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dns 6 : pour le mercredi 7 janvier

Le candidat encadrera ou soulignera les résultats.
N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si
un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

CCP 2013 - PC - Maths 1

L'objectif du problème est d'étudier des conditions pour que deux matrices admettent un vecteur propre
commun et d'en déduire une forme normale pour des vecteurs propres.
Les parties I et III traitent chacune de cas particuliers en dimension 3 et n. Elles sont indépendantes l'une de l'autre.

La partie II aborde la situation générale en faisant apparaître une condition nécessaire et certaines autres conditions

su�santes à l'existence d'un vecteur propre commun.

Les parties II, III et IV sont, pour une grande part, indépendantes les unes des autres.

Il est demandé, lorsqu'un raisonnement utilise un résultat obtenu

précédemment dans le problème, d'indiquer précisément le numéro de la question utilisée.

Notations et dé�nitions

Soient n et p deux entiers naturels non nuls, K l'ensemble R ou C.
Notons Mn,p(K) l'espace vectoriel des matrices à n lignes et p colonnes à coe�cients dans K,

Mn(K) l'espace vectoriel des matrices carrées d'ordre n à coe�cients dans K,
0n la matrice nulle d'ordre n

et In la matrice identité d'ordre n.

Pour M ∈ Mn(K) et λ ∈ K, on note :

Ker(M) = {X ∈ Mn,1(K) tel que MX = 0},
Im(M) = {MX, X ∈ Mn,1(K)},

Sp(M) le spectre de M,
Eλ(M) = Ker(M − λIn)

et Imλ(M) = Im(M − λIn).

Dé�nitions :

• Soient (A,B) ∈ (Mn(K))2 et e ∈ Mn,1(K) ;
on dit que e est un vecteur propre commun à A et B si :
i) e ̸= 0 ;
ii) il existe λ ∈ K tel que Ae = λe ;
iii) il existe µ ∈ K tel que Be = µe ;

On dé�nit [A,B] ∈ Mn(K) par la formule : [A,B] = AB −BA.

• Soient f et g, deux endomorphismes d'un K- espace vectoriel E et e ∈ E ;
on dit de même que e est un vecteur propre commun à f et g si :
i) e ̸= 0 ;
ii) il existe λ ∈ K tel que f(e) = λe ;
iii) il existe µ ∈ K tel que g(e) = µe ;

On dé�nit l'endomorphisme [f, g] de E par la formule : [f, g] = f ◦ g − g ◦ f.

Partie I : ÉTUDE DANS UN CAS PARTICULIER

On considère les matrices suivantes :

A =

 0 −1 −1
−1 0 −1
−1 −1 0

 , B =

3 −3 −1
0 2 0
1 −3 1

 , C =

−5 3 −1
−2 6 2
−5 3 −1

 et D =

0 0 0
0 6 0
0 0 −6

 .
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On note F = (u1,u2,u3) où u1 =

 1
0
−1

 , u2 =

 0
1
−1

 et u3 =

1
1
1

 .

On note aussi u4 =

1
0
1

 et u5 =

 1
1
−2

 .

I.1.
I.1.a. Déterminer le spectre de A.
I.1.b. Véri�er que la famille F est une base de M3,1(R) constituée de vecteurs propres de A.
I.1.c. A est-elle diagonalisable ?
I.1.d. Montrer qu'aucun des éléments de F n'est un vecteur propre commun à A et B.

I.2.
I.2.a. Déterminer le spectre de B.
I.2.b. Montrer que Im2(B) = Vect(u4) et que dim(E2(B)) = 2.
I.2.c. B est-elle diagonalisable ?

I.3.
I.3.a. Montrer que E1(A) ∩ E2(B) = Vect(u5).
I.3.b. Déterminer tous les vecteurs propres communs à A et B.

I.4.
I.4.a. Véri�er que [A,B] = C.
I.4.b. Montrer que C est semblable à la matrice D et déterminer le rang de C.

