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dns 6⋆ : pour le vendredi 7 janvier

Le candidat encadrera ou soulignera les résultats.
N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si
un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

X-E.N.S-E.S.P.C.I. 2017

Dans le problème, n est un nombre entier naturel supérieur ou égal à 2 et [[1, n]] désigne l'ensemble des nombres
entiers compris entre 1 et n.
C désigne le corps des nombres complexes. Le module d'un nombre complexe z est noté |z|.
Mn,m(C) (resp. Mn,m(R)) désigne l'espace des matrices à n lignes et m colonnes, à coe�cients dans C (resp. dans
R). La matrice transposée d'une matrice M ∈ Mn,m(C) est notée tM .
Cn est identi�é à l'espace Mn,1(C) des matrices colonnes à n lignes et à coe�cients dans C. Les coe�cients d'un
vecteur x ∈ Cn sont notés x1, . . . , xn. Dans tout le problème, Cn est muni de la norme ∥ · ∥1 dé�nie par

∥x∥1 =

n∑
i=1

|xi|.

Pour tous x ∈ Cn et y ∈ Cn, la matrice txy ∈ M1(C) est identi�ée au nombre complexe

n∑
i=1

xiyi.

Le sous-espace vectoriel de Cn engendré par un vecteur v ∈ Cn \ {0} est noté Cv.
Une matrice M ∈ Mn,m(R) est dite positive (resp. strictement positive) lorsque tous ses coe�cients sont des réels
positifs (resp. strictement positifs). Cette propriété est notée M ≥ 0 (resp. M > 0).
Si A et B sont deux matrices de Mn,m(R), on notera A ≥ B (resp. A > B) la propriété A−B ≥ 0 (resp. A−B > 0).
Ainsi, pour x et y dans Rn,

x ≤ y ⇔ ∀i ∈ [[1, n]], xi ≤ yi.

Lorsque m = n, on utilisera la notation Mn(C) (resp Mn(R)) pour Mn,m(C) (resp Mn,m(R)).
La matrice diagonale 

λ1 0 · · · 0

0
. . .

. . . 0
...

. . .
. . .

...
0 · · · 0 λn

 ∈ Mn(C)

sera notée diag(λ1, . . . , λn). On note In = diag(1, . . . , 1) la matrice identité d'ordre n.
Pour M ∈ Mn(C), on pose

∥M∥ = sup
x∈Cn, ∥x∥1=1

∥Mx∥1 = sup
x∈Cn\{0}

∥Mx∥1
∥x∥1

. (1)

Une matrice M ∈ Mn(C) sera en général identi�ée à l'endomorphisme φM de Cn représenté par M dans la base
canonique de Cn : pour x ∈ Cn, φM (x) = Mx. On appelle spectre d'une matrice M ∈ Mn(C), et on note Sp(M),
l'ensemble des valeurs propres de M. Le rayon spectral de M, noté ρ(M), est dé�ni comme le maximum des modules
des valeurs propres de M :

ρ(M) = max{|λ|; λ ∈ Sp(M)}.

Première partie

1o (a) Pour toute matrice M ∈ Mn(C) et tout nombre réel C > 0, montrer l'équivalence

∥M∥ ≤ C ⇔ ∀x ∈ Cn : ∥Mx∥1 ≤ C∥x∥1.

(b) Montrer que l'application M 7→ ∥M∥ est une norme sur Mn(C).
2o Montrer que pour A,B ∈ Mn(C), ∥AB∥ ≤ ∥A∥ ∥B∥.
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3o Soit A ∈ Mn(C). On note ai,j le coe�cient de A d'indice de ligne i et d'indice de colonne j. Montrer que

∥A∥ = max
1≤j≤n

(
n∑
i=1

|ai,j |

)
.

4o On dit qu'une suite (A(k))k∈N de matrices de Mn(C) converge vers une matrice B ∈ Mn(C) lorsque

∀i ∈ [[1, n]], ∀j ∈ [[1, n]], lim
k→+∞

(ai,j)
(k) = bi,j .

