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ds 6 : samedi 24 janvier

4h sans calculatrice

Le candidat numérotera ses pages, il encadrera ou soulignera les résultats.
N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si
un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

Exercice 1 (proche du cours et/ou des TDs).
1o Vrai/Faux Soit (fn) une suite de fonctions qui converge simplement vers une fonction f sur un intervalle I. Les

assertions suivantes sont-elles vraies ou fausses (démonstration ou contre-exemple).

(a) Dans le cas I = R, si les fn sont toutes périodiques de période T alors f est aussi périodique de période T .
(b) Si les fn sont toutes continues alors f l'est aussi.

2o Déterminer la limite simple des suites de fonctions suivantes, et déterminer si la convergence est uniforme ou non.

(a) fn(x) = xn(1− x) sur [0, 1]
(b) fn(x) = xn(1 + x) sur [0, 1]

3o Soit la fonction dé�nie par f(x) =
+∞∑
n=1

(−1)n+1 e
−nx

n
.

(a) Déterminer l'ensemble de dé�nition D de f .
(b) Montrer que f ∈ C1(R⋆

+).
(c) Calculer f ′ (on l'exprimera sans somme) puis en déduire f sur R⋆

+ (on ne cherchera pas a déterminer la
constante).

4o Soit X une variable aléatoire dont la loi est donnée par le tableau :

xi −2 −1 0 1 2
pi 1/6 1/4 1/6 1/4 1/6

on pose ensuite Y = X2.

(i) Déterminer la loi du couple (X,Y ) puis la loi de Y .
(ii) Déterminer Cov(X,Y ). Les variables X et Y sont-elles indépendantes ?

Correction :

1o (a) C'est vrai. Soit x ∈ R �xé. Pour n ∈ N, on a fn(x+ T ) = fn(x), en faisant n → +∞, avec la convergence
simple, on obtient f(x+ T ) = f(x). Cette dernière égalité étant véri�ée pour tout x ∈ R, on a ainsi que f
est T -périodique.

(b) C'est faux ! Pour n ∈ N⋆ et x ∈ [0, 1] on pose fn(x) = xn, toutes les fonctions fn sont continues sur [0, 1]
mais la suite (fn) converge simplement vers la fonction f dé�nie par f(x) = 0 pour x ∈ [0, 1[ et f(1) = 1
qui n'est pas continue sur [0, 1].

2o (a) Pour x = 1 on a fn(1) = 0 −→
n→+∞

0 et, pour x ∈ [0, 1[, fn(x) −→
n→+∞

0, ainsi (fn) converge simplement vers

la fonction nulle.
Déterminons si la convergence est uniforme. Soit n ≥ 2, la fonction fn est dérivable sur [0, 1] et pour
x ∈ [0, 1] on a f ′

n(x) = nxn−1 − (n + 1)xn = xn−1(n − (n + 1)x), ainsi f ′
n est positive sur [0, n

n+1 ] et
négative sur [ n

n+1 , 1], ainsi fn est croissante puis décroissante, de plus fn(0) = fn(1) = 0 (faire le tableau

de variation). On en déduit que ∥fn∥∞ = fn(
n

n+1 ) =
(

n
n+1

)n

(1 − n
n+1 ) =

(
1− 1

n

)−n
(1 − n

n+1 ). Or(
1− 1

n

)−n
= exp

(
−n ln

(
1− 1

n

))
) = exp

(
−n

(
−1
n + o

n→+∞
( 1n )

))
= exp

(
1 + o

n→+∞
(1)

)
−→

n→+∞
e. Ainsi

∥fn∥∞ −→
n→+∞

0. La convergence de (fn) vers la fonction nulle est donc uniforme sur [0, 1].

(b) Pour x = 1 on a fn(1) = 2 −→
n→+∞

2 et, pour x ∈ [0, 1[, fn(x) −→
n→+∞

0, ainsi (fn) converge simplement vers

la fonction f qui vaut 2 en 1 et 0 sur [0, 1[. Comme toutes les fonctions fn sont continues sur [0, 1] et que
f ne l'est pas la convergence ne peut pas être uniforme sur [0, 1].
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3o Notons, pour n ∈ N⋆ et x ∈ R, un(x) = (−1)n+1 e−nx

n .

(a) Si x < 0,
∑

un(x) diverge grossièrement. Si x = 0 on a la série harmonique alternée (qui converge d'après

le TSA, on n'oubliera pas de préciser les hypothèses du TSA) et si x > 0 on a lim
n→+∞

n2(−1)n+1 e
−nx

n
= 0,

ainsi un(x) = o
n→+∞

(
1

n2

)
et donc la série

∑
un(x) cva (donc cv).

Ainsi D = R+.
(b) Appliquons le théorème de dérivation C1 des séries de fonctions.

La série
∑

un converge simplement sur R⋆
+ d'après la question précédente.