Correction :
I.1. I.1.a. On calcule le polynôme caractéristique de A : pour λ ∈ R, χA(λ) = (λ+2)(λ− 1)2. Par conséquent

le spectre de A est {−2; 1}.
I.1.b. Au1 = u1, Au2 = u2 et u1, u2 ne sont pas colinéaires donc (u1, u2) est une famille libre de deux

vecteurs dans E1(A). Cet espace propre ne peut pas être de dimension strictement supérieure à 2 donc
(u1, u2) est une base de E1(A).
Au3 = −2u3 et u3 n'est pas nul donc (u3) est une base de E−2(A).
Les sous espaces propres d'une matrice sont en somme directe donc (u1, u2, u3) est une famille libre.
Elle est de cardinal 3, égal à la dimension de M3,1(R) donc c'est une base de M3,1(R) constituée de
vecteurs propres de A.
On peut aussi démontrer a priori que (u1, u2, u3) est une base (par exemple en calculant le déterminant
de cette famille dans la base canonique) puis que chacun de ces vecteurs est propre pour A.

I.1.c. On vient de trouver une base de M3,1(R) constituée de vecteurs propres de A donc A est diagonali-
sable.
On peut aussi remarquer que A est une matrice symétrique réelle donc diagonalisable.

I.1.d. Bu1 =

4
0
0

 n'est pas colinéaire à u1 et de même pour u2 et u3 donc aucun élément de F n'est

vecteur propre de B donc a fortiori commun à A et B.
I.2. I.2.a. Pour λ ∈ K, χB(λ) = (λ− 2)3 (on développe par rapport à la deuxième ligne) donc le spectre de B

est {2}.

I.2.b. B − 2I3 =

1 −3 −1
0 0 0
1 −3 −1

. Les trois colonnes de cette matrice sont colinéaires à u4 donc Im2(B) ⊂

V ect(u4) et u4 est la première colonne donc V ect(u4) ⊂ Im2(B). Par conséquent Im2(B) = V ect(u4).
Le théorème du rang nous dit alors que dimE2(B) = 2.

I.2.c. La somme des dimensions des sous espaces propres de B est égale à 2 < 3 donc B n'est pas diagona-
lisable.

I.3. I.3.a. Bu5 = 2u5 et Au5 = u5 donc V ect(u5) ⊂ E1(A) ∩ E2(B).
E1(A) et E2(B) sont de dimension 2 donc cette intersection est de dimension 1 ou 2 (on a déjà un vecteur
non nul dans l'intersection). Si elle est de dimension 2, alors E1(A) = E2(B) ce qui est absurde car u1 est
dans E1(A) mais pas dans E2(B). Par conséquent l'intersection est de dimension 1 et E1(A)∩E2(B) =
V ect(u5).

I.3.b. Comme u3 n'est pas vecteur propre de B et qu'il engendre E−2(A), il n'y a pas de vecteur propre
commun à A et B dans E−2(A). De plus 2 est la seule valeur propre de B donc les vecteurs propres
communs à A et B sont dans E1(A) ∩ E2(B).
D'après la question précédente, les vecteurs propres communs à A et B sont les vecteurs de la forme
λu5, λ ∈ R∗.
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I.4. I.4.a. AB =

−1 1 −1
−4 6 0
−3 1 1

 et BA =

 4 −2 0
−2 0 −2
2 −2 2

 donc [A,B] = C.

I.4.b. On calcule le polynôme caractéristique de C. Pour λ ∈ R, χC(λ) =

∣∣∣∣∣∣
λ+ 5 −3 1
2 λ− 6 −2
5 −3 λ+ 1

∣∣∣∣∣∣. On
remplace L1 par L1 − L3 :

χC(λ) =

∣∣∣∣∣∣
λ 0 −λ
2 λ− 6 −2
5 −3 λ+ 1

∣∣∣∣∣∣. On utilise la linéarité par rapport à la première ligne puis on remplace

C1 par C1 + C3 : χC(λ) = λ

∣∣∣∣∣∣
0 0 −1
0 λ− 6 −2

λ+ 6 −3 λ+ 1

∣∣∣∣∣∣. En�n, on développe par rapport à la première

ligne : χC(λ) = λ(λ− 6)(λ+ 6).
χC est scindé à racines simples donc C est diagonalisable. De plus les valeurs propres de C sont −6, 0
et 6 donc C est semblable à D.
Le rangs de C et de D sont alors égaux et rg(C) = 2.

Partie II : CONDITION NÉCESSAIRE ET SUFFISANTE

Soit n ∈ N∗ et soit (A,B) ∈ (Mn(K))2.
II.1. Dans cette question, on suppose que e est un vecteur propre commun à A et B.

II.1.a. Montrer que e ∈ Ker([A,B]).
II.1.b. Véri�er que rg([A,B]) < n.

Dans toute la suite de cette partie II, on suppose que K = C.

On dit que A et B véri�ent la propriété H s'il existe λ ∈ Sp(A) tel que :

Eλ(A) ⊂ Ker([A,B]).

