Lycée Jean Bart pc* Mathématiques 2025-2026

DS 6 : samedi 24 janvier

4h sans calculatrice

Le candidat numérotera ses pages, il encadrera ou soulignera les résultats.

N.B. : le candidat attachera la plus grande importance a la clarté, a la précision et a la concision de la rédaction. Si
un candidat est amené & repérer ce qui peut lui sembler étre une erreur d’énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené & prendre.

Correction

Exercice 1 (proche du cours et/ouw des TDs).

1° Vrai/Faux Soit (f,,) une suite de fonctions qui converge simplement vers une fonction f sur un intervalle I. Les
assertions suivantes sont-elles vraies ou fausses (démonstration ou contre-exemple).
(a) Dans le cas I =R, si les f,, sont toutes périodiques de période T alors f est aussi périodique de période T
(b) Siles f, sont toutes continues alors f ’est aussi.

2° Déterminer la limite simple des suites de fonctions suivantes, et déterminer si la convergence est uniforme ou non.
(a) fn(z)=2"(1 — 2) sur [0,1]
(b) fn(z) =2™(1+ z) sur [0, 1]

+oo —nz
3° Soit la fonction défini =N (e —
oit la fonction définie par f(z) nz::l( ) -

(a) Déterminer ’ensemble de définition D de f.

(b) Montrer que f € C*(R%).

c) Calculer f’ (on P'exprimera sans somme) puis en déduire f sur R* (on ne cherchera pas a déterminer la

+
constante).

4° Soit X une variable aléatoire dont la loi est donnée par le tableau :
x; | =2 | =1 0 1 2
pi | 1/6 | 1/4|1/6|1/4 | 1/6

on pose ensuite Y = X2,

(i) Déterminer la loi du couple (X,Y) puis la loi de Y.
(ii) Déterminer Cov(X,Y"). Les variables X et Y sont-elles indépendantes ?

Correction :

1° (a) C’est vrai. Soit « € R fixé. Pour n € N, on a f,(z + T) = f,(2), en faisant n — +o00, avec la convergence
simple, on obtient f(x +T) = f(x). Cette derniére égalité étant vérifiee pour tout z € R, on a ainsi que f
est T-périodique.
(b) C’est faux! Pour n € N* et = € [0,1] on pose f,(x) = z™, toutes les fonctions f, sont continues sur [0, 1]
mais la suite (f,) converge simplement vers la fonction f définie par f(x) = 0 pour =z € [0,1[ et f(1) =1
qui n’est pas continue sur [0, 1].
2° (a) Pourz=1ona f,(1) =0 — Oet, pour z € [0,1], fn(z) — 0, ainsi (f,) converge simplement vers
n—-+oo n—-+oo

la fonction nulle.

Déterminons si la convergence est uniforme. Soit n > 2, la fonction f,, est dérivable sur [0, 1] et pour
e (0,1 ona f(z) = na"" ' = (n+ 1)a" = 2" '(n — (n + 1)z), ainsi f}, est positive sur [0, 2] et
négative sur [-2-, 1], ainsi f,, est croissante puis décroissante, de plus f,,(0) = f,(1) = 0 (faire le tableau

T c
2 = (1) 0-n) = -5 70— 2 or

(1;)”—exp(mn@;)))—exp<n<;}+ o (;))>—exp<1+ o (1)) s e Ainsi

n—-+oo n—-+oo n—-+oo

de variation). On en déduit que ||fnlloo = ful

1 Flloo " 0. La convergence de (f,,) vers la fonction nulle est donc uniforme sur [0, 1].
n—-+oo

n

(b) Pour z =1ona f,(1) =2 = 2 et, pour x € [0,1], fn(x) - 0, ainsi (f,) converge simplement vers
— 400 n—-+0oo

la fonction f qui vaut 2 en 1 et 0 sur [0,1]. Comme toutes les fonctions f,, sont continues sur [0, 1] et que
f ne Pest pas la convergence ne peut pas étre uniforme sur [0, 1].
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nx

3° Notons, pour n € N* et € R, u,(z) = (—1)" T e—.

(a) Siz <0, uy(z) diverge grossiérement. Si z = 0 on a la série harmonique alternée (qui converge d’aprés
—nx

le TSA, on n’oubliera pas de préciser les hypothéses du TSA) et siz > 0on a liril nQ(—l)"He— =0,
n—-+o0o n

1
ainsi u, () = nfo (712) et donc la série Y u,(z) cva (donc cv).