Les fonctions un : x 7→ (−1)ne−nx sont C1 sur R⋆
+.

La série des dérivées,
∑

u′
n(x) =

∑
(−1)ne−nx, converge normalement sur tout segment [a, b] ⊂ R⋆

+ ; en

e�et : ∀x ∈ [a, b], |u′
n(x)| ≤ e−na, ainsi ∥u′

n∥
[a,b]
∞ ≤ e−na et

∑
e−na converge (série géométrique de raison

−1 < e−a < 1).

On en déduit donc que f est C1 sur tout segment de R⋆
+ donc sur R⋆

+ et, pour x > 0, on a f ′(x) =

+∞∑
n=1

u′
n(x).

(c)
∑

u′
n(x) est une série géométrique, on peut donc calculer sa somme : f ′(x) =

−e−x

1 + e−x
. En intégrant on

trouve qu'il existe C tel que, pour tout x ≥ 0, on ait f(x) = ln(1 + e−x) + C.

4o (i) Y (Ω) = {0, 1, 4}, P((X = i) ∩ (Y = j)) = 0 si j ̸= i2, P((X = i) ∩ (Y = i2)) = P (X = i).
P(Y = 0) = P(X = 0) = 1/6, P(Y = 1) = P(X = 1) + P(X = −1) = 1/2, P(Y = 4) = 1/3.
Il est bien entendu préférable ici de mettre ces résultats sous la forme de tableaux.

(ii) E(X) = 0 par symétrie de même E(XY ) = 0 donc Cov(X,Y ) = 0.
Pourtant X et Y ne sont pas indépendantes : P((X = 1) ∩ (Y = 0)) = 0 mais P(X = 1) > 0 et
P(Y = 0) > 0.

Exercice 2 (e3a psi 2024 exercice 1).
Soit n un entier naturel. Soient Y et Z deux variables aléatoires indépendantes dé�nies sur le même espace probabilisé
(Ω,A ,P) suivant la même loi binomiale B

(
n, 1

2

)
.

On pose, pour tout ω ∈ Ω, A(ω) =

(
Y (ω) 0
2 Z(ω)

)
.

1o Calcul d'une somme

(a) Déterminer le coe�cient de Xn dans le polynôme (1 +X)2n.
(b) En remarquant que (1 +X)2n = (1 +X)n(1 +X)n, exprimer le coe�cient précédent d'une autre manière.

(c) En déduire une expression simpli�ée de
∑
k=0

(
n

k

)2

.

2o À quelle condition nécessaire et su�sante portant sur les réels a et c la matrice

(
a 0
2 c

)
est-elle diagonalisable ?

3o Calculer la probabilité de l'événement {ω ∈ Ω, A(ω) est diagonalisable }. On utilisera la question 1.(c) pour sim-
pli�er le résultat.

4o Calculer la probabilité de l'événement {ω ∈ Ω, A(ω) est inversible }.

Correction :

1o Calcul d'une somme

(a) La formule du binôme de Newton donne (1 +X)2n =

2n∑
k=0

(
2n

k

)
Xk. Ainsi, le coe�cient de Xn est

(
2n
n

)
.

(b) On a : (1 + X)2n =

n∑
k=0

(
n

k

)
Xk

n∑
l=0

(
n

l

)
X l =

n∑
k=0

n∑
l=0

(
n

k

)(
n

l

)
Xk+l. Ainsi le coe�cient devant Xn est

(correspond à k ∈ [[0, n]] quelconque et l = n− k) :
n∑

k=0

(
n

k

)(
n

n− k

)
.

(c) Comme, pour tout k, on a
(
n
k

)
=

(
n

n−k

)
, on en déduit que

∑
k=0

(
n

k

)2

=

(
2n

n

)
.
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2o Notons M cette matrice, on a χM = (X − a)(X − c), si a ̸= c, on a χM simplement scindé et donc M

diagonalisable, si a = c alors a est racine double, or M − aI2 =

(
0 0
2 0

)
est de rang 1 donc de noyau de

dimension 1, ainsi la dimension de Ea(M) est di�érente de la multiplicité de a, donc M n'est pas diagonalisable.
Ce qui montre que la matrice est diagonalisable si et seulement si a ̸= c.

3o D'après la question précédente, {ω ∈ Ω | A(ω) est diagonalisable} est l'évènement (Y ̸= Z). On a P(Y =

Z) =

n∑
k=0

P((Y = k) ∩ (Z = k)), par indépendance de Y et Z, on a P(Y = Z) =

n∑
k=0

P(Y = k)P(Z = k) =

1

22n

n∑
k=0

(
n

k

)2

=

(
2n
n

)
22n

.

Ainsi, P({ω ∈ Ω | A(ω) est diagonalisable}) = 1−
(
2n
n

)
22n

.