II.2. Montrer que si [A,B] = 0n, alors A et B véri�ent la propriété H.
II.3. Dans cette question, on suppose que A et B véri�ent la propriété H.

II.3.a. Pour tout X ∈ Eλ(A), on pose ψ(X) = BX. Montrer que ψ dé�nit un endomorphisme de Eλ(A).
II.3.b. En déduire l'existence d'un vecteur propre commun à A et B.

Pour k ∈ N∗, on note Pk la propriété suivante :

pour tout C-espace vectoriel E de dimension k et pour tout couple d'endomorphismes (φ,ψ) de E tels que
rg([φ,ψ]) ⩽ 1, il existe un vecteur propre commun à φ et ψ.

II.4. Véri�er la propriété P1.
II.5. Dans cette question, on suppose que Pk est véri�ée pour tout entier k ∈ [[1, n − 1]] et que A et B ne

véri�ent pas la propriété H.

On note C = [A,B], on suppose que rg(C) = 1 et on considère λ ∈ C une valeur propre de A.

II.5.a. Justi�er l'existence de u ∈ Mn,1(C) tel que Au = λu et Cu ̸= 0.
II.5.b. Véri�er que Im(C) = Vect(v) où v = Cu.
II.5.c. Montrer que Im(C) ⊂ Imλ(A).
II.5.d. Établir les inégalités suivantes : 1 ⩽ dim(Imλ(A)) ⩽ n− 1.

Pour tout X ∈ Imλ(A), on pose φ(X) = AX et ψ(X) = BX.
II.5.e. Montrer que [A,A− λIn] = 0n et [B,A− λIn] = −C.

En déduire que φ et ψ dé�nissent des endomorphismes de Imλ(A).
II.5.f. Montrer l'existence d'un vecteur propre commun à φ et ψ ; en déduire qu'il en est de même pour A et

B.
II.6. Montrer que pour tout n ∈ N∗, Pn est vraie.

Correction :
II.1. II.1.a. Soient λ et µ tels que Ae = λe et Be = µe. Alors ABe = µAe = λµe et de même pour BAe donc

e ∈ Ker([A,B]).
II.1.b. e est non nul (car vecteur propre) donc [A,B] n'est pas injectif et comme il s'agit d'une matrice

carrée (endomorphisme en dimension �nie), cela prouve que [A,B] n'est pas inversible et rg([A,B]) < n.
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II.2. On suppose [A,B] = 0n. Comme K = C, A a au moins une valeur propre : soit λ ∈ Sp(A). [A,B] = 0n
donc Ker([A,B]) = Mn,1(K) et Eλ(A) ⊂ Ker([A,B]) : A et B véri�ent la propriété H.

II.3. II.3.a. Soit X ∈ Eλ(A). Par hypothèse (AB − BA)X = 0 soit ABX = BAX. Or AX = λX donc
A(BX) = λBX ce qui signi�e que BX ∈ Eλ(A) : ψ : X 7→ BX est une application de Eλ(A) dans
lui même. De plus, par propriété du produit matriciel, ψ est linéaire donc ψ est un endomorphisme de
Eλ(A).

II.3.b. λ est valeur propre de A donc Eλ(A) est de dimension non nulle et comme K = C, ψ a au moins
une valeur propre : il existe µ ∈ C et X ∈ Eλ(A) non nul tels que ψ(X) = µX. On a donc BX = µX,
AX = λX et X non nul : X est un vecteur propre commun à A et B.

II.4. En dimension 1, tous les vecteurs non nuls sont des vecteurs propres donc P1 est véri�ée.
II.5. II.5.a. A et B ne véri�ent pas H donc Eλ(A) n'est pas inclus dans Ker(C) : il existe u ∈ Eλ(A) tel que

u ̸∈ Ker(C) : u est donc un élément de Mn,1(C) qui véri�e Au = λu et Cu ̸= 0.
II.5.b. Par hypothèse Im(C) est de dimension 1 et v = Cu est un vecteur non nul de cette image donc

Im(C) = V ect(v).
II.5.c. v = Cu donc v = ABu − BAu = ABu − λBu soit v = (A − λI)(Bu) : v ∈ Imλ(A). La question

précédente permet alors de dire que Im(C) ⊂ Imλ(A).
II.5.d. Im(C) est de dimension 1 donc 1 ≤ dim(Imλ(A)).