Montrer que la suite (A(k)) converge vers B si et seulement si lim
k→+∞

∥A(k) −B∥ = 0.

5o On considère dans cette question une matrice A ∈ Mn(C) triangulaire supérieure,

A =



a1,1 a1,2 · · · · · · a1,n
0 a2,2 · · · · · · a2,n
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · 0 an,n

 .

On suppose que
∀i ∈ [[1, n]], |ai,i| < 1.

Pour tout réel b > 0, on pose Pb = diag(1, b, b2, . . . , bn−1) ∈ Mn(R).
(a) Calculer P−1

b APb. Que se passe-t-il lorsqu'on fait tendre b vers 0 ?

(b) Montrer qu'il existe b > 0 tel que
∥P−1

b APb∥ < 1.

(c) En déduire que la suite (Ak)k∈N∗ converge vers 0.

Correction :

1o (a) Soit M ∈ Mn(C) et C > 0.

Sens direct : On suppose ∥M∥ ≤ C, ie. (d'après (1)) on suppose sup
x∈Cn\{0}

∥Mx∥1
∥x∥1

≤ C.

Soit x ∈ Cn, si x = 0 on a bien ∥Mx∥1 ≤ C∥x∥1, si x ̸= 0, comme
∥Mx∥1
∥x∥1

≤ ∥M∥ on a bien

∥Mx∥1 ≤ C∥x∥1.
Sens réciproque : On suppose pour tout x ∈ Cn que : ∥Mx∥1 ≤ C∥x∥1.

On a donc pour tout x ∈ Cn \ {0} :
∥Mx∥1
∥x∥1

≤ C, en prenant le sup sur x on a donc ∥M∥ ≤ C

Ce qui montre bien l'équivalence demandée.

(b) Positivité : On prend le sup d'un ensemble non vide de réels positif, on a donc bien la positivité.

Séparation : Soit M ∈ Mn(C) telle que ∥M∥ = 0, on a donc, pour tout x ∈ Cn \ {0}, que ∥Mx∥1
∥x∥1

= 0, ie.

que ∥Mx∥1 = 0 et donc (la norme 1 est une norme) que Mx = 0. On en conclue donc que M = 0 (par
exemple avec l'identi�cation de l'énoncé : on a pour tout x que φM (x) = 0, ainsi φM est l'endomorphisme
nul).

Homogénéité : Soit M ∈ Mn(C) et λ ∈ C. Comme ∥ · ∥1 est une norme on a, pour tout x ∈ Cn, que
∥λMx∥ ≤ |λ|∥Mx∥1 et donc que ∥M∥ ≤ |λ|∥M∥. On a aussi, pour λ ̸= 0 (pas de problème si λ = 0)
∥ 1
λλM∥ ≤ 1

|λ|∥λM∥ et donc |λ|∥M∥ ≤ ∥λM∥. Ce qui termine de montrer ∥M∥ = |λ|∥M∥
Inégalité triangulaire : Soit (M,N) ∈ (Mn(C))2. Pour x ∈ Cn tel que ∥x∥1 = 1. On a ∥(M + N)x∥1 ≤

∥Mx∥1 + ∥Nx∥1 ≤ ∥M∥+ ∥N∥ et donc ∥M +N∥ ≤ ∥M∥+ ∥N∥.
Ce qui montre bien que ∥ · ∥ est une norme sur Mn(C).