Ainsi D =R,.

(b) Appliquons le théoréme de dérivation C! des séries de fonctions.
La série ) u, converge simplement sur R* d’aprés la question précédente.
Les fonctions u, : x — (—1)"e™"* sont C* sur R.

n,—nx

La série des dérivées, Y u; (z) = Y (—1)"e™"*, converge normalement sur tout segment [a,b] C R ; en
effet : Va € [a,b], |ul,(x)] < e ™, ainsi ||u;l||g2b] < e ™ et Y e ™ converge (série géométrique de raison
—l<e <)

“+oo
On en déduit donc que f est C! sur tout segment de R*. donc sur R* et, pour z > 0, on a f'(z) = Z ul ().
n=1

—T

—e
(¢) d-ul(x) est une série géométrique, on peut donc calculer sa somme : f/(z) = et En intégrant on
o

trouve qu’il existe C' tel que, pour tout > 0, on ait f(z) =1In(l +e %) + C.
40 1) Y(Q)={0,1,4},P(X=i)N(Y =4)=0sij#i*, P(X =) N (Y =4%)) = P(X =1).
PY=0)=PX=0)=1/6,PY =1)=P(X=1)+P(X=-1)=1/2,P(Y =4) = 1/3.
Il est bien entendu préférable ici de mettre ces résultats sous la forme de tableaux.
(i) E(X) = 0 par symétrie de méme E(XY') = 0 donc Cov(X,Y) =0.
Pourtant X et Y ne sont pas indépendantes : P((X = 1) N (Y = 0)) = 0 mais P(X = 1) > 0 et
P(Y =0) > 0.

Exercice 2 (E3A PSI 2024 exercice 1).
Soit n un entier naturel. Soient Y et Z deux variables aléatoires indépendantes définies sur le méme espace probabilisé
(Q, o/, P) suivant la méme loi binomiale % (n, ).

On pose, pour tout w € 2, A(w) = (Y;w) Z(Ow)>'

1° Calcul d’une somme

(a) Déterminer le coefficient de X™ dans le polynome (1 + X)2".

(b) En remarquant que (1 + X)?" = (1 + X)"(1 + X)", exprimer le coefficient précédent d’une autre maniére.

2
(c) En déduire une expression simplifiée de Z (Z) .
k=0

2

3° Calculer la probabilité de I’événement {w € Q, A(w) est diagonalisable }. On utilisera la question 1.(c) pour sim-
plifier le résultat.

2¢ A quelle condition nécessaire et suffisante portant sur les réels a et ¢ la matrice (a 2) est-elle diagonalisable 7

4° Calculer la probabilité de I’événement {w € Q, A(w) est inversible }.

Correction :

1° Calcul d’une somme

2n
2
(a) La formule du binéme de Newton donne (1 4+ X)?" = < :)Xk. Ainsi, le coefficient de X™ est (27:”)
k=0
(b) On a: (1+ X)> = Z (Z) b Z <7> Xt = Z (Z) <7> X*+ Ainsi le coefficient devant X est
k=0 1=0 k=0 1=0
N n
dake|0 1 tl=n—k): .
(correspond & k € [0,n] quelconque e n—k) Z (k) ( - k)
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2° Notons M cette matrice, on a xpr = (X —a)(X —¢), si a # ¢, on a xp simplement scindé et donc M

diagonalisable, si a = ¢ alors a est racine double, or M — aly, = ((2) 8
dimension 1, ainsi la dimension de E, (M) est différente de la multiplicité de a, donc M n’est pas diagonalisable.

Ce qui montre que la matrice est diagonalisable si et seulement si a # c.

