
Lycée Jean Bart pc⋆ Mathématiques 2025�2026

ds 6⋆ : samedi 24 janvier

4h sans calculatrice

Le candidat numérotera ses pages, il encadrera ou soulignera les résultats.
N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si
un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Correction

On rappel 1 le théorème d'intégration terme à terme (pour la dernière question de l'exercice suivant) :
Soit

∑
fn une série de fonctions dé�nies sur un intervalle I de R, on suppose :

(i) Toutes les fonctions fn sont continues par morceaux et intégrables sur I.

(ii)
∑

fn converge simplement sur I vers S.

(iii) S est continue par morceaux sur I.

(iv) La série
∑∫

I
|fn(t)|dt converge.

Alors S est intégrable sur I et
∫
I

S(t) dt =
+∞∑
n=0

∫
I

fn(t) dt.

Exercice 1 (Résolution d'une équation fonctionnelle : ccinp pc 2021 Exercice 2).
Dans cet exercice, on souhaite déterminer les fonctions f :]0,+∞[→ R véri�ant les relations :

lim
x→+∞

f(x) = 0 et ∀x ∈]0,+∞[, f(x+ 1) + f(x) =
1

x2
. (P )

Partie I - Existence et unicité de la solution du problème (P )

Dans cette partie, on démontre que le problème (P ) admet une unique solution et on détermine une expression de
celle-ci sous la forme d'une série de fonctions.

I.1 - Existence de la solution
Pour tout k ∈ N, on dé�nit la fonction φk :]0,+∞[→ R par :

∀x ∈]0,+∞[, φk(x) =
(−1)k

(x+ k)2
.

1o Montrer que la série de fonctions
∑
k≥0

φk converge simplement sur ]0,+∞[.

Dans tout les reste de cet exercice, on note φ :]0,+∞[→ R la somme de la série
∑
k≥0

φk.

2o Montrer que pour tout x ∈]0,+∞[, on a φ(x+ 1) + φ(x) = 1
x2 .

3o En utilisant le théorème spécial des séries alternées, montrer que :

∀x ∈]0,+∞[, ∀n ∈ N,

∣∣∣∣∣
+∞∑

k=n+1

φk(x)

∣∣∣∣∣ ≤ 1

(x+ n+ 1)2
.

4o Montrer que la fonction φ est une solution de (P ).

I.2 - Unicité de la solution

5o Montrer que si f :]0,+∞ → R est une solution de (P ), alors pour tout n ∈ N, on a :

∀x ∈]0,+∞[, f(x) = (−1)n+1f(x+ n+ 1) +

n∑
k=0

(−1)k

(x+ k)2
.

6o En déduire que la fonction φ est l'unique solution de (P ).

1. non présent dans le sujet
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Correction :

1o Pour x > 0 �xé on a |φk(x)| ∼
k→+∞

1
k2 , ainsi

∑
φk(x) converge absolument donc converge, ce qui montre bien

la convergence simple de
∑

φk sur ]0,+∞[.
Alternative : On peut aussi utiliser le TSA directement ici, ce qui fait gagner un peut de temps pour la question
3o.

2o Pour x > 0, on a : φ(x + 1) =

+∞∑
k=0

(−1)k

(x+ 1 + k)2
=

+∞∑
k=1

(−1)k−1

(x+ k)2
= −(φ(x) − φ0(x)) = −φ(x) +

1

x2
. Ce qui

montre bien que φ(x+ 1) + φ(x) = 1
x2 .

3o Pour x > 0, la série
∑

φk(x) est une série alternée qui relève du TSA (elle est bien alternée et (|φk(x)|)k =(
1

(x+k)2

)
k
tend bien vers 0 en décroissant), ce qui donne non seulement la convergence de la série, mais aussi

la domination du reste, ie, pour tout n ∈ N et en notant Rn(x) =

+∞∑
k=n+1

φk(x), que |Rn(x)| ≤ |φn+1(x)| =

1
(x+n+1)2 .