2o Soit x ∈ Cn. Comme ∥B∥ ≤ ∥B∥ on a d'après (a) que ∥Bx∥1 ≤ ∥B∥∥x∥1. On a aussi, toujours en appliquant
(a) (le sens direct avec M = A, C = ∥A∥ et le vecteur Bx) que : ∥ABx∥1 ≤ ∥A∥∥Bx∥1. On a donc ∥ABx∥1 ≤
∥A∥∥B∥∥x∥1. Cette dernière égalité étant véri�ée pour tout x ∈ Cn, la réciproque de (a) (pour M = AB et
C = ∥A∥∥B∥) donne ∥AB∥ ≤ ∥A∥∥B∥.
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3o Posons SA = max
1≤j≤n

(
n∑
i=1

|ai,j |

)
et notons (e1, . . . , en) la base canonique de Cn. Soit j0 l'indice de colonne qui

réalise le maximum SA =

n∑
i=1

|ai,j0 |. Comme ∥ej0∥1 = 1 on a déjà SA ≤ ∥A∥.

Soit x =

n∑
i=1

xjej ∈ Cn. On a : ∥Ax∥1 =

∥∥∥∥∥∥
n∑
j=1

xjAej

∥∥∥∥∥∥ IT

≤
n∑
j=1

|xj | ∥Aej∥1 =

n∑
j=1

|xj |
n∑
i=1

|ai,j |︸ ︷︷ ︸
≤SA

≤ SA∥x∥1. Ainsi,

d'après 1o(a) : ∥A∥ ≤ SA.
On a bien montré que SA = ∥A∥.

4o Sens direct : On suppose que (A(k)) converge vers B. On a 0 ≤ ∥A(k) − B∥ = SA(k)−B ≤
n∑
j=1

n∑
i=1

∣∣∣a(k)i,j − bi,j

∣∣∣
(le maximum d'une famille �nie de nombres positifs est plus petit que la somme de ces nombres), chacun
des termes de cette somme tend vers 0, ainsi ∥A(k) −B∥ tend aussi vers 0.

Réciproque : On suppose que ∥A(k) − B∥ tend vers 0. Soit (i, j) ∈ [[1, n]]2, on a 0 ≤
∣∣∣a(k)i,j − bi,j

∣∣∣ ≤
n∑
ℓ=1

∣∣∣a(k)ℓ,j − bℓ,j

∣∣∣ ≤ SA(k)−B = ∥A(k) −B∥, ainsi lim
k→+∞

a
(k)
i,j = bi,j , ce qui montre que (A(k)) converge vers B.

5o (a) Pour tout (i, j) ∈ [[1, n]], on a (APb)i,j =

n∑
k=1

ai,k(Pb)k,j = bj−1ai,j . Ainsi (P
−1
b APb)i,j = bj−iai,j . Il y a

donc un b en facteur devant tous les coe�cients non diagonaux, ainsi lim
b→0

P−1
b APb = Diag(a1,1, . . . , an,n).

(b) Comme ∥ · ∥ est continue on a lim
b→0

∥P−1
b APb∥ = ∥Diag(a1,1, . . . , an,n)∥

3o

= max(|ai,i| , i ∈ [[1, n]]). Notons ℓ

cette limite, par hypothèse on a ℓ < 1. Il existe donc un voisinage de 0 tel que si b est dans ce voisinage
alors ∥P−1

b APb∥ < 1 (dé�nition de la limite avec ε = 1−ℓ
2 > 0).

(c) On utilise le b de la question précédente. Pour k ∈ N⋆, on a (en utilisant (P−1
b APb)

k = P−1
b AkPb) que :

∥Ak∥ = ∥Pb(P−1
b AkPb)P

−1
b ∥

2o

≤ ∥Pb∥∥P−1
b APb∥k∥Pb−1∥. Comme (∥P−1

b APb∥k) tend vers 0, il en va de
même d'après cette inégalité pour (Ak).

Deuxième partie

6o Déterminer le rayon spectral des matrices suivantes(
0 0
0 1

)
,

(
0 0
1 0

)
,

(
1 0
0 0

)
,

(
0 −1
2 0

)
,

(
3 2
1 2

)
.