λ est valeur propre de A donc Eλ(A) a une dimension non nulle et, d'après le théorème du rang,
dim(Imλ(A)) ≤ n− 1.
Finalement

1 ≤ dim(Imλ(A)) ≤ n− 1.

II.5.e A et A− λIn commutent donc [A,A− λIn] = 0n.
Par dé�nition [B,A−λIn] = B(A−λIn)− (A−λIn)B = BA−AB = −[A,B] d'où [B,A−λIn] = −C.
φ et ψ sont des applications linéaires par propriétés du produit matriciel.
Soit X ∈ Imλ(A) : X = (A− λIn)Y où Y ∈ Mn,1(C).
Comme [A,A − λIn] = 0n, AX = (A − λIn)(AY ) donc AX ∈ Imλ(A). Par conséquent φ est un
endomorphisme de Imλ(A).
De même BX = (A − λIn)(BY ) − CY . CY ∈ Im(C) et Im(C) ⊂ Imλ(A) donc CY ∈ Imλ(A) ; on a
aussi (A − λIn)(BY ) ∈ Imλ(A) donc BX ∈ Imλ(A). On en conclut que ψ est un endomorphisme de
Imλ(A).

II.5.f. Im([φ,ψ]) ⊂ Im(C) donc rg([φ,ψ]) ≤ 1. On peut donc appliquer l'hypothèse de récurrence à φ et
ψ, endomorphismes de Imλ(A) qui est de dimension non nulle et strictement inférieure à n : φ et ψ ont
un vecteur propre commun. A fortiori A et B ont un vecteur propre commun.

II.6. P1 est vraie.
Soit n ∈ N, n ≥ 2. On suppose que Pk est véri�ée pour tout entier k ∈ [[1, n− 1]].
Soit E de dimension n.
Soit φ et ψ deux d'endomorphismes de E tels que rg([φ,ψ]) ≤ 1.
On considère A et B les matrices associées respectivement à φ et ψ dans une base de E, C = AB −BA.
Si rg(C) = 1 et si A et B ne véri�ent pas H, alors, d'après II.5., A et B ont un vecteur propre commun :
φ et ψ ont un vecteur propre commun (K = C donc A a au moins une valeur propre.
Si rg(C) = 1 et A, B véri�ent H, alors d'après II.3., φ et ψ ont un vecteur propre commun.
Si rg(C) = 0, alors [A,B] = 0 et, d'après II.2. et II.3., φ et ψ ont un vecteur propre commun.
On en déduit que Pn est véri�ée.
Par récurrence, on peut conclure que, pour tout n ∈ N∗, Pn est vraie.

Partie III : ÉTUDE D'UN AUTRE CAS PARTICULIER

Soit n ∈ N∗. On note E = C2n[X] le C-espace vectoriel des polynômes à coe�cients complexes de degré inférieur
ou égal à 2n.
Pour P ∈ E, on désigne par P ′ le polynôme dérivé de P.

Pour tout polynôme P de E, on pose f(P ) = P ′ et g(P ) = X2nP
(

1
X

)
.

III.1. Soient (a0, a1, . . . , a2n) ∈ C2n+1 et P =

2n∑
k=0

akX
k. Montrer que g(P ) =

2n∑
k=0

a2n−kX
k.

III.2. Montrer que f et g dé�nissent des endomorphismes de E.
III.3.

III.3.a. Véri�er que si P est un vecteur propre de g, alors deg(P ) ⩾ n.
III.3.b. Montrer que Xn est un vecteur propre de g.

Soit i ∈ [[1, 2n]]. f i correspond à la composée f ◦ f ◦ · · · ◦ f où f est prise i fois.
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III.4.
III.4.a. Véri�er que Ker(f i) = Ci−1[X].
III.4.b. Montrer que Sp(f i) = {0}.

III.5. Montrer que f i et g possèdent un vecteur propre commun si et seulement si i ⩾ n+ 1.

Bc désigne la base canonique de E dé�nie par : Bc = (1, X, . . . ,X2n).
On note An la matrice de f dans la base Bc et Bn celle de g dans la même base.

III.6. Déterminer An et Bn.
III.7. Dans cette question, on suppose que n = 1.

III.7.a. Montrer que A1 =

0 1 0
0 0 2
0 0 0

 et B1 =

0 0 1
0 1 0
1 0 0

 et en déduire l'expression de (A1)
2 et (A1)

3.

III.7.b. Déterminer le rang de [(A1)
i, B1] pour i = 1 et i = 2.