4o Pour x > 0 on a R0(x) = φ(x)− φ0(x), la question précédente donne donc
∣∣φ(x)− 1

x2

∣∣ ≤ 1
(x+1)2 , ainsi φ− φ0

admet 0 comme limite en +∞, et comme φ0 tend aussi vers 0 en +∞ on a donc lim
x→+∞

φ(x) = 0, ce qui montre,

avec la question 2o, que φ est une solution de (P ).
Alternative : La question précédente permet de montrer la convergence uniforme sur R⋆

+ de (Rn) vers la fonction
nulle, ainsi

∑
φk converge uniformément sur R⋆

+, comme de plus tous les φk tendent vers 0 en +∞, on peut
appliquer le théorème de la double limite pour avoir le résultat.

5o Soit f une solution de (P ). Soit n ∈ N et x > 0. Pour tout k ∈ [[0, n]], la relation de (P ) appliquée à
x + k donne : f(x + k + 1) − f(x + k) = 1

(x+k)2 , on multiplie ces égalités par (−1)k et on somme pour

obtenir :
n∑

k=0

(−1)k

(x+ k)2
=

n∑
k=0

(−1)kf(x+ k + 1) + (−1)kf(x+ k) =

n+1∑
k=1

(−1)k−1f(x+ k) +

n∑
k=0

(−1)kf(x+ k) =

(−1)nf(x+ n+1)−
n∑

k=1

(−1)kf(x+ k) + f(x) +

n∑
k=1

(−1)kf(x+ k) = (−1)nf(x+ n+1)+ f(x). Ce qui montre

bien que f(x) = (−1)n+1f(x+ n+ 1) +

n∑
k=0

(−1)k

(x+ k)2
.

Alternative : Démonstration par récurrence sur n.

6o On vient de démontrer, pour tout x > 0 et n ∈ N que f(x) = (−1)n+1f(x + n + 1) +

n∑
k=0

φk(x), il ne reste

plus qu'a faire tendre n vers +∞, ce qui est possible à droite puisque lim
n→+∞

(−1)n+1f(x+ n+1) = 0 (premier

résultat de la propriété (P )) et que lim
n→+∞

n∑
k=0

φk(x) = φ(x). Ainsi f(x) = φ(x), et donc f = φ, ce qui montre

bien que φ est l'unique solution de (P ).

Partie II - Étude de la solution du problème (P )

Dans cette partie, on étudie quelques propriétés de l'unique solution φ :]0,+∞[→ R du problème (P ).

7. Soit ε > 0. Montrer que la série de fonctions
∑
k≥0

φk converge uniformément sur [ε,+∞[.

8. Montrer que la fonction φ est continue sur ]0,+∞[. En utilisant le fait que φ est une solution du problème (P ),
en déduire un équivalent simple de φ au voisinage de 0+.

9. Justi�er que la fonction φ est dérivable sur ]0,+∞[ et que l'on a :

∀x ∈]0,+∞[, φ′(x) =

+∞∑
k=0

2(−1)k+1

(x+ k)3
.

10. En déduire que la fonction φ est décroissante sur ]0,+∞[.

11. En utilisant le résultat de la question précédente et la relation (P ), montrer que :

∀x ∈]1,+∞[,
1

x2
≤ 2φ(x) ≤ 1

(x− 1)2
.

En déduire un équivalent de φ en +∞.
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Correction :

7o Pour x > ε et k ∈ N, on a |φk(x)| = 1
(x+k)2 ≤ 1

(ε+k)2 , ainsi ∥φk∥[ε,+∞[
∞ ≤ 1

(ε+k)2 . Ainsi la série
∑

φk converge
normalement (donc uniformément) sur [ε,+∞[.
Alternative Utiliser 3o pour avoir la convergence uniforme sur R⋆

+ de (Rn) vers la fonction nulle.

8o Comme toutes les fonctions φk sont continues sur [ε,+∞[ et que la convergence de la série
∑

φk y est uniforme
on a que φ est continue sur [ε,+∞[, ceci étant vrai pour tout ε > 0, on a donc φ continue sur ]0,+∞[.
Comme φ véri�e la propriété (P ), pour tout x > 0 on a : x2φ(x+1)+ x2φ(x) = 1, or lim

x→0
x2φ(x+1) = 0 (par

continuité de φ en 1) on a donc lim
x→0

x2φ(x) = 1, ie φ(x) ∼
x→0

1

x2
.