4o La matrice étant triangulaire, elle est inversible si et seulement si ses éléments diagonaux sont tous non nuls.
Ainsi l'évènement {ω ∈ Ω | A(ω) est inversible} est (Y ≥ 1) ∩ (Z ≥ 1). Or P(Y ≥ 1) ∩ (Z ≥ 1)) = P(Y ≥ 1)2

(indépendance et de même loi), ainsi P(Y ≥ 1) ∩ (Z ≥ 1)) = (1− P(Y = 0))2 = (1− 1
2n )

2.

Exercice 3 (e3a pc 2024 exercice 1).
Soit n un entier naturel non nul.
On note E = R2n[X] l'espace vectoriel des polynômes de degrés inférieurs ou égaux à 2n. Pour tout k ∈ [[0, 2n]], on
note ek = Xk et B = (e0, . . . , e2n) la base canonique de E.

Pour tout couple de polynômes (P,Q) de E2, on pose (P |Q) =

∫ 1

−1

P (t)Q(t)dt et on rappelle que l'on dé�nit ainsi un

produit scalaire sur E.

Soit L l'application dé�nie sur E par : ∀P ∈ E, L(P ) =

∫ 1

−1

P (t)dt.

1o Montrer que L est une forme linéaire sur E.

2o Déterminer L(ek) pour tout k ∈ [[0, 2n]].

3o Déterminer la dimension de Ker(L).

4o Prouver qu'il existe une base U , que l'on ne cherchera pas à expliciter, de Ker(L), dont le premier vecteur est e1.

5o Montrer que :
i) Vect(e0) et Ker(L) sont deux sous-espaces orthogonaux,
ii) E = Vect(e0)⊕Ker(L).

6o Soit λ un réel. On considère l'application Tλ dé�nie sur E par : ∀P ∈ E, Tλ(P ) = P + λL(P )X.

(a) Véri�er que Tλ est un endomorphisme de E.
(b) Soit P ∈ E. Calculer (L ◦ Tλ)(P ).
(c) Déterminer la matrice de Tλ dans une base de E adaptée à la décomposition obtenue aux questions 4 et 5
(d) Déterminer les valeurs propres de Tλ.
(e) L'endomorphisme Tλ est-il diagonalisable ?
(f) Justi�er que Tλ est un automorphisme de E.
(g) Pour tous réels α et β, préciser Tα ◦ Tβ .
(h) Déterminer T−1

λ .

Correction :

1o Soient (P,Q) ∈ E2 et (λ, µ) ∈ R2. Par linéarité de l'intégrale, on a : L(λP + µQ) =

∫ 1

−1

(λP + µQ)(t)dt =∫ 1

−1

λP (t) + µQ(t)dt = λ

∫ 1

−1

P (t)dt+ µ

∫ 1

−1

Q(t)dt = λL(P ) + µL(Q).

L'application L est donc linéaire.
Comme elle est dé�nie sur E et à valeurs dans R, L est une forme linéaire sur E.
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2o Soit k ∈ [[0, 2n]]. On a L(ek) =

∫ 1

−1

ek(t)dt =

∫ 1

−1

tkdt =

[
tk+1

k + 1

]1
−1

=
1− (−1)k+1

k + 1
. Ainsi, on a L(ek) = 0 si k

est impair, L(ek) =
2

k + 1
si k est pair.

3o On a en particulier L(e0) = 2 ̸= 0. L'application L est donc une forme linéaire non nulle sur E. En particulier,
son noyau est un hyperplan de E. On a donc dim(Ker(L)) = dim(E)− 1 = 2n.

4o On a L(e1) = 0 donc le vecteur e1 appartient à Ker(L). En particulier, comme e1 est non nul, la famille (e1)
est une famille libre de Ker(L). D'après le théorème de la base incomplète, il existe donc une base de Ker(L)
dont le premier vecteur est e1.

5o Soient P ∈ Vect(e0) et Q ∈ Ker(L). Il existe λ ∈ R tel que P = λe0. On a donc (P |Q) = λ(e0|Q) =

λ

∫ 1

−1

e0(t)Q(t)dt = λ

∫ 1

−1

Q(t)dt = λL(Q) = 0. Les sous-espaces Vect(e0) et Ker(L) sont donc orthogonaux.

En particulier, ils sont en somme directe. De plus, on a dim(Vect(e0)) + dim(Ker(L)) = 1 + 2n = dim(E).
D'après une caractérisation des supplémentaires en dimension �nie, on a donc E = Vect(e0)⊕Ker(L).
Remarque. On peut obtenir ce résultat sans utiliser de produit scalaire. En e�et, on a L(e0) ̸= 0 donc e0
n'appartient pas à Ker(L). En particulier, la droite Vect(e0) n'est pas incluse dans l'hyperplan Ker(L) donc,
d'après le cours, Vect(e0) et Ker(L) sont supplémentaires dans E.