) est de rang 1 donc de noyau de

3° D’apreés la question précédente, {w € Q | A(w) est diagonalisable} est I’événement (Y # Z). On a P(Y =
Z) =Y P((Y = k)N (Z = k)), par indépendance de Y et Z, on a P(Y = Z) = Y P(Y = k)P(Z = k) =
k=0

k=0
L~ () _ )
2272 L] — 92m
k=0
()
Ainsi, P({w € Q | A(w) est diagonalisable}) =1 — 2;" .
4° La matrice étant triangulaire, elle est inversible si et seulement si ses éléments diagonaux sont tous non nuls.
Ainsi Pévénement {w € Q | A(w) est inversible} est (Y > 1)N(Z >1). Or PY > 1)N(Z > 1)) =P(Y > 1)?
(indépendance et de méme loi), ainsi P(Y > 1)N(Z > 1)) = (1 - P(Y =0))? = (1 — =)

— 5w

Exercice 3 (E3A PC 2024 exercice 1).
Soit n un entier naturel non nul.
On note E = Ry, [X] l'espace vectoriel des polynomes de degrés inférieurs ou égaux a 2n. Pour tout k € [0,2n], on

note e, = X¥ et B = (eq,...,ea,) la base canonique de E.
1

Pour tout couple de polynémes (P, Q) de E2%, on pose (P|Q) = / P(t)Q(t)dt et on rappelle que I'on définit ainsi un
-1
produit scalaire sur F.
1

Soit L lapplication définie sur F par : VP € E, L(P)= / P(t)dt.
—1

1° Montrer que L est une forme linéaire sur F.

2° Déterminer L(ey) pour tout k € [0, 2n].

3° Déterminer la dimension de Ker(L).

4° Prouver qu'il existe une base U, que l’on ne cherchera pas a expliciter, de Ker(L), dont le premier vecteur est e;.

5° Montrer que :
i) Vect(eg) et Ker(L) sont deux sous-espaces orthogonaux,
ii) E = Vect(eg) @ Ker(L).
6° Soit A un réel. On considére 'application Ty définie sur E par : VP € E, T)(P)= P+ AL(P)X.
(a) Verifier que T est un endomorphisme de E.
Soit P € E. Calculer (L o Ty)(P).
Déterminer la matrice de T dans une base de E adaptée & la décomposition obtenue aux questions 4 et 5
Déterminer les valeurs propres de T).

Justifier que T\ est un automorphisme de E.

)

)

)
(e) L’endomorphisme T) est-il diagonalisable ?
(f)

) Pour tous réels « et [, préciser T, o Tg.

)

Déterminer T L

Correction :
1

1° Soient (P,Q) € E? et (\, ) € R?. Par linéarité de l'intégrale, on a : L(AP + pQ) = / (AP + uQ)(t)dt =
-1
1

P(t)dt + u/l Q(t)dt = AL(P) + pL(Q).
_ -1 -1

L’application L est donc linéaire.
Comme elle est définie sur F et a valeurs dans R, L est une forme linéaire sur FE.

/ 11 AP(t) + pQ(t)dt = A /
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1 1 el 1 1_ (71)k:+1
2° Soit k € [0,2n]. On a L(e) = /71 er(t)dt = /71 thdt = {k—i— J | =1 Ainsi, on a L(ex) =0si k

est impair, L(e) = si k est pair.

2
kE+1
3° On a en particulier L(eg) = 2 # 0. L’application L est donc une forme linéaire non nulle sur E. En particulier,

son noyau est un hyperplan de E. On a donc dim(Ker(L)) = dim(E) — 1 = 2n.

4° On a L(e1) = 0 donc le vecteur e; appartient & Ker(L). En particulier, comme e; est non nul, la famille (e;)
est une famille libre de Ker(L). D’aprés le théoréme de la base incompléte, il existe donc une base de Ker(L)
dont le premier vecteur est e;.

5° Soient P € Vect(eg) et Q € Ker(L). Il existe A € R tel que P = Aeg. On a donc (P|Q) = Aeol@) =
1 1
)\/ eo(t)Q(t)dt = )\/ Q(t)dt = AL(Q) = 0. Les sous-espaces Vect(eg) et Ker(L) sont donc orthogonaux.
-1 —1

En particulier, ils sont en somme directe. De plus, on a dim(Vect(ep)) + dim(Ker(L)) = 1 + 2n = dim(E).
D’aprés une caractérisation des supplémentaires en dimension finie, on a donc E = Vect(eg) @ Ker(L).
Remarque. On peut obtenir ce résultat sans utiliser de produit scalaire. En effet, on a L(ep) # 0 donc eg
n’appartient pas & Ker(L). En particulier, la droite Vect(ep) n’est pas incluse dans ’hyperplan Ker(L) donc,
d’apreés le cours, Vect(eg) et Ker(L) sont supplémentaires dans E.