III.7.c. En déduire que la condition nécessaire de la question II.1.b n'est pas su�sante et que la condition
su�sante de la question II.6 n'est pas nécessaire.

Correction :

III.1. g(P ) =
2n∑
k=0

akX
2n−k. On pose l = 2n− k pour obtenir g(P ) =

2n∑
l=0

a2n−lX
l.

III.2. Pour tout polynôme P , degP ′ ≤ degP et la dérivation des polynômes est linéaire donc f est un
endomorphisme de E.
La question précédente prouve que g est une application de E dans E.
Si (P,Q) ∈ E2 et λ ∈ C, alors :

g(P + λQ) = X2n(P + λQ)

(
1

X

)
= X2nP

(
1

X

)
+X2nQ

(
1

X

)
= g(P ) + λg(Q)

donc g est linéaire. g est donc un endomorphisme de E.
III.3. III.3.a. Soit P un vecteur propre de g et λ la valeur propre associée, on a : g(P ) = λP .

La question III.1. prouve que g est injective donc λ ne peut pas être nul. Par conséquent P et g(P ) ont
le même degré que l'on appelle d. (P n'est pas nul car vecteur propre).
On reprend les notations de la question III.1.. ad ̸= 0 donc si k = 2n − d, a2n−k ̸= 0 et donc
deg(g(P )) ≥ 2n− d. Par conséquent d ≥ 2n− d et donc deg(P ) ≥ n.
Alternative : Soit P un vecteur propre de g et λ la valeur propre associée, ainsi g(P ) = λP . Cette
dernière égalité est équivalente, en utilisant III.1, à a2n = λa0, . . . , a0 = λa2n, ainsi si degP < n, alors
a2n = . . . = an = 0, et les n dernières égalités donnent alors que a0 = . . . = an−1 = 0 et donc que
P = 0, ce qui est absurde (P vecteur propre donc non nul), ce qui montre que degP ≥ n.

III.3.b. g(Xn) = Xn et Xn n'est pas le polynôme nul donc Xn est un vecteur propre de g.
III.4. III.4.a. f i(P ) = P (i). P ′ est nul si et seulement P est un polynôme constant c'est-à-dire un polynôme

de degré ≤ 0.
On suppose que Ker f i = Ci−1[X] pour un entier i entre 1 et 2n− 1.
P ∈ Ker f i+1 si seulement si P ′ ∈ Ker f i donc si et seulement si P ′ ∈ Ci−1[X] donc Ker f i+1 = Ci[X].
Par récurrence, pour tout i entre 1 et 2n, Ker f i = Ci−1[X].

III.4.b. Si P est non nul de degré i− 1, alors f i(P ) = 0 = 0× P donc 0 ∈ Sp(f i).
(f i)2n+1 = (f2n+1)i et si P ∈ E, sa dérivée d'ordre 2n + 1 est nul donc X2n+1 est un polynôme
annulateur de f i. 0 est sa seule racine donc 0 est la seule valeur propre possible de f i.
Finalement Sp(f i) = {0}.
Alternative : comme f(1) = 0 on a f i(1) = 0 et donc 0 ∈ Sp(f i).
Soit λ ∈ Sp(f i), on suppose que λ ̸= 0. Comme λ est valeur propre il existe P non nul tel que
f i(P ) = λP , ie P (i) = λP , or degP (i) = degP − i et deg λP = degP ce qui est absurde (en e�et
degP ∈ N puisque P ̸= 0, ainsi il n'existe pas de valeur propre non nulle de f i. D'où Sp(f i) = {0}.

III.5. Si i ≥ n + 1, f i(Xn) = 0Xn donc Xn est vecteur propre de f i. Avec la question III.3.b. on peut en
déduire que Xn est un vecteur propre commun à f et g.
On suppose réciproquement que i est tel que f et g ont un vecteur propre commun.
Soit P un vecteur propre commun. D'après III.3.a., deg(P ) ≥ n et d'après III.4.b. P ∈ Ker f i donc d'après
III.4.a. deg(P ) ≤ i− 1. Ainsi, n ≤ i− 1 soit i ≥ n+ 1.
Finalement f et g ont un vecteur propre commun si et seulement si i ≥ n+ 1.
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III.6. An = (aij)1≤i,j≤2n+1 où pour i entre 2 et 2n, ai,i−1 = i− 1 et tous les autres coe�cients nuls :

An =



0 1 0 · · · 0
...

. . . 2
. . .