7o Dire, en justi�ant brièvement la réponse, si les assertions suivantes sont exactes quels que soient A,B ∈ Mn(C),
µ ∈ C.
i) ρ(µA) = |µ|ρ(A)
ii) ρ(A+B) ≤ ρ(A) + ρ(B).
iii) ρ(AB) ≤ ρ(A)ρ(B).
iv) Pour P ∈ Mn(C) inversible, ρ(P−1AP ) = ρ(A).
v) ρ(tA) = ρ(A).

8o Montrer que pour toute matrice A ∈ Mn(C),
ρ(A) ≤ ∥A∥.

Dans les questions 9 à 11, on considère une matrice A ∈ Mn(C).
9o Montrer que si ρ(A) < 1, alors la suite (Ak)k∈N∗ converge vers 0.

10o (a) Montrer que, pour tout k ∈ N∗, ∥Ak∥ ≥ ρ(A)k.

(b) On dé�nit la partie de R+

EA = {α > 0 | lim
k→+∞

(
A

α

)k
= 0}.

Montrer que EA =]ρ(A),+∞[.

11o Montrer la formule
lim

k→+∞
∥Ak∥1/k = ρ(A).
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12o Pour A ∈ Mn(C) de coe�cients ai,j , on pose A+ = (bi,j)1≤i,j≤n, où bi,j = |ai,j |. Montrer l'inégalité

ρ(A) ≤ ρ(A+).

Correction :

6o On trouve 1, 0, 1,
√
2 et 4.

7o i) Vrai car Sp(µA) = {µλ, λ ∈ Sp(A)} (en e�et c'est vrai si µ = 0 et si µ ̸= 0 le résultat découle de
ker(µA− µλIn) = ker(A− λIn))

ii) Faux :

(
0 −1
2 0

)
= 2

(
0 0
1 0

)
−
(
0 1
0 0

)
, mais

√
2 n'est pas inférieur à 0 + 0.

iii) Faux car

(
0 1
0 0

)(
0 0
1 0

)
= I2 et 1 n'est pas inférieur à 0.0.

iv) Vrai car ces deux matrices ont le même spectre.
v) Vrai car ces deux matrices ont le même spectre.

8o Soit λ ∈ Sp(A), il existe x ∈ Cn \ {0} tel que Ax = λx. On a donc
∥Ax∥1
∥x∥1

= |λ| et donc |λ| ≤ ∥A∥. On en

déduit donc que ρ(A) ≤ ∥A∥.
9o Comme on travaille dans C la matrice A est trigonalisable, il existe donc T triangulaire supérieure et P ∈

GLn(C) telles que A = PTP−1, d'après 7o iv) on a ρ(T ) = ρ(A), ainsi ρ(T ) < 1, on a donc, pour tout i,
que ai,i < 1, on est donc dans le cadre de la question 5o, on en déduit donc que (T k) converge vers 0, comme
(Ak) = (PT kP−1) on en déduit donc que (Ak) tend aussi vers 0.

10o (a) Soit λ ∈ Sp(A), on a donc λk ∈ Sp(Ak) (car si x ̸= 0 est tel que Ax = λx alors Akx = λkx), ainsi (par
dé�nition du rayon spectrale de Ak) on a :

∣∣λk∣∣ ≤ ρ(Ak). En prenant le max sur |λ| dans cette inégalité on
a ρ(A)k ≤ ρ(Ak). Or, d'après la question 8o on a ∥Ak∥ ≥ ρ(Ak). On en déduit donc que ∥Ak∥ ≥ ρ(A)k.

(b) Si α > ρ(A), alors comme (7o i)) ρ

(
A

α

)
=
ρ(A)

|α|
< 1 on a (d'après 9o)

(
A
α

)k −→
k→+∞

0 et ainsi α ∈ EA. Ce

qui montre que ]ρ(A),+∞[⊂ EA.

Si α ∈]0, ρ(A)], alors

∥∥∥∥∥
(
A

α

)k∥∥∥∥∥ =
∥Ak∥
αk

10oa)

≥ ρ(A)k

αk
≥ 1, ainsi cette suite ne peut pas tendre vers 0, donc

α ̸∈ EA.
Ce qui termine de montrer que ]ρ(A),+∞[= EA

11o D'après 10o (a) on a : ∥Ak∥1/k ≥ ρ(A).