6o Soit λ un réel.

(a) Soit (P,Q) ∈ E2 et (α, β) ∈ R2. Par linéarité de L, on a : Tλ(αP + βQ) = (αP + βQ) + λL(αP + βQ)X =
αP+βQ+λ(αL(P )+βL(Q))X = αP+βQ+λαL(P )X+λβL(Q)X = α(P+λL(P )X)+β(Q+λL(Q)X) =
αTλ(P ) + βTλ(Q).
L'application Tλ est donc linéaire. De plus, pour tout P ∈ E, on a deg(P ) ≤ 2n et λL(P ) ∈ R donc
deg(λL(P )X) ≤ 1, d'où deg(Tλ(P )) ≤ 2n. L'application Tλ est donc dé�nie sur E et à valeurs dans E. En
conclusion, Tλ est un endomorphisme de E.

(b) Soit P ∈ E. Par linéarité de L, on a (L ◦ Tλ)(P ) = L(Tλ(P )) = L(P ) + λL(P )L(X). Puisqu'on a L(X) =
L(e1) = 0, on en conclut qu'on a (L ◦ Tλ)(P ) = L(P ).

(c) On considère une base de E, notée C, adaptée à la décomposition obtenue aux questions 4 et 5, c'est-à-dire
une base de E dont les deux premiers vecteurs sont e0 et e1 et les autres sont dans Ker(L).
On a Tλ(e0) = e0+λL(e0)X = e0+2λX = e0+2λe1. De plus, pour tout P ∈ Ker(L), on a L(P ) = 0 donc
Tλ(P ) = P .

La matrice de Tλ relativement à la base C est donc A =



1 0 . . . . . . 0

2λ 1
. . .

...

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 1


.

(d) La matrice A étant triangulaire inférieure, ses valeurs propres sont ses coe�cients diagonaux. Ainsi, Tλ

admet pour unique valeur propre 1.
(e) Puisque 1 est l'unique valeur propre de Tλ, l'endomorphisme Tλ est diagonalisable si et seulement si le

polynôme X − 1 annule Tλ, si et seulement si le polynôme X − 1 annule A, ce qui équivaut à A = I2n+1.
En conclusion, l'endomorphisme Tλ est diagonalisable si et seulement si on a λ = 0.

(f) Puisque 0 n'est pas valeur propre de Tλ, Tλ est un automorphisme de E.
(g) Soient α, β ∈ R. Pour tout P ∈ E, on a : (Tα ◦ Tβ)(P ) = Tα(Tβ(P )) = Tβ(P ) + αL(Tβ(P ))X = P +

βL(P )X+αL(P )X = P +(α+β)L(P )X. D'après le résultat de la question 6b On a donc Tα ◦Tβ = Tα+β .
(h) En particulier, on a Tλ ◦ T−λ = T0 = IdE . En composant par T−1

λ à gauche, on obtient ainsi T−1
λ = T−λ.

Exercice 4 (e3a mp 2016 Maths 1 exercice 4).

Un fabricant de produits d'entretien pour machines à café fournit deux types de produits : un produit détartrant
(produit A) et un produit dégraissant (produit B). Ce fabricant vend les produits conditionnés uniquement en boîtes
contenant à la fois un produit A et un produit B. Cependant, pour rendre service à ses clients qui n'ont besoin que
d'un seul produit, un commerçant accepte de vendre séparément les produits.

Pour la suite, on suppose que chaque client qui se présente chez le commerçant n'e�ectue qu'un seul achat. On
suppose également que les choix (du produit A ou B) des clients sont indépendants. On fait également l'hypothèse
qu'il ne reste aucune boîte entamée au début de la journée.
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On considère que chaque client qui se présente chez ce commerçant achète le produit A avec la probabilité p ∈]0, 1[
et le produit B avec la probabilité 1− p. On note X (respectivement Y ) le nombre de produits A (respectivement de
produits B) vendus au cours de la journée. On notera Z = max(X,Y ).

1o On considère une journée où 4 clients se sont présentés. Déterminer la loi de X , la loi de Y et les espérances de
ces deux variables aléatoires. Déterminer la loi de Z. Que représente cette variable aléatoire ?

On suppose maintenant que le nombre de personnes se présentant chez le commerçant durant une journée est une
variable aléatoire réelle N suivant une loi de Poisson de paramètre λ.

2o Soit n un entier naturel. Quelle est la loi de X sachant que l'évènement [N = n] est réalisé ?

3o Déterminer la loi conjointe du couple (X,N).

4o En déduire la loi de X. Donner sans calcul les valeurs de E(X) et V(X).

5o Démontrer que les variables aléatoires X et Y sont indépendantes.

6o En utilisant la relation N = X + Y , calculer Cov(X,N).

7o Pour k ∈ N et x ∈ R, on note :

S(k, x) =

k∑
j=0

xj

j!

