. Dans cette question, on suppose que (A — X\21,)B # 0,,. Montrer que A posséde un vecteur propre
sous forme normale.

IV.4. Dans cette question, on suppose que A ne posséde qu’une seule valeur propre \.

IV.4.a. Montrer l'existence d’une matrice B € A,,(C) non nulle vérifiant chacune des propriétés suivantes :
i) il existe o € C tel que : AB + BA" = aB;
ii) il existe 3 € C tel que : ABAT = BB.

IV.4.b. Veérifier que (A% — aA + BI,)B = 0,,.

IV.4.c. Montrer qu'il existe (,d) € C? tel que (A — vI,)(A — 01,)B = 0,,.

IV.4.d. Dans cette question, on suppose que (A —d01,)B = 0,,. Montrer que A posséde un vecteur propre sous
forme normale.

IV.4.e. Dans cette question, on suppose que (A — 61,)B # 0, et § = X. Montrer que A posséde un vecteur
propre sous forme normale.

IV.4.f. Dans cette question, on suppose que (A — §1,)B # 0, et § # \. Montrer que A — ¢1,, est une matrice
inversible et en déduire que (A —~I,)B = 0.

IV.4.g. Que conclure?

Correction :
IV.1. dim E5(A) > 2 donc on peut considérer deux vecteurs propres X et X’ formant une famille libre associés
a la valeur propre A : X = (21, -+ ,x,) et X' = (2, -+ ,2]).

Sizy; =0 alors X € N.

ST zy #0, on pose X" =z} X — 21 X’. Alors X" € N (la premiére composante de X" est nulle), X" n’est

pas nul (car (X, X’) est libre) et est dans F)(A) donc X" est un vecteur propre de A.

Dans tous les cas, A admet un vecteur propre sous forme normale associé & la valeur propre .

IV.2. IV.2.a. Soit A = (a;j)1<i,j<n tel que a12 = 1, ag; = —1, tous les autres coefficients nuls (ceci est possible
car n > 2). A n’est pas la matrice nulle et est antisymétrique donc A4,,(C) # {0,}.

IV.2.b. Soit M € A,(C), M = (mi;)1<i,j<n. Pour tous ¢ et j, m;; = —mj; donc en particulier les coefficients
diagonaux m;; sont nuls; comme il y en a un par colonne, on en déduit que les colonnes de M sont des
éléments de V.

IV.2.c. Soit M € A,(C). La transposition est linéaire et (AB)T = BT AT donc :

(P(M))T = (AM)T + (MAT)T = MTAT 4 (A7) M7 = —MAT — AM = —p(M)

donc (M) € A,(C).
De méme :
W(M)T = (AMAT)T = AMTAT = —AMAT = —(M)

© et 1 sont donc des applications de A,,(C) dans lui-méme; de plus elles sont linéaires par propriétés
du produit matriciel donc ¢ et ¥ sont des endomorphismes de A,,(C).
IV.2.d. Soit M € A, (C). On a:

wotp(M) = p(AMA") = A(AMAT) + (AMANAT = A2MA" + AM(AT)?
et par ailleurs :
Yop(M)=yp(AM + MAT) = A(AM + MAT)AT = A2MAT + AM(AT)?

par conséquent, pour tout M € A, (C), po (M) =1 o p(M) donc poh =1 o .
IV.3. IV.3a. i) X3 € M,1(C) et X9 € My ,(C) done X1 Xy € M, (C). De méme XoX;" € M, (C) donc
B € M,(C). De plus : BT = (X1X5 )7 — (X2X])T = X2X; — X1 XJ. Donc B € A, (C).
ii) On suppose B = 0,,. Alors X; X, = XX, . On multiplie & droite par X, pour obtenir X; (X, X5) =

Xo(X) Xp).

Or X, X, et X| X, sont des scalaires et (X1, X2) est libre (vecteurs propres associés a des valeurs

propres distinctes) donc Xy Xo = X{ X5 = 0. Or si on note (ay,...,a,) les coordonnées de Xo,
n n

alors X;E = Zachk = Z |ak\2, ce qui implique que a; = ... = a, = 0 et donc Xy = 0, ce qui

k=1 k=1
contredit le fait que X5 soit un vecteur propre.