Posons ε > 0, comme ρ(A) + ε > ρ(A) on a que la suite

((
A

ρ(A)+ε

)k)
k

tend vers 0. Ainsi il existe un rang

K tel que pour tout k ≥ K : ∥
(

A
ρ(A)+ε

)k
∥ ≤ 1, ie. ∥Ak∥ ≤ |ρ(A) + ε|k. On a donc (en combinant avec

le premier résultat énoncé) : ∀ε > 0,∃K ∈ N / ∀k ≥ K, ρ(A) ≤ ∥Ak∥1/k ≤ ρ(A) + ε. On a bien montré
lim

k→+∞
∥Ak∥1/k = ρ(A).

12o Notons a
(k)
i,j et b

(k)
i,j les termes courants de Ak et de Ak+. On peut montrer par récurrence (c'est rapide et sans

di�culté) sur k que pour tout (i, j) :
∣∣∣a(k)i,j

∣∣∣ ≤ ∣∣∣b(k)i,j

∣∣∣. Soit j0 tel que ∥Ak∥ =

n∑
i=1

∣∣∣a(k)i,j0

∣∣∣. On a ∥Ak∥ ≤
n∑
i=1

∣∣∣b(k)i,j0

∣∣∣ ≤
∥Ak+∥. Ainsi ∥Ak∥1/k ≤ ∥Ak+∥1/k. D'où (en faisant k → +∞) : ρ(A) ≤ ρ(A+).

Troisième partie

Dans toute cette partie, A est une matrice strictement positive de Mn(R).
On se propose de démontrer les propriétés suivantes.

(i) ρ(A) > 0, ρ(A) est une valeur propre de A et toute autre valeur propre λ ∈ C de A véri�e |λ| < ρ(A).
(ii) ρ(A) est une racine simple du polynôme caractéristique de A et ker(A− ρ(A)In) est engendré par un vecteur

v0 dont toutes les composantes sont strictement positives.
(iii) Si v est un vecteur propre de A dont toutes les composantes sont positives, alors v ∈ ker(A− ρ(A)In).

(iv) Pour tout vecteur positif non nul x, il existe c ∈ R∗
+ tel que lim

k→+∞

Akx

ρ(A)k
= cv0.

13o Soient z1, . . . , zn des nombres complexes. Montrer que si

|z1 + · · ·+ zn| = |z1|+ · · ·+ |zn|,
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alors le vecteur

z1...
zn

 est colinéaire au vecteur

|z1|
...

|zn|

 .

14o Soient x, y ∈ Cn, λ, µ ∈ C. Montrer que si λ ̸= µ, alors on a l'implication suivante

(Ax = λx et tAy = µy) ⇒ txy = 0.

15o On suppose qu'il existe un réel positif µ et un vecteur positif non nul w tels que Aw ≥ µw.

(a) Montrer que pour tout entier naturel k, Akw ≥ µkw. En déduire que ρ(A) ≥ µ.

(b) Montrer que si Aw > µw, alors ρ(A) > µ.

(c) On suppose à présent que dans le système d'inégalités Aw ≥ µw, la k-ième inégalité est stricte, c'est-à-dire

n∑
j=1

ak,jwj > µwk.

Montrer qu'il existe ε > 0 tel que, en posant w′
j = wj si j ̸= k et w′

k = wk + ε, on a Aw′ > µw′. En déduire
que ρ(A) > µ.

16o Soit λ une valeur propre de A de module ρ(A) et soit x ∈ Cn \ {0} un vecteur propre de A associé à λ. On dé�nit
le vecteur positif non nul v0 par (v0)i = |xi| pour 1 ≤ i ≤ n.

(a) Montrer que Av0 ≥ ρ(A)v0, puis que
Av0 = ρ(A)v0.