Exprimer P(Z ≤ k) en fonction de λ, S(k, λp) et S(k, λ(1− p)).

8o On utilise dans cette question le langage de programmation PYTHON.

(a) Dé�nir la fonction S(k,x) qui calcule S(k, x) à partir des valeurs de k et x données.
(b) On suppose dans cette question que p = 1

2 , λ = 10 et que le commerçant constate au début de la journée
qu'il lui reste exactement 5 boîtes, aucune n'étant entamée. Écrire les instructions permettant d'a�cher la
probabilité que le commerçant tombe en rupture de stock au cours de la journée.

Correction :

1o X représente le nombre de clients qui achètent le produit A, comme les choix des clients sont indépendants on
a donc a�aire à une loi binomiale, ainsi X ∼ B(4, p), ainsi E(X) = 4p. Il en va de même pour Y ∼ B(4, 1− p),
ainsi E(Y ) = 4(1− p).
On a ici X + Y = 4, ainsi la valeur de X détermine complètement la valeur de Y , on a Z = max(X,Y ) =
max(X, 4 − X), ainsi Z(Ω) = {2, 3, 4} (car les couples possibles pour les valeurs de (X,Y ) sont (0, 4), (1, 3),
(2, 2), (3, 1) et (4, 0) qui donnent comme valeur pour Z 4,3,2,3 et 4 respectivement), ce qui permet de calculer
la loi de Z.
On a P(Z = 2) = P(X = 2) =

(
4
2

)
p2(1 − p)2 = 6p2(1 − p)2, P(Z = 3) = P(X = 1 ou X = 3) = 4p(1 − p)3 +

4p3(1− p) = 4p(1− p)(1− 2p+ 2p2) et P(Z = 4) = P(X = 0 ou X = 4) = p4 + (1− p)4.
Z correspond au nombre de boites ouvertes.

2o la loi de X sachant (N = n) est, comme au 1o, la loi B(n, p).
3o Pour (k, n) ∈ N⋆, on a :

P(X = k,N = n) = P(N = n)P(N=n)(X = k) =

{
0 si k ≥ n+ 1

e−λ λn

n!

(
n
k

)
pk(1− p)n−k si k ∈ [[0, n]]

4o On a X(Ω) ⊂ N, pour k ∈ N, en utilisant la formule des probabilités totales avec le système complet

d'évènements ((N = n))n∈N on a : P(X = k) =

+∞∑
n=0

P(X = k,N = n) =

+∞∑
n=k

e−λλ
n

n!

(
n

k

)
pk(1 − p)n−k =

e−λ
+∞∑
n=k

λn

k!(n− k)!
pk(1 − p)n−k = e−λ

+∞∑
n=0

λn+k

k!n!
pk(1 − p)n = e−λ (pλ)

k

k!

+∞∑
n=0

(λ(1− p))n

n!
= e−λ (pλ)

k

k!
eλ(1−p) =

e−pλ (pλ)
k

k!
.

Ainsi X suit une loi de Poisson de paramètre λp, donc E(X) = λp et V(X) = λp.

5o Tout d'abord, en remplaçant p par 1− p à la question précédente on trouve Y ∼ P(λ(1− p)).

Pour (k, ℓ) ∈ N2 on a d'une part : P(X = k)P(Y = ℓ) = e−pλ (pλ)k

k! e−(1−p)λ ((1−p)λ)ℓ

ℓ! = e−λ (pλ)k

k!
((1−p)λ)ℓ

ℓ! .
D'autre part (en utilisant X + Y = N) : P(X = k, Y = ℓ) = P(X = k,X + Y = k + ℓ) = P(X = k,N =

k + ℓ) = e−λ λk+ℓ

(k+ℓ)!

(
k+ℓ
k

)
pk(1 − p)k+ℓ−k (car k est bien compris entre 0 et k + ℓ). Ainsi P(X = k, Y = ℓ) =

e−λ λk+ℓ

(k+ℓ)!
(k+ℓ)!
k!ℓ! pk(1− p)ℓ = e−λ (pλ)k

k!
((1−p)λ)ℓ

ℓ! .
Ainsi, pour tout k et ℓ, on a : P(X = k, Y = ℓ) = P(X = k)P(Y = ℓ), ainsi les variables aléatoires X et Y sont
indépendantes.
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6o En utilisant la bilinéarité de la covariance et que Cov(X,Y ) = 0 puisque X et Y sont indépendantes on trouve :
Cov(X,N) = Cov(X,X + Y ) = Cov(X,X) + Cov(X,Y ) = V(X) + 0 = λp.

7o Soit k ∈ N, on a (le maximum de deux nombres est plus petit que k si et seulement si ils le sont tous les
deux) :P(Z ≤ k) = P((X ≤ k) ∩ (Y ≤ k)), par indépendance de X et Y on en déduit que P(X ≤ k) = P(X ≤
k)P(Y ≤ k).