6° Soit A un réel.

(a) Soit (P,Q) € E? et (a, ) € R2. Par linéarité de L, on a : T\ (aP + 8Q) = (P + 8Q) + AL(aP + Q)X =
aP+Q+NaL(P)+8L(Q))X = aP+5Q+AaL(P)X +ASL(Q)X = a(P+AL(P)X)+B8(Q+AL(Q)X) =
oTy(P) + BTA(Q)-

L’application T est donc linéaire. De plus, pour tout P € E, on a deg(P) < 2n et A\L(P) € R donc
deg(AL(P)X) <1, d’ot deg(T\(P)) < 2n. L’application T est donc définie sur E et a valeurs dans E. En
conclusion, T est un endomorphisme de F.

(b) Soit P € E. Par linéarité de L, on a (L o T)\)(P) = L(Tx(P)) = L(P) + AL(P)L(X). Puisqu'on a L(X) =
L(e1) =0, on en conclut qu'on a (L o Ty)(P) = L(P).

(¢) On considére une base de E, notée C, adaptée a la décomposition obtenue aux questions 4 et 5, c’est-a-dire
une base de E dont les deux premiers vecteurs sont eg et e; et les autres sont dans Ker(L).

On a Th(eg) = eg+ AL(eg)X = eg+2AX = eg+2Aey. De plus, pour tout P € Ker(L), on a L(P) = 0 donc

T\(P) = P.
1 0 ... ... 0
22 1

La matrice de T) relativement & la base C est donc A= | o
oo . .0
0O 0 ... 0 1

(d) La matrice A étant triangulaire inférieure, ses valeurs propres sont ses coefficients diagonaux. Ainsi, T
admet pour unique valeur propre 1.

(e) Puisque 1 est I'unique valeur propre de Ty, 'endomorphisme T est diagonalisable si et seulement si le
polynome X — 1 annule T), si et seulement si le polynéme X — 1 annule A, ce qui équivaut & A = I, 41.
En conclusion, 'endomorphisme T’ est diagonalisable si et seulement si on a A = 0.

(f) Puisque 0 n’est pas valeur propre de Ty, T) est un automorphisme de E.

(g) Soient a, 5 € R. Pour tout P € E, on a : (T, o T3)(P) = To(Ts(P)) = Ts(P) + aL(T3(P))X = P +
BL(P)X +aL(P)X = P+ (a+ B)L(P)X. D’aprés le résultat de la question 6b On a donc Ty, 0Tp = Ty 4.

(h) En particulier, on a Ty o T_\ = Ty = Idg. En composant par T/\_1 & gauche, on obtient ainsi T)\_1 =T .

Exercice 4 (E3A MP 2016 Maths 1 exercice 4).

Un fabricant de produits d’entretien pour machines & café fournit deux types de produits : un produit détartrant
(produit A) et un produit dégraissant (produit B). Ce fabricant vend les produits conditionnés uniquement en boites
contenant 4 la fois un produit A et un produit B. Cependant, pour rendre service a ses clients qui n’ont besoin que
d’un seul produit, un commercgant accepte de vendre séparément les produits.

Pour la suite, on suppose que chaque client qui se présente chez le commercant n’effectue qu'un seul achat. On
suppose également que les choix (du produit A ou B) des clients sont indépendants. On fait également ’hypothése
qu’il ne reste aucune boite entamée au début de la journée.
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On considére que chaque client qui se présente chez ce commergant achéte le produit A avec la probabilité p €]0, 1]
et le produit B avec la probabilité 1 — p. On note X (respectivement Y') le nombre de produits A (respectivement de
produits B) vendus au cours de la journée. On notera Z = max(X,Y).

1° On considére une journée ou 4 clients se sont présentés. Déterminer la loi de X | la loi de Y et les espérances de
ces deux variables aléatoires. Déterminer la loi de Z. Que représente cette variable aléatoire ?

On suppose maintenant que le nombre de personnes se présentant chez le commercant durant une journée est une
variable aléatoire réelle IV suivant une loi de Poisson de paramétre .

2° Soit n un entier naturel. Quelle est la loi de X sachant que I’événement [N = n] est réalisé ?

30
40
50
60
70

80

Déterminer la loi conjointe du couple (X, N).