(b) En déduire que ρ(A) > 0 et
∀i ∈ [[1, n]], (v0)i > 0.

(c) Montrer que x est colinéaire à v0. En déduire que λ = ρ(A).

La propriété (i) est démontrée.

17o En appliquant les résultats précédents à la matrice tA, on obtient l'existence de w0 ∈ Rn, dont toutes les composantes
sont strictement positives, tel que tAw0 = ρ(A)w0. On pose

F = {x ∈ Cn | txw0 = 0}.

(a) Montrer que F est un sous-espace vectoriel de Cn stable par φA, et que

Cn = F ⊕ Cv0.

(b) Montrer que si v est un vecteur propre de A associé à une valeur propre µ ̸= ρ(A), alors v ∈ F. En déduire la
propriété (iii).

18o (a) On note ψ l'endomorphisme de F dé�ni comme la restriction de φA à F. Montrer que toutes les valeurs propres
de ψ sont de module strictement inférieur à ρ(A). En déduire que ρ(A) est une racine simple du polynôme
caractéristique de A et que

ker(A− ρ(A)In) = Cv0.

La propriété (ii) est démontrée.

(b) Montrer que si x ∈ F, lim
k→+∞

Akx

ρ(A)k
= 0.

(c) Soit x un vecteur positif non-nul. Déterminer la limite de
Akx

ρ(A)k
lorsque k tend vers +∞.

La propriété (iv) est démontrée.

Correction :

13o Montrons le résultat par récurrence sur n.
Initialisation : On suppose |z1 + z2| = |z1| + |z2|. On cherche λ ∈ C tel que (z1, z2) = λ(|z1| , |z2|). Si z1 = 0

alors λ = eiθ2 (où θ2 est un argument de z2) convient, idem si z2 = 0, supposons ces deux complexes non
nuls.
On a : |z1 + z2|2 = (z1 + z2)(z1 + z2) = |z1|2 + |z2|2 +2Re(z1z2). On en déduit donc que Re(z1z2) = |z1z2|.
Or si un nombre complexe u est tel que Re(u) = |u| alors, en prenant son écriture algébrique u = a + ib,
on a a =

√
a2 + b2 et donc a2 = a2 + b2, ie. b = 0, on a donc montré que u était un nombre réel (positif).

On en déduit déduit donc que z1z2 ∈ R, ie z1z2 = z1z2, ainsi en posant λ = z1
|z1| =

z2
|z2| on a le coe�cient λ

cherché.
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Hérédité : Supposons le résultat pour k complexes, soit (z1, . . . , zk+1) ∈ Ck+1 tel que |z1 + . . .+ zk+1| =
|z1|+ . . .+ |zk+1|.
Si l'un des zi est nul on peut directement utiliser l'hypothèse de récurrence et conclure, supposons les zi
tous non nuls.
On a (IT) : |z1 + . . .+ zk+1| ≤ |z1 + . . .+ zk| + |zk+1| ≤ |z1| + . . . + |zk| + |zk+1|, par hypothèse les deux
"≤" sont des "=", ainsi |z1 + . . . zk| = |z1|+ . . .+ |zk|, ainsi par hypothèse de récurrence il existe λ ∈ C tel
que (z1, . . . , zk) = λ(|z1| , . . . , |zk|).
En procédant de même et en enlevant z1 on a l'existence de µ ∈ C tel que (z2, . . . , zk+1) = µ(|z2| , . . . , |zk+1|).
Comme z2 ̸= 0, on a z2

|z2| = λ = µ. Ce qui montre que (z1, . . . , zk+1) = λ(|z1| , . . . , |zk+1|). Ce qui termine

l'hérédité et la récurrence.

14o Soit λ ̸= µ et x, y ∈ Cn tels que Ax = λx et tAy = µy.
On a tyAx = tyλx = λtyx mais aussi tyAx = t(tAy)x = t(µy)x = µtyx. Ainsi (λ− µ)tyx = 0, et comme λ ̸= µ on
a donc tyx = 0, en transposant on a txy = 0.