...
. . . 0

...
. . . 2n

0 · · · · · · 0


Pour k entre 0 et 2n, g(Xk) = X2n−k donc Bn = (bij)1≤i,j≤2n+1 où pour tout i entre 1 et 2n + 1,
bi,2n+2−i = 1, tous les autres coe�cients étant nuls.

III.7. III.7.a. En prenant n = 1 dans la question précédente, on obtient bien A1 =

0 1 0
0 0 2
0 0 0

 et B1 =0 0 1
0 1 0
1 0 0

.

Par produit matriciel, (A1)
2 =

0 0 2
0 0 0
0 0 0

 et (A1)
3 est la matrice nulle.

III.7.b. On trouve [A1, B1] =

0 1 0
2 0 −2
0 −1 0

 qui est de rang 2.

[(A1)
2, B1] =

2 0 0
0 0 0
0 0 −2

 qui est aussi de rang 2.

III.7.c. Quand i = 2, i ≥ 1 + 1 donc (A1)
2 et B1 ont un vecteur propre commun alors que la condition de

la question II.6. n'est pas véri�ée ; celle-ci n'est donc pas nécessaire.
Quand i = 1, rg([A1, B1]) < 3 mais A1 et B1 n'ont pas de vecteur propre commun donc la condition de
la question II.1.b. n'est pas su�sante.

Partie IV : FORME NORMALE POUR UN VECTEUR PROPRE

Soit n ∈ N avec n ⩾ 2. On note N =


x1...
xn

 ∈ Mn,1(C)

∣∣∣∣∣ ∃i ∈ [[1, n]] tel que xi = 0

 .

Soit A ∈ Mn(C) et X un vecteur propre de A.
On dit que X est sous forme normale si :

• X ∈ N
ou

• il existe λ′ ∈ Sp(A) et il existe U ∈ N tel que X = (A− λ′In)U.
IV.1. Dans cette question, on suppose que A possède une valeur propre λ telle que

dim(Eλ(A)) ⩾ 2.
Montrer que A admet un vecteur propre sous forme normale associé à la valeur propre λ.

On note An(C) le C-espace vectoriel des matrices M ∈ Mn(C) antisymétriques, c'est-à-dire telles que
M⊤ = −M.
Pour tout M ∈ An(C), on pose : φ(M) = AM +MA⊤ et ψ(M) = AMA⊤.

IV.2.
IV.2.a. Montrer que An(C) ̸= {0n}.
IV.2.b. Montrer que les colonnes d'une matrice M ∈ An(C) sont des éléments de N .
IV.2.c. Montrer que φ et ψ dé�nissent des endomorphismes de An(C).
IV.2.d. Véri�er que φ ◦ ψ = ψ ◦ φ.

IV.3. Dans cette question, on suppose que A possède au moins deux valeurs propres distinctes, notées λ1 et λ2.

On considère X1 un vecteur propre de A associé à la valeur propre λ1 et X2 un vecteur propre de A associé
à la valeur propre λ2.

On note B = X1X
⊤
2 −X2X

⊤
1 .

IV.3.a. Montrer que B véri�e chacune des propriétés suivantes :
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i) B ∈ An(C) ;
ii) B ̸= 0n ;
iii) AB +BA⊤ = (λ1 + λ2)B ;
iv) ABA⊤ = (λ1λ2)B.

IV.3.b. En déduire que (A− λ1In)(A− λ2In)B = 0n.
IV.3.c. Dans cette question, on suppose que (A− λ2In)B = 0n. Montrer qu'au moins l'une des colonnes de B

est un vecteur propre de A sous forme normale.
IV.3.d. Dans cette question, on suppose que (A − λ2In)B ̸= 0n. Montrer que A possède un vecteur propre

sous forme normale.
IV.4. Dans cette question, on suppose que A ne possède qu'une seule valeur propre λ.

IV.4.a. Montrer l'existence d'une matrice B ∈ An(C) non nulle véri�ant chacune des propriétés suivantes :
i) il existe α ∈ C tel que : AB +BA⊤ = αB ;
ii) il existe β ∈ C tel que : ABA⊤ = βB.