En déduire la loi de X. Donner sans calcul les valeurs de E(X) et V(X).
Démontrer que les variables aléatoires X et Y sont indépendantes.

En utilisant la relation N = X + Y, calculer Cov(X, N).

Pour £ € Net z € R, on note :

0
Exprimer P(Z < k) en fonction de X, S(k, Ap) et S(k, A(1 — p)).

On utilise dans cette question le langage de programmation PYTHON.

(

(b) On suppose dans cette question que p = %,

a) Définir la fonction S(k,x) qui calcule S(k,z) a partir des valeurs de k et x données.

A = 10 et que le commercant constate au début de la journée
qu’il lui reste exactement 5 boites, aucune n’étant entamée. Ecrire les instructions permettant d’afficher la
probabilité que le commercant tombe en rupture de stock au cours de la journée.

10

20
30

40

50

Correction :

X représente le nombre de clients qui achétent le produit A, comme les choix des clients sont indépendants on
a donc affaire a une loi binomiale, ainsi X ~ B(4, p), ainsi E(X) = 4p. Il en va de méme pour Y ~ B(4,1 — p),
ainsi E(Y) = 4(1 — p).

On aici X +Y = 4, ainsi la valeur de X détermine complétement la valeur de Y, on a Z = max(X,Y) =
max(X,4 — X), ainsi Z(Q2) = {2,3,4} (car les couples possibles pour les valeurs de (X,Y) sont (0,4), (1,3),
(2,2), (3,1) et (4,0) qui donnent comme valeur pour Z 4,3,2,3 et 4 respectivement), ce qui permet de calculer
la loi de Z.

OnaP(Z=2)=PX =2)= (3)p*(1 —p)? =6p*(1 —p)%, P(Z =3) = ( =louX =3)=dp(l—p)°+
4p3(1—p) =4p(1 —p)(1 —2p+2p?) et P(Z =4) =P(X =0 ou X =4) =p* + (1 — p)*.

Z correspond au nombre de boites ouvertes.

la loi de X sachant (N = n) est, comme au 1°, la loi B(n,p).

Pour (k,n) € N*, on a :

0 sik>n+1
e A (MpR(L—p)nF sik e [0,n]

n!

P(X = k, N = n) = P(N = n)P(y_p)(X = k) = {

On a X(Q) C N, pour £ € N, en utilisant la formule des probabilités totales avec le systéme complet
+00 +00
A" (n
IR o ) o . _ _ _ - k n—k __
d’événements ((N =n)), .y on a : P(X = k) = Z]P’(X = kN =n) = Z%e n'(k)p (1 —p) =
400 +oo :
A" = AR APV~ (A —p)” (20
- k n— - _ — o A(l-p) _
¢ gk!(n—k)!p (1= Z pr P (L p)" = k! ; P I " R -
efp)\ (p)‘)k
k!

Ainsi X suit une loi de Poisson de paramétre Ap, donc E(X) = Ap et V(X) = Ap.

Tout d’abord, en remplacant p par 1 — p a la question precedente on trouve Y ~ P(A(1 — p)).
Pour (k, /) € N? on a d’une part : P(X = k)P(Y = /) = e P (pA) e~(1-pAld EP)A)L] _’\(p,?)k ((1_5)”(.
D’autre part (en utilisant X +Y = N) : P(X = kY =0) =PX =k, X+Y =k+{) =P(X =k N =
k+46) =e? (2:_;;, (’Hé)pk(l — p)k*f=F (car k est bien compris entre 0 et k + £). Ainsi P(X = k,Y = () =
ke (ke A (eNF (A—p)N)*

/\(2+£) (Jg.) Prl—pf=e ,\(pk!) (¢! eI;) )"
Ainsi, pour tout ket £,on a: P(X =k, Y ={) =P(X = k)P(Y = {), ainsi les variables aléatoires X et Y sont
indépendantes.
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6° En utilisant la bilinéarité de la covariance et que Cov(X,Y) = 0 puisque X et Y sont indépendantes on trouve :
Cov(X,N) =Cov(X,X +Y) =Cov(X,X) + Cov(X,Y) =V(X)+ 0 = Ap.

7° Soit k € N, on a (le maximum de deux nombres est plus petit que k si et seulement si ils le sont tous les
deux) :P(Z < k) =P((X < k)N (Y <k)), par indépendance de X et Y on en déduit que P(X < k) =P(X <
EP(Y <k).