9o Appliquons le théorème de dérivation C1 des séries de fonctions. On a :

(i) Pour tout k ∈ N, φk est de classe Ck sur ]0,+∞[ et, pour x > 0, φ′
k(x) =

2(−1)k+1

(x+k)3 .

(ii)
∑

φk converge simplement sur ]0,+∞[ vers φ.

(iii) Soit ε > 0, pour k ∈ N et x ∈ [ε,+∞[, on a |φ′
k(x)| ≤ 2

(ε+k)3 , ainsi ∥φ
′
k∥

[ε,+∞[
∞ ≤ 2

(ε+k)3 et comme∑
2

(ε+k)3 converge on a que
∑

φ′
k converge normalement (donc uniformément) sur [ε,+∞[.

Ainsi φ est de classe C1 sur [ε,+∞[, ceci étant véri�é pour tout ε > 0, φ est de classe C1 sur ,+∞[, de plus,

pour x > 0, on a : φ′(x) =

+∞∑
k=0

φ′
k(x) =

+∞∑
k=0

2(−1)k+1

(x+ k)3
.

10o Pour x > 0,
+∞∑
k=0

2(−1)k+1

(x+ k)3
est une série alternée qui relève du TSA (son terme général est bien alternée et en

valeur absolue est décroissant et tend vers 0), ainsi sa somme est du signe de son premier terme, ce qui montre
φ′(x) ≤ 0 et donc φ est décroissante sur ]0,+∞[.

11o Pour x > 1 on a φ(x+ 1) ≤ φ(x) ≤ φ(x− 1) (décroissance) en ajoutant φ(x) on a φ(x+ 1) + φ(x) ≤ 2φ(x) ≤
φ(x) +φ(x− 1), comme de plus φ véri�e la propriété (P ) on a donc 1

x2 ≤ 2φ(x) ≤ 1
(x−1)2 , il ne reste plus qu'à

multiplier par x2 pour obtenir 1 ≤ 2x2φ(x) ≤ x2

(x−1)2 ∼
x→+∞

1, il ne reste plus qu'à appliquer le théorème des

gendarmes pour obtenir lim
x→+∞

2x2φ(x) = 1, ie : φ(x) ∼
x→+∞

1

2x2
.

Partie III - Expression intégrale de la solution du problème (P )

Dans cette partie, on déterminer une expression de φ sous la forme d'une intégrale. On considère un élément x ∈]0,+∞[.

12o Pour tout k ∈ N, montrer que la fonction t 7→ tx+k−1 ln(t) est intégrable sur ]0, 1] et que l'on a :∫ 1

0

tx+k−1 ln(t)dt = − 1

(x+ k)2
.

13o En déduire que la fonction t 7→ tx−1 ln(t)
1+t est intégrable sur ]0, 1] et que :

φ(x) = −
∫ 1

0

tx−1 ln(t)

1 + t
dt.

Correction :

12o Soit k ∈ N. Posons ε > 0, la fonction t 7→ tx+k−1 ln(t) est continue sur [ε, 1], elle est donc intégrable sur
cet intervalle, procédons par intégration par parties, pour t ∈ [ε, 1] posons u(t) = ln(t) et v(t) = tx+k

x+k , u et

v sont de classe C1 sur [ε, 1] et pour t ∈ [ε, 1] on a u′(t) = 1
t et v′(t) = tx+k−1. Ainsi

∫ 1

ε

tx+k−1 ln(t)dt =[ tx+k

x+ k
ln(t)

]1
ε
−
∫ 1

ε

tx+k

x+ k

1

t
dt = 0 − εx+k

x+ k
ln(ε) − 1

x+ k

∫ 1

ε

tx+k−1dt = − εx+k

x+ k
ln(ε) − 1

x+ k

[ tx+k

x+ k

]1
ε
=

− εx+k

x+ k
ln(ε)− 1

(x+ k)2
+

εx+k

(x+ k)2
−→
ε→0

−1

(x+ k)2
.