Par conséquent B # 0,,.
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111) Pouri=1oui= 2, AXl = )\zXz donc XZTAT = )\leT

AB+BAT = AX1X, —AXoX] + X1 X9 AT — XoX[AT
= MX1X) - XoX] + XX, - M XX,
= MB+X\B

d’ott AB+ BAT = (A1 + \2)B.
iv) De méme

ABAT = (AX)(X]AT) - (AX2)(X] AT)

= MAaXiX) - XX,

d’ou ABAT = ()\1/\2)3

IV.3.b. Aet I,, commutent donc (A — A\ 1,)(A — \ol,,) B = A2B — (A1 + X\2)AB + A\ X2 B. On multiplie la
relation iii) par A & gauche : A2B + ABA" = (A + \2)AB donc (A — A1) (A— X\oI,,)B=—ABA" +
A1 A2 B. D’aprés iv), on conclut (A — A I,)(A — Ao1,,)B = 0,,.

IV.3.c. B # 0,, donc 'une au moins des colonnes de B est non nulle; soit C une colonne de B non nulle.
(A — XoI,)B =0, donc (A — X2I,,)C = 0,1 soit AC' = A\yC. C n’est pas nulle donc C est un vecteur
propre de A.

De plus B € A, (C) donc C € . C, une des colonnes de B, est donc un vecteur propre de A sous forme
normale.

IV.3.d. (A — X2I,)B # 0 donc il existe X une colonne de (A — A21,)B non nulle. Il existe alors U une
des colonnes de B telle que X = (A — A\o1,,)U. D’aprés la question b., X est un vecteur propre de A
(associé a la valeur propre A1 et Ao est une valeur propre de A, U € N. Finalement X est donc un
vecteur propre de A sous forme normale.

IV.4. IV.4.a. ¢ et ¢ sont deux endomorphismes de A, (C) tels que rg([p,]) = 0 < 1 donc, d’aprés la partie
II, ¢ et ¥ ont un vecteur propre commun : il existe B € A4,,(C) non nulle vecteur propre de ¢ et de 9 ;
il existe donc a € C tel que ¢(B) = aB soit AB + BAT = aB et il existe 8 € C tel que ABA"T = 3B.

IV.4.b. On multiplie i) par A & gauche : A2B+ ABAT = aAB mais ABAT = B donc A’B+ 3B = aAB.
En factorisant par B, on obtient (42 — aA + $1,,)B = 0,,.

IV.4.C. Le polynéme X2 — aX + B a coefficients complexes a deux racines (éventuellement confondues)
donc il existe (7, 8) € C? tel que X2 —aX +=(X —7)(X —9). Alors A2 —aA+BI, = (A—~I,)(A-61,)
et, la relation de la question précédente devient : (A — vI,)(A — 6I,)B = 0,,.

IV.4.d. On suppose (A — §I,)B = 0, donc, si A — 61, est inversible, alors B = 0 ce qui est exclu donc
A — 61, n’est pas inversible et 6 € Sp(A). Une colonne non nulle de B est alors un vecteur propre de A
sous forme normale.

IVde Sid=MNet (A—4dI,)B #0.

Soit X une colonne non nulle de (A — 61,,)B et U la colonne de B telle que X = (A —01,)U. U € N,
§ € Sp(A) et (A—~I,)X = 0,1 (d’aprés IV.4.c.) donc X est un vecteur propre de A sous forme
normale.

IV4f. A n’a qu'une valeur propre A et 6 # X donc § n’est pas valeur propre de A et (A — 01,) est
inversible.

A —~I, et A — 81, commutent donc si on multiplie & gauche la relation de la question IV.4.c. par
(A —61,)7 ", on obtient (A —~yI,,)B = 0,.

IV.4.g. On est alors revenu & la situation de la question IV.4.d. et donc A posséde un vecteur propre sous

forme normale.

On considére une matrice A € M,,(C) quelconque.

A a au moins une valeur propre.

Si A a une seule valeur propre, d’aprés IV.4., A posséde un vecteur propre sous forme normale.

Si A a au moins deux valeurs propres distinctes, alors d’aprés IV.3., A posséde un vecteur propre sous
forme normale.

On en conclue que, dans tous les cas, une matrice A de M,,(C) posséde un vecteur propre sous forme
normale.
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