M)
!

k k
Or P(X <k)= ZIP’(X =) = Ze_p’\ (p' = ¢ *S(k, \p). De méme (en remplagant p par 1 —p) on a
i=0 i=0

i
P(Y < k) = e P S(E,A(1 - p)).
Ainsi P(X < k) = e *S(k, A\p)S(k, \(1 — p)).
8° (a) def S(k, x):
res, u =1, 1
for j in range(1l, k+1):
u=ux* x/j
res += u
return res
(b) Le commercant est en rupture de stock si Z est strictement plus grand que 5, on doit donc calculer
P(Z>5)=1-P(Z<5)=e195(5,5)5(5,5)
from math import exp
print (exp(-10)*S(5,5) **2)

On rappel ! le théoréme d’intégration terme a terme (pour la derniére question de I’exercice suivant) :
Soit Y f, une série de fonctions définies sur un intervalle I de R, on suppose :

(i) Toutes les fonctions f, sont continues par morceaux et intégrables sur .
(ii) > fn converge simplement sur I vers S.
(iii) S est continue par morceaux sur .
(iv) La série ) [} | fn(t)|dt converge.

“+o0
Alors S est intégrable sur [ et /S(t) dt = Z / fa(t)dt.
I —l

Exercice 5 (Résolution d’une équation fonctionnelle : CCINP PC 2021 Exercice 2).
Dans cet exercice, on souhaite déterminer les fonctions f :]0, +oo[— R vérifiant les relations :

lim f(z) =0 et Vo €]0,400], flz+1)+ fla)= ~. (P)

r——+00 .TQ
Partie I - Existence et unicité de la solution du probléme (P)

Dans cette partie, on démontre que le probléme (P) admet une unique solution et on détermine une expression de
celle-ci sous la forme d’une série de fonctions.

1.1 - Existence de la solution
Pour tout k € N, on définit la fonction ¢y :]0, +00[— R par :

\k
Va €10, 400, sokm(ijﬁf)z.

1° Montrer que la série de fonctions Z pr converge simplement sur ]0, +o0].
k>0

Dans tout les reste de cet exercice, on note ¢ :]0, +oo[— R la somme de la série Z Dk-

E>0
2° Montrer que pour tout z €]0, +oo[, on a p(z + 1) + ¢(z) = .
3° En utilisant le théoréme spécial des séries alternées, montrer que :
400 1
Va €]0, , VneN, < ——"
ceel, et | 3 o)< gt

1. non présent dans le sujet
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4° Montrer que la fonction ¢ est une solution de (P).
I.2 - Unicité de la solution

5° Montrer que si f :]0,+00 — R est une solution de (P), alors pour tout n € N, on a :

(—1)F

Wz €]0,+ocl,  f(z) = (~1)" P f(z+n+1) +Z CENAER

6° En déduire que la fonction ¢ est I'unique solution de (P).

Correction :

1° Pour z > 0 fixé on a |p(2)] ~ 7%, ainsi Y ¢x(z) converge absolument donc converge, ce qui montre bien
k oo

la convergence simple de ¢y, sur |0, o0l
Alternative : On peut aussi utiliser le TSA directement ici, ce qui fait gagner un peut de temps pour la question

3e.
+o0 +o00 (_1);9,1 1 )
2° Pour z > 0, on a : p(z + 1) ga?—&—l—l—k :;m:7(ga(x)fgoo(x)):7ga(x)+P.Cequ1

montre bien que ¢(z 4 1) + p(z) = 5.

3° Pour = > 0, la série ) ¢ (x) est une série alternée qui reléve du TSA (elle est bien alternée et (|oi(z)|), =

(7@ Jrlk)z) tend bien vers 0 en décroissant), ce qui donne non seulement la convergence de la série, mais aussi
k

—+o0
la domination du reste, ie, pour tout n € N et en notant R, (z) = Z vr(x), que |Ry(x)] < |ont1(z)| =
k=n-+1
D S
(z4+n+1)2"
4° Pour > 0 on a Ro(z) = ¢(z) — ¢o(x), la question précédente donne donc |p(z) — 5| < ﬁ, ainsi ¢ — o

admet 0 comme limite en +o00, et comme ¢( tend aussi vers 0 en +oco on a donc lim ¢(x) = 0, ce qui montre,
r—+o0

avec la question 2°, que ¢ est une solution de (P).