15o (a) Montrons le par récurrence sur k, la propriété est déjà initialisée à k = 1, procédons à l'hérédité : soit
k ∈ N⋆ tel que Akw ≥ µkw, ainsi le vecteur Akw−µkw est positifs (ie tous ses coe�cients le sont). Comme
A est positive, il en va de même (démonstration évidente) pour A(Akw − µkw), ie pour Ak+1w − µkAw.
Or µk(Aw − µw) est positif (car µk l'est et par hypothèse), en sommant ces deux vecteurs positifs on
obtient un vecteur positif (démonstration évidente), ainsi Ak+1w−µk+1w ≥ 0, ce qui termine l'hérédité et
la récurrence.
Comme tous les coe�cients de Akw sont plus grand que ceux de µkw et positifs on en déduit que ∥Akw∥1 ≥

µk∥w∥1, ainsi (dé�nition de ∥ · ∥ et w ̸= 0) : ∥Ak∥ ≥ ∥Akw∥1
∥w∥1

≥ µk, ce qui montre que ∥Ak∥ ≥ µk et donc

que ∥Ak∥1/k ≥ µ, il ne reste plus qu'à faire tendre k vers +∞ et à utiliser 11o pour obtenir ρ(A) ≥ µ.

(b) On a alors (Aw)i > µwi pour tout i ∈ [[1, n]]. On considère les (Aw)i
wi

pour les i tels que wi ̸= 0 (rq. w
est positif non nul, pas nécessairement strictement positif) et on note λ la plus petite de ces valeurs, on a
λ > µ. On a alors Aw ≥ λ et par la question d'avant ρ(A) ≥ λ > µ.

(c) Soit ε > 0 (pour l'instant quelconque), étudions les coe�cients de Aw′ −µw′. Pour i ̸= k : (Aw′ −µw′)i =
n∑
j=1

ai,jwj − µwi + ai,kε > 0 (car

n∑
j=1

ai,jwj − µwi ≥ 0 et ai,kε > 0). Pour i = k : (Aw′ − µw′)k =

n∑
j=1

ak,jwj −µwk− (µ− ak,k)ε = (Aw−w)k− (µ− ak,k)ε. On a (Aw−w)k > 0, reste a choisir un ε tel que

(Aw′ − µw′)k > 0, si µ− ak,k ≤ 0 toutes les valeurs de ε conviennent (par exemple ε = 1), si µ− ak,k > 0

il su�t de prendre, par exemple, ε = (Aw−w)k
2(µ−ak,k)

. On a donc trouvé un w′ positif tel que Aw′ > µw′, ainsi

ρ(A) > µ d'après la question précédente.

16o (a) Pour tout i ∈ [[1, n]], on a (i-ème coordonnée de Ax = λx) :

n∑
j=1

ai,jxj = λxi. Ainsi : |λxi| =

∣∣∣∣∣∣
n∑
j=1

ai,jxj

∣∣∣∣∣∣ IT≤
n∑
j=1

|ai,jxj |, ie. ρ(A)(v0)i |λ| (v0)i ≤
n∑
j=1

ai,j(v0)j . Ainsi (comme c'est vrai pour tout i) : ρ(A)v0 ≤ Av0. Si

l'inégalité était stricte on pourrait utiliser 15o (c) (avec w = v0 et µ = ρ(A)) pour obtenir que ρ(A) > ρ(A),
ce qui est absurde. Ainsi Av0 = ρ(A)v0.

(b) Comme x ̸= 0 il existe k ∈ [[1, n]] tel que xk ̸= 0, en prenant la k-ème coordonnée dans l'égalité de la

question précédente on a ρ(A) =
(Av0)k
(v0)k

=
1

|xk|

n∑
j=1

ak,j |xj | ≥ ak,k > 0.