Or P(X ≤ k) =

k∑
i=0

P(X = i) =

k∑
i=0

e−pλ (pλ)
i

i!
= e−λpS(k, λp). De même (en remplaçant p par 1 − p) on a

P(Y ≤ k) = e−λ(1−p)S(k, λ(1− p)).
Ainsi P(X ≤ k) = e−λS(k, λp)S(k, λ(1− p)).

8o (a) def S(k, x):

res, u = 1, 1

for j in range(1, k+1):

u = u * x/j

res += u

return res

(b) Le commerçant est en rupture de stock si Z est strictement plus grand que 5, on doit donc calculer
P(Z > 5) = 1− P(Z ≤ 5) = e−10S(5, 5)S(5, 5)

from math import exp

print(exp(-10)*S(5,5)**2)

On rappel 1 le théorème d'intégration terme à terme (pour la dernière question de l'exercice suivant) :
Soit

∑
fn une série de fonctions dé�nies sur un intervalle I de R, on suppose :

(i) Toutes les fonctions fn sont continues par morceaux et intégrables sur I.

(ii)
∑

fn converge simplement sur I vers S.

(iii) S est continue par morceaux sur I.

(iv) La série
∑∫

I
|fn(t)|dt converge.

Alors S est intégrable sur I et
∫
I

S(t) dt =
+∞∑
n=0

∫
I

fn(t) dt.

Exercice 5 (Résolution d'une équation fonctionnelle : ccinp pc 2021 Exercice 2).
Dans cet exercice, on souhaite déterminer les fonctions f :]0,+∞[→ R véri�ant les relations :

lim
x→+∞

f(x) = 0 et ∀x ∈]0,+∞[, f(x+ 1) + f(x) =
1

x2
. (P )

Partie I - Existence et unicité de la solution du problème (P )

Dans cette partie, on démontre que le problème (P ) admet une unique solution et on détermine une expression de
celle-ci sous la forme d'une série de fonctions.

I.1 - Existence de la solution
Pour tout k ∈ N, on dé�nit la fonction φk :]0,+∞[→ R par :

∀x ∈]0,+∞[, φk(x) =
(−1)k

(x+ k)2
.

1o Montrer que la série de fonctions
∑
k≥0

φk converge simplement sur ]0,+∞[.

Dans tout les reste de cet exercice, on note φ :]0,+∞[→ R la somme de la série
∑
k≥0

φk.

2o Montrer que pour tout x ∈]0,+∞[, on a φ(x+ 1) + φ(x) = 1
x2 .

3o En utilisant le théorème spécial des séries alternées, montrer que :

∀x ∈]0,+∞[, ∀n ∈ N,

∣∣∣∣∣
+∞∑

k=n+1

φk(x)

∣∣∣∣∣ ≤ 1

(x+ n+ 1)2
.

1. non présent dans le sujet
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4o Montrer que la fonction φ est une solution de (P ).

I.2 - Unicité de la solution

5o Montrer que si f :]0,+∞ → R est une solution de (P ), alors pour tout n ∈ N, on a :

∀x ∈]0,+∞[, f(x) = (−1)n+1f(x+ n+ 1) +

n∑
k=0

(−1)k

(x+ k)2
.

6o En déduire que la fonction φ est l'unique solution de (P ).

Correction :

1o Pour x > 0 �xé on a |φk(x)| ∼
k→+∞

1
k2 , ainsi

∑
φk(x) converge absolument donc converge, ce qui montre bien

la convergence simple de
∑

φk sur ]0,+∞[.
Alternative : On peut aussi utiliser le TSA directement ici, ce qui fait gagner un peut de temps pour la question
3o.

2o Pour x > 0, on a : φ(x + 1) =

+∞∑
k=0

(−1)k

(x+ 1 + k)2
=

+∞∑
k=1

(−1)k−1

(x+ k)2
= −(φ(x) − φ0(x)) = −φ(x) +

1

x2
. Ce qui

montre bien que φ(x+ 1) + φ(x) = 1
x2 .

3o Pour x > 0, la série
∑

φk(x) est une série alternée qui relève du TSA (elle est bien alternée et (|φk(x)|)k =(
1

(x+k)2

)
k
tend bien vers 0 en décroissant), ce qui donne non seulement la convergence de la série, mais aussi

la domination du reste, ie, pour tout n ∈ N et en notant Rn(x) =

+∞∑
k=n+1

φk(x), que |Rn(x)| ≤ |φn+1(x)| =

1
(x+n+1)2 .