Alternative : La question précédente permet de montrer la convergence uniforme sur R* de (R,,) vers la fonction
nulle, ainsi ) ¢ converge uniformément sur R% , comme de plus tous les ¢, tendent vers 0 en +o00, on peut
appliquer le théoréme de la double limite pour avoir le résultat.

5° Soit f une solution de (P). Soit n € N et & > 0. Pour tout k& € [0,n], la relation de (P) appliquée a
x4+ k donne : f(x+k+1)— f(z+k) = W, on multiplie ces égalités par (—1)* et on somme pour

n n n+1 n
obtenir : » (_71): =D (D f@+k+ 1)+ (D fle+k) =D (D fa+k)+ ) (D fla+k) =
k=0 (@ + k) , k=0 k=1 k=0
(D" f@+n+1) =Y (-D*flz+k)+ f(z Z flea+k)=(-1)"f(x+n+1)+ f(z). Ce qui montre
k=1
1)k

bien que f(z) = (~1)"*' f(z +n +1) +ZTC)

Alternative : Démonstration par récurrence sur n.

6° On vient de démontrer, pour tout z > 0 et n € N que f(z) = (—1)" " f(z +n+1) + icpk(x), il ne reste
plus qu’a faire tendre n vers +oo, ce qui est possible & droite puisque ngl}rloo(fl)”ﬂf(x +k:nO+ 1) = 0 (premier
résultat de la propriété (P)) et que HBTOO ngk(aj) = ¢(x). Ainsi f(z) = p(x), et donc f = ¢, ce qui montre
bien que ¢ est 'unique solution de (P). =

Partie II - Etude de la solution du probléme (P)

Dans cette partie, on étudie quelques propriétés de I'unique solution ¢ :]0, +oo[— R du probléme (P).
7. Soit € > 0. Montrer que la série de fonctions Z ¢y, converge uniformément sur [e, +ool.
k>0

8. Montrer que la fonction ¢ est continue sur ]0, +o0o[. En utilisant le fait que ¢ est une solution du probléme (P),
en déduire un équivalent simple de ¢ au voisinage de 0F.
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9. Justifier que la fonction ¢ est dérivable sur ]0, 400 et que ’on a :

+oo 2(71)k+1

Vo €]0,+oo, ¢'(z) = TR

k=0

10. En déduire que la fonction ¢ est décroissante sur |0, +o00].

11. En utilisant le résultat de la question précédente et la relation (P), montrer que :

1 1
Vo €)1, . =<2 e —
v eflbocl, g < 20() €
En déduire un équivalent de ¢ en +oo.
Correction :
7° Pour z > e et k € N, on a |px(z)] = ﬁ < ﬁ, ainsi |Jop )| STl < ﬁ Ainsi la série Y ¢y, converge

normalement (donc uniformément) sur [e, +00[.
Alternative Utiliser 3° pour avoir la convergence uniforme sur R* de (R,,) vers la fonction nulle.

8° Comme toutes les fonctions ¢y, sont continues sur [g, +00] et que la convergence de la série Y ¢y, y est uniforme
on a que ¢ est continue sur [e, +0o[, ceci étant vrai pour tout € > 0, on a donc ¢ continue sur ]0, +00|.
Comme ¢ vérifie la propriété (P), pour tout z > 0 on a : z2p(z + 1) + 2%¢(z) = 1, or lim r?p(x+1) =0 (par
T—

1
continuité de o en 1) on a donc lim z%p(x) = 1, ie p(x) ~ —-
z—0 z—0 T
9° Appliquons le théoréme de dérivation C* des séries de fonctions. On a :
(i) Pour tout k € N, ¢y, est de classe C* sur ]0, +oo[ et, pour x > 0, ¢} (z) = %
(ii) > ¢k converge simplement sur |0, +o00[ vers ¢.

LE.J+°°[ < ﬁ et comme

(iii) Soit € > 0, pour k € N et x € [e,+00], on a |} (z)] < ﬁ, ainsi ||}

> ﬁ converge on a que » . ¢}, converge normalement (donc uniformément) sur [e, +ool.