Pour les autres coordonnées on utilise la i-ème coordonnée dans l'égalité de la question précédente :

(v0)i =
(Av0)i
ρ(a)

=
1

ρ(A)

n∑
j=1

ai,j |xj | ≥
1

ρ(A)
ai,kxk > 0, les coordonnées de v0 sont donc toutes strictement

positives.

(c) On reprend la question 16o (a), l'IT écrite est en faite une égalité, ie :

∣∣∣∣∣∣
n∑
j=1

ai,jxj

∣∣∣∣∣∣ =
n∑
j=1

|ai,jxj |. La question

13o permet d'avoir l'existence d'un µ ∈ C tel que (ai,1x1, . . . , ai,n)xn) = µ(ai,1 |x1| , . . . , ai,n |xn|), ainsi pour
tout j on a ai,jxj = µai,j |xj |, comme ai,j > 0 on en déduit que xj = µ |xj |, ce qui montre que x et v0 sont
colinéaires, ce sont donc tous les deux des vecteurs propres de valeur propre ainsi λ = ρ(A).

17o (a) Soit x ∈ F , montrons que Ax est encore dans F . On a t(Ax)w0 = txtAw0 = ρ(A)txw0 = 0. Ainsi F est
stable par φA.
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Soit γ : x 7→ txw0, γ est une forme linéaire, et F = ker(γ). On a γ(v0) =
∑n
i=1(v0)i(w0)i > 0, ainsi

v0 ̸∈ F , ce qui montre deux choses : F et Cv0 sont en somme directe et γ n'est pas l'application nulle,
ainsi rg(γ) ≥ 1 donc rg(γ) = 1, ainsi (théorème du rang) dimF = n − 1. Ce qui termine de montrer que
Cn = F ⊕ Cv0.

(b) Si v est un vecteur propre de valeur propre µ ̸= ρ(A) alors, en appliquant 14o, on a tvw0 = 0 et donc v ∈ F .
Si tous les coe�cients de v étaient réels et positifs on aurait tvw0 > 0 ce qui est absurde. Ainsi un vecteur
propre dont tous les coe�cients sont positifs ne peut être qu'associé à la valeur propre ρ(A).

18o (a) Un élément de F ne peut pas être à coordonnée strictement positif (cela contredirait la dé�nition de F ),
donc ρ(A) ne peut pas être vecteur propre de ψ, ainsi ses valeurs propres sont de module strictement
plus petits de ρ(A) (si di�érent de ρ(A) mais de même module alors la question 16o (c) donnerai une
contradiction), ie χψ(ρ(A)) ̸= 0, or χA(X) = (X−ρ(A))χψ(X) (il su�t d'écrire φA dans une base adaptée

à la décomposition de 17o a) :

(
ρ(A) 0
0 B

)
où B est la matrice ψ dans cette base), ainsi ρ(A) est racine

simple. Ainsi dim(ker(A− ρ(A)In)) = 1, d'où ker(A− ρ(A)In) = Cv0.

(b) On a ρ(ψ) < ρ(A), ainsi (cf 7o (i)) : ρ( ψ
ρ(A) ) < 1, ainsi d'après la question 9o

(
ψ

ρ(A)

)k
−→
k→+∞

0, ainsi

(continuité des endomorphismes) : pour tout x ∈ F ,
(
ψ(x)
ρ(A)

)k
−→
k→+∞

0, ie. Akx
ρ(A)k

−→
k→+∞

0.

(c) Le vecteur x se décompose de manière unique sous la forme x = x1 + x2 avec x1 ∈ F et x2 ∈ Cv0, soit
α ∈ C tel que x2 = αv0. La question précédente montre que Akx1

ρ(A)k
−→
k→+∞

0. Or Akx2

ρ(A)k
= αv0. Reste à

montrer que α > 0.

On a txw0 = tx1 + αtv0w0 = αtv0w0, donc α =
txw0

tv0w0
> 0.
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