IV.4.b. Véri�er que (A2 − αA+ βIn)B = 0n.
IV.4.c. Montrer qu'il existe (γ, δ) ∈ C2 tel que (A− γIn)(A− δIn)B = 0n.
IV.4.d. Dans cette question, on suppose que (A− δIn)B = 0n. Montrer que A possède un vecteur propre sous

forme normale.
IV.4.e. Dans cette question, on suppose que (A − δIn)B ̸= 0n et δ = λ. Montrer que A possède un vecteur

propre sous forme normale.
IV.4.f. Dans cette question, on suppose que (A− δIn)B ̸= 0n et δ ̸= λ. Montrer que A− δIn est une matrice

inversible et en déduire que (A− γIn)B = 0.
IV.4.g. Que conclure ?

Correction :
IV.1. dimEλ(A) ≥ 2 donc on peut considérer deux vecteurs propres X et X ′ formant une famille libre associés

à la valeur propre λ : X = (x1, · · · , xn) et X ′ = (x′1, · · · , x′n).
Si x1 = 0 alors X ∈ N .
SI x1 ̸= 0, on pose X ′′ = x′1X − x1X

′. Alors X ′′ ∈ N (la première composante de X ′′ est nulle), X ′′ n'est
pas nul (car (X,X ′) est libre) et est dans Eλ(A) donc X ′′ est un vecteur propre de A.
Dans tous les cas, A admet un vecteur propre sous forme normale associé à la valeur propre λ.

IV.2. IV.2.a. Soit A = (aij)1≤i,j≤n tel que a12 = 1, a21 = −1, tous les autres coe�cients nuls (ceci est possible
car n ≥ 2). A n'est pas la matrice nulle et est antisymétrique donc An(C) ̸= {0n}.

IV.2.b. SoitM ∈ An(C),M = (mij)1≤i,j≤n. Pour tous i et j,mij = −mji donc en particulier les coe�cients
diagonaux mii sont nuls ; comme il y en a un par colonne, on en déduit que les colonnes de M sont des
éléments de N .

IV.2.c. Soit M ∈ An(C). La transposition est linéaire et (AB)⊤ = B⊤A⊤ donc :

(φ(M))⊤ = (AM)⊤ + (MA⊤)⊤ =M⊤A⊤ + (A⊤)⊤M⊤ = −MA⊤ −AM = −φ(M)

donc φ(M) ∈ An(C).
De même :

(ψ(M))⊤ = (AMA⊤)⊤ = AM⊤A⊤ = −AMA⊤ = −ψ(M)

φ et ψ sont donc des applications de An(C) dans lui-même ; de plus elles sont linéaires par propriétés
du produit matriciel donc φ et ψ sont des endomorphismes de An(C).

IV.2.d. Soit M ∈ An(C). On a :

φ ◦ ψ(M) = φ(AMA⊤) = A(AMA⊤) + (AMA⊤)A⊤ = A2MA⊤ +AM(A⊤)2

et par ailleurs :

ψ ◦ φ(M) = ψ(AM +MA⊤) = A(AM +MA⊤)A⊤ = A2MA⊤ +AM(A⊤)2

par conséquent, pour tout M ∈ An(C), φ ◦ ψ(M) = ψ ◦ φ(M) donc φ ◦ ψ = ψ ◦ φ.
IV.3. IV.3.a. i) X1 ∈ Mn,1(C) et X⊤

2 ∈ M1,n(C) donc X1X
⊤
2 ∈ Mn(C). De même X2X

⊤
1 ∈ Mn(C) donc

B ∈ Mn(C). De plus : B⊤ = (X1X
⊤
2 )⊤ − (X2X

⊤
1 )⊤ = X2X

⊤
1 −X1X

⊤
2 . Donc B ∈ An(C).

ii) On suppose B = 0n. Alors X1X
⊤
2 = X2X

⊤
1 . On multiplie à droite par X2 pour obtenir X1(X

⊤
2 X2) =

X2(X
⊤
1 X2).

Or X⊤
2 X2 et X⊤

1 X2 sont des scalaires et (X1, X2) est libre (vecteurs propres associés à des valeurs
propres distinctes) donc X⊤

2 X2 = X⊤
1 X2 = 0. Or si on note (a1, . . . , an) les coordonnées de X2,

alors X⊤
2 X2 =

n∑
k=1

akak =

n∑
k=1

|ak|2, ce qui implique que a1 = . . . = an = 0 et donc X2 = 0, ce qui

contredit le fait que X2 soit un vecteur propre.
Par conséquent B ̸= 0n.
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iii) Pour i = 1 ou i = 2, AXi = λiXi donc X⊤
i A

⊤ = λiX
⊤
i .