4o Pour x > 0 on a R0(x) = φ(x)− φ0(x), la question précédente donne donc
∣∣φ(x)− 1

x2

∣∣ ≤ 1
(x+1)2 , ainsi φ− φ0

admet 0 comme limite en +∞, et comme φ0 tend aussi vers 0 en +∞ on a donc lim
x→+∞

φ(x) = 0, ce qui montre,

avec la question 2o, que φ est une solution de (P ).
Alternative : La question précédente permet de montrer la convergence uniforme sur R⋆

+ de (Rn) vers la fonction
nulle, ainsi

∑
φk converge uniformément sur R⋆

+, comme de plus tous les φk tendent vers 0 en +∞, on peut
appliquer le théorème de la double limite pour avoir le résultat.

5o Soit f une solution de (P ). Soit n ∈ N et x > 0. Pour tout k ∈ [[0, n]], la relation de (P ) appliquée à
x + k donne : f(x + k + 1) − f(x + k) = 1

(x+k)2 , on multiplie ces égalités par (−1)k et on somme pour

obtenir :
n∑

k=0

(−1)k

(x+ k)2
=

n∑
k=0

(−1)kf(x+ k + 1) + (−1)kf(x+ k) =

n+1∑
k=1

(−1)k−1f(x+ k) +

n∑
k=0

(−1)kf(x+ k) =

(−1)nf(x+ n+1)−
n∑

k=1

(−1)kf(x+ k) + f(x) +

n∑
k=1

(−1)kf(x+ k) = (−1)nf(x+ n+1)+ f(x). Ce qui montre

bien que f(x) = (−1)n+1f(x+ n+ 1) +

n∑
k=0

(−1)k

(x+ k)2
.

Alternative : Démonstration par récurrence sur n.

6o On vient de démontrer, pour tout x > 0 et n ∈ N que f(x) = (−1)n+1f(x + n + 1) +

n∑
k=0

φk(x), il ne reste

plus qu'a faire tendre n vers +∞, ce qui est possible à droite puisque lim
n→+∞

(−1)n+1f(x+ n+1) = 0 (premier

résultat de la propriété (P )) et que lim
n→+∞

n∑
k=0

φk(x) = φ(x). Ainsi f(x) = φ(x), et donc f = φ, ce qui montre

bien que φ est l'unique solution de (P ).

Partie II - Étude de la solution du problème (P )

Dans cette partie, on étudie quelques propriétés de l'unique solution φ :]0,+∞[→ R du problème (P ).

7. Soit ε > 0. Montrer que la série de fonctions
∑
k≥0

φk converge uniformément sur [ε,+∞[.

8. Montrer que la fonction φ est continue sur ]0,+∞[. En utilisant le fait que φ est une solution du problème (P ),
en déduire un équivalent simple de φ au voisinage de 0+.
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9. Justi�er que la fonction φ est dérivable sur ]0,+∞[ et que l'on a :

∀x ∈]0,+∞[, φ′(x) =

+∞∑
k=0

2(−1)k+1

(x+ k)3
.

10. En déduire que la fonction φ est décroissante sur ]0,+∞[.

11. En utilisant le résultat de la question précédente et la relation (P ), montrer que :

∀x ∈]1,+∞[,
1

x2
≤ 2φ(x) ≤ 1

(x− 1)2
.

En déduire un équivalent de φ en +∞.

Correction :

7o Pour x > ε et k ∈ N, on a |φk(x)| = 1
(x+k)2 ≤ 1

(ε+k)2 , ainsi ∥φk∥[ε,+∞[
∞ ≤ 1

(ε+k)2 . Ainsi la série
∑

φk converge
normalement (donc uniformément) sur [ε,+∞[.
Alternative Utiliser 3o pour avoir la convergence uniforme sur R⋆

+ de (Rn) vers la fonction nulle.

8o Comme toutes les fonctions φk sont continues sur [ε,+∞[ et que la convergence de la série
∑

φk y est uniforme
on a que φ est continue sur [ε,+∞[, ceci étant vrai pour tout ε > 0, on a donc φ continue sur ]0,+∞[.
Comme φ véri�e la propriété (P ), pour tout x > 0 on a : x2φ(x+1)+ x2φ(x) = 1, or lim

x→0
x2φ(x+1) = 0 (par

continuité de φ en 1) on a donc lim
x→0

x2φ(x) = 1, ie φ(x) ∼
x→0

1

x2
.

9o Appliquons le théorème de dérivation C1 des séries de fonctions. On a :

(i) Pour tout k ∈ N, φk est de classe Ck sur ]0,+∞[ et, pour x > 0, φ′
k(x) =

2(−1)k+1

(x+k)3 .

(ii)
∑

φk converge simplement sur ]0,+∞[ vers φ.

(iii) Soit ε > 0, pour k ∈ N et x ∈ [ε,+∞[, on a |φ′
k(x)| ≤ 2

(ε+k)3 , ainsi ∥φ
′
k∥

[ε,+∞[
∞ ≤ 2

(ε+k)3 et comme∑
2

(ε+k)3 converge on a que
∑

φ′
k converge normalement (donc uniformément) sur [ε,+∞[.