Ainsi ¢ est de classe C! sur [e, +00], ceci étant veérifié pour tout € > 0, ¢ est de classe C! sur , +ool, de plus,
“+oo +oo 2(_1)k+1
/ !
pour x >0, 0on a: ¢'(z) = ;¢k(x) = ];)7(334_]{)3 .

too k+1
2(—1
10° Pour z > 0, Z ((—|—)k‘)3 est une série alternée qui reléve du TSA (son terme général est bien alternée et en
x
k=0
valeur absolue est décroissant et tend vers 0), ainsi sa somme est du signe de son premier terme, ce qui montre
¢'(x) <0 et donc ¢ est décroissante sur |0, +o0.
11° Pour z > 1 on a p(xz + 1) < ¢(z) < p(z — 1) (décroissance) en ajoutant p(z) on a p(z + 1) + p(z) < 2¢(z) <
¢(z) + ¢(z — 1), comme de plus ¢ vérifie la propriété (P) on a donc 2 < 2p(z) < ﬁ, il ne reste plus qu’a

multiplier par 22 pour obtenir 1 < 2x2p(x) < ﬁ ~ 1, il ne reste plus qu’a appliquer le théoréme des
xr—r+00
1

. . 2 o s ~ L
gendarmes pour obtenir zgrfoo 2r () =1, ie : p(x) el 52

Partie III - Expression intégrale de la solution du probléme (P)

Dans cette partie, on déterminer une expression de ¢ sous la forme d’une intégrale. On considére un élément = €]0, +00|.

12° Pour tout k € N, montrer que la fonction ¢ — t*T*~11n(¢) est intégrable sur ]0, 1] et que I'on a :

1
1
tm+k711 tdt = ————.
/o n(t)dt =~ e

est intégrable sur ]0, 1] et que :

Le=Tln(t)

o 1. . t*~ 1 n(t)
13° En déduire que la fonction ¢ — I

Correction :
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12°

13°

Soit k € N. Posons € > 0, la fonction ¢ + t***~1In(¢) est continue sur [e, 1], elle est donc intégrable sur
tm+k

cet intervalle, procédons par intégration par parties, pour ¢ € [g,1] posons u(t) = In(t) et v(t) = SR u et

1
v sont de classe C! sur [e,1] et pour t € [e,1] on a u/(t) = + et v/(t) = t*TF1. Ainsi / t*TE=Ln(t)dt =
1>

etk 1 1 jatk 1 crtk 1 1 Ttk 1 Tk 41
1 t} - Zdt =0 — In(e) — —— [ ¢=Hh—lgqr = — In(e) — { ] -
[:z:—&-kzn()s / Tkt O ) praray O/l peary o
crtk grtk -1

— S In(e) - — .

r+k n(e) (x4 k)2 + (x + k)2 e=0 (z+ k)2
Ce qui montre bien la convergence de l'intégrale sur ]0,1] (et donc l'intégrabilité puisque la fonction est de
signe constant) et la formule.

oo 1
On vient de démontrer, pour tout > 0, que ¢(z) = — Z/ (—1)*#=+*=11n(t)dt. De plus on peut tout de
k=0"0
+oo

“+ o0

t*=1n(t
suite remarquer que z:(—l)’“zf’““’f_1 In(t) = t* LIn(t) Z(_t)k — Tnt()
k=0 k=0

le théoréme d’intégration terme & terme, pour cela on note, pour k € N et t €]0,1], fx(t) = (=1)*t**F=11n(¢).

On a:

(i) Toutes les fonctions fi sont continues par morceaux et intégrables sur ]0, 1].

(série géométrique). Appliquons

(i) Z fr converge simplement vers S : ¢ — ﬂ_;%(t) sur ]0, 1.
k>0
(iii) La fonction S est continue par morceaux sur |0, 1.

iv) Pour k € N, notons ay, = [, |fx(t)| dt, d’aprés la question précédente ay = —L . ainsi 3" aj, converge
0 (z+k)

1 too .1
Ainsi S est intégrable sur |0, 1] (donc sur ]0, 1] puisque définie en 1) et / S(t)dt = Z/ fr(t)dt.
0 0”0

1 ,2—1
t In(t
On a bien montré que : Vo > 0, ¢(z) = —/ £ In®) )dt.

o 1+t

LJB Maths - DS6-cor 9 / 9