AB +BA⊤ = AX1X
⊤
2 −AX2X

⊤
1 +X1X

⊤
2 A

⊤ −X2X
⊤
1 A

⊤

= λ1X1X
⊤
2 − λ2X2X

⊤
1 + λ2X1X

⊤
2 − λ1X2X

⊤
1

= λ1B + λ2B

d'où AB +BA⊤ = (λ1 + λ2)B.
iv) De même

ABA⊤ = (AX1)(X
⊤
2 A

⊤)− (AX2)(X
⊤
1 A

⊤)

= λ1λ2X1X
⊤
2 − λ2λ1X2X

⊤
1

d'où ABA⊤ = (λ1λ2)B.
IV.3.b. A et In commutent donc (A− λ1In)(A− λ2In)B = A2B − (λ1 + λ2)AB + λ1λ2B. On multiplie la

relation iii) par A à gauche : A2B+ABA⊤ = (λ1 + λ2)AB donc (A− λ1In)(A− λ2In)B = −ABA⊤ +
λ1λ2B. D'après iv), on conclut (A− λ1In)(A− λ2In)B = 0n.

IV.3.c. B ̸= 0n donc l'une au moins des colonnes de B est non nulle ; soit C une colonne de B non nulle.
(A − λ2In)B = 0n donc (A − λ2In)C = 0n,1 soit AC = λ2C. C n'est pas nulle donc C est un vecteur
propre de A.
De plus B ∈ An(C) donc C ∈ N . C, une des colonnes de B, est donc un vecteur propre de A sous forme
normale.

IV.3.d. (A − λ2In)B ̸= 0 donc il existe X une colonne de (A − λ2In)B non nulle. Il existe alors U une
des colonnes de B telle que X = (A − λ2In)U . D'après la question b., X est un vecteur propre de A
(associé à la valeur propre λ1 et λ2 est une valeur propre de A, U ∈ N . Finalement X est donc un
vecteur propre de A sous forme normale.

IV.4. IV.4.a. φ et ψ sont deux endomorphismes de An(C) tels que rg([φ,ψ]) = 0 ≤ 1 donc, d'après la partie
II, φ et ψ ont un vecteur propre commun : il existe B ∈ An(C) non nulle vecteur propre de φ et de ψ ;
il existe donc α ∈ C tel que φ(B) = αB soit AB +BA⊤ = αB et il existe β ∈ C tel que ABA⊤ = βB.

IV.4.b. On multiplie i) par A à gauche : A2B+ABA⊤ = αAB mais ABA⊤ = βB donc A2B+βB = αAB.
En factorisant par B, on obtient (A2 − αA+ βIn)B = 0n.

IV.4.C. Le polynôme X2 − αX + β à coe�cients complexes a deux racines (éventuellement confondues)
donc il existe (γ, δ) ∈ C2 tel que X2−αX+=

	
(X−γ)(X−δ). Alors A2−αA+βIn = (A−γIn)(A−δIn)

et, la relation de la question précédente devient : (A− γIn)(A− δIn)B = 0n.
IV.4.d. On suppose (A − δIn)B = 0n donc, si A − δIn est inversible, alors B = 0 ce qui est exclu donc

A− δIn n'est pas inversible et δ ∈ Sp(A). Une colonne non nulle de B est alors un vecteur propre de A
sous forme normale.

IV.4.e. Si δ = λ et (A− δIn)B ̸= 0.
Soit X une colonne non nulle de (A− δIn)B et U la colonne de B telle que X = (A− δIn)U . U ∈ N ,
δ ∈ Sp(A) et (A − γIn)X = 0n,1 (d'après IV.4.c.) donc X est un vecteur propre de A sous forme
normale.

IV.4.f. A n'a qu'une valeur propre λ et δ ̸= λ donc δ n'est pas valeur propre de A et (A − δIn) est
inversible.
A − γIn et A − δIn commutent donc si on multiplie à gauche la relation de la question IV.4.c. par
(A− δIn)

−1, on obtient (A− γIn)B = 0n.
IV.4.g. On est alors revenu à la situation de la question IV.4.d. et donc A possède un vecteur propre sous

forme normale.
On considère une matrice A ∈ Mn(C) quelconque.
A a au moins une valeur propre.
Si A a une seule valeur propre, d'après IV.4., A possède un vecteur propre sous forme normale.
Si A a au moins deux valeurs propres distinctes, alors d'après IV.3., A possède un vecteur propre sous
forme normale.
On en conclue que, dans tous les cas, une matrice A de Mn(C) possède un vecteur propre sous forme
normale.
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