Ainsi φ est de classe C1 sur [ε,+∞[, ceci étant véri�é pour tout ε > 0, φ est de classe C1 sur ,+∞[, de plus,

pour x > 0, on a : φ′(x) =

+∞∑
k=0

φ′
k(x) =

+∞∑
k=0

2(−1)k+1

(x+ k)3
.

10o Pour x > 0,
+∞∑
k=0

2(−1)k+1

(x+ k)3
est une série alternée qui relève du TSA (son terme général est bien alternée et en

valeur absolue est décroissant et tend vers 0), ainsi sa somme est du signe de son premier terme, ce qui montre
φ′(x) ≤ 0 et donc φ est décroissante sur ]0,+∞[.

11o Pour x > 1 on a φ(x+ 1) ≤ φ(x) ≤ φ(x− 1) (décroissance) en ajoutant φ(x) on a φ(x+ 1) + φ(x) ≤ 2φ(x) ≤
φ(x) +φ(x− 1), comme de plus φ véri�e la propriété (P ) on a donc 1

x2 ≤ 2φ(x) ≤ 1
(x−1)2 , il ne reste plus qu'à

multiplier par x2 pour obtenir 1 ≤ 2x2φ(x) ≤ x2

(x−1)2 ∼
x→+∞

1, il ne reste plus qu'à appliquer le théorème des

gendarmes pour obtenir lim
x→+∞

2x2φ(x) = 1, ie : φ(x) ∼
x→+∞

1

2x2
.

Partie III - Expression intégrale de la solution du problème (P )

Dans cette partie, on déterminer une expression de φ sous la forme d'une intégrale. On considère un élément x ∈]0,+∞[.

12o Pour tout k ∈ N, montrer que la fonction t 7→ tx+k−1 ln(t) est intégrable sur ]0, 1] et que l'on a :∫ 1

0

tx+k−1 ln(t)dt = − 1

(x+ k)2
.

13o En déduire que la fonction t 7→ tx−1 ln(t)
1+t est intégrable sur ]0, 1] et que :

φ(x) = −
∫ 1

0

tx−1 ln(t)

1 + t
dt.

Correction :
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12o Soit k ∈ N. Posons ε > 0, la fonction t 7→ tx+k−1 ln(t) est continue sur [ε, 1], elle est donc intégrable sur
cet intervalle, procédons par intégration par parties, pour t ∈ [ε, 1] posons u(t) = ln(t) et v(t) = tx+k

x+k , u et

v sont de classe C1 sur [ε, 1] et pour t ∈ [ε, 1] on a u′(t) = 1
t et v′(t) = tx+k−1. Ainsi

∫ 1

ε

tx+k−1 ln(t)dt =[ tx+k

x+ k
ln(t)

]1
ε
−

∫ 1

ε

tx+k

x+ k

1

t
dt = 0 − εx+k

x+ k
ln(ε) − 1

x+ k

∫ 1

ε

tx+k−1dt = − εx+k

x+ k
ln(ε) − 1

x+ k

[ tx+k

x+ k

]1
ε
=

− εx+k

x+ k
ln(ε)− 1

(x+ k)2
+

εx+k

(x+ k)2
−→
ε→0

−1

(x+ k)2
.

Ce qui montre bien la convergence de l'intégrale sur ]0, 1] (et donc l'intégrabilité puisque la fonction est de
signe constant) et la formule.

13o On vient de démontrer, pour tout x > 0, que φ(x) = −
+∞∑
k=0

∫ 1

0

(−1)ktx+k−1 ln(t)dt. De plus on peut tout de

suite remarquer que
+∞∑
k=0

(−1)ktx+k−1 ln(t) = tx−1 ln(t)

+∞∑
k=0

(−t)k =
tx−1 ln(t)

1 + t
(série géométrique). Appliquons

le théorème d'intégration terme à terme, pour cela on note, pour k ∈ N et t ∈]0, 1[, fk(t) = (−1)ktx+k−1 ln(t).
On a :

(i) Toutes les fonctions fk sont continues par morceaux et intégrables sur ]0, 1].

(ii)
∑
k≥0

fk converge simplement vers S : t 7→ tx−1 ln(t)
1+t sur ]0, 1[.

(iii) La fonction S est continue par morceaux sur ]0, 1[.

(iv) Pour k ∈ N, notons ak =
∫ 1

0
|fk(t)| dt, d'après la question précédente ak = 1

(x+k)2 , ainsi
∑

ak converge

Ainsi S est intégrable sur ]0, 1[ (donc sur ]0, 1] puisque dé�nie en 1) et
∫ 1

0

S(t)dt =
+∞∑
k=0

∫ 1

0

fk(t)dt.

On a bien montré que : ∀x > 0, φ(x) = −
∫ 1

0

tx−1 ln(t)

1 + t
dt.
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