Ce qui montre bien la convergence de l'intégrale sur ]0, 1] (et donc l'intégrabilité puisque la fonction est de
signe constant) et la formule.
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13o On vient de démontrer, pour tout x > 0, que φ(x) = −
+∞∑
k=0

∫ 1

0

(−1)ktx+k−1 ln(t)dt. De plus on peut tout de

suite remarquer que
+∞∑
k=0

(−1)ktx+k−1 ln(t) = tx−1 ln(t)

+∞∑
k=0

(−t)k =
tx−1 ln(t)

1 + t
(série géométrique). Appliquons

le théorème d'intégration terme à terme, pour cela on note, pour k ∈ N et t ∈]0, 1[, fk(t) = (−1)ktx+k−1 ln(t).
On a :

(i) Toutes les fonctions fk sont continues par morceaux et intégrables sur ]0, 1].

(ii)
∑
k≥0

fk converge simplement vers S : t 7→ tx−1 ln(t)
1+t sur ]0, 1[.

(iii) La fonction S est continue par morceaux sur ]0, 1[.

(iv) Pour k ∈ N, notons ak =
∫ 1

0
|fk(t)| dt, d'après la question précédente ak = 1

(x+k)2 , ainsi
∑

ak converge

Ainsi S est intégrable sur ]0, 1[ (donc sur ]0, 1] puisque dé�nie en 1) et
∫ 1

0

S(t)dt =
+∞∑
k=0

∫ 1

0

fk(t)dt.

On a bien montré que : ∀x > 0, φ(x) = −
∫ 1

0

tx−1 ln(t)

1 + t
dt.

Exercice 2 Fonction zêta (Centrale PC 2018, maths 2, partie I).

On note ζ la fonction de la variable réelle x dé�nie par : ζ(x) =
+∞∑
n=1

1

nx
. On note Dζ son ensemble de dé�nition.

1o Déterminer Dζ .

2o Montrer que ζ est continue sur Dζ .

3o Étudier le sens de variations de ζ.

4o Justi�er que ζ admet une limite en +∞.

5o Soit x ∈ Dζ et soit n ∈ N tel que n ≥ 2. Montrer :
∫ n+1

n

dt

tx
≤ 1

nx
≤
∫ n

n−1

dt

tx
.

6o En déduire, que pour tout x ∈ Dζ , 1 +
1

(x− 1)2x−1
≤ ζ(x) ≤ 1 +

1

x− 1
.

7o Déterminer la limite de ζ(x) lorsque x tend vers 1 par valeurs supérieures.

8o Déterminer la limite de ζ(x) lorsque x tend vers +∞.

9o Donner l'allure de la courbe représentative de ζ.

1o On sait que la série de Riemann
∑
n≥1

1

nα
converge si et seulement si α > 1, ainsi l'ensemble de dé�nition de la

fonction ζ est Dζ =]1,+∞[.

2o Soit a ∈]1,+∞[. On a alors, pour tout entier n ≥ 1 et pour tout réel x ≥ a, que : 0 < 1
nx ≤ 1

na , on a donc

∥fn∥[a,+∞[
∞ ≤ 1

na , comme la série
∑
n≥1

1

na
converge, ainsi (par théorème de comparaison des SATP), la série de

fonctions
∑
n≥1

fn converge normalement (donc uniformément) sur [a, +∞[. Comme, de plus, toutes les fonctions

fn sont continues sur [a,+∞[, la fonction ζ est alors continue sur l'intervalle [a,+∞[.
Comme a est quelconque dans ]1,+∞[, on en déduit la continuité de la fonction ζ sur ]1,+∞[.

3o Soit x > y > 1, pour n ≥ 1, t 7→ 1
nt = e−t ln(n) est décroissante donc 1

nx ≤ 1
ny , en sommant sur n ∈ N⋆ (possible

d'après 1o) on trouve ζ(x) ≤ ζ(y) et donc ζ est décroissante sur son ensemble de dé�nition.

4o On a ζ décroissante et clairment minorée par 0, ainsi ζ admet une limite en +∞.

5o Soit x ∈ Dζ et soit n ∈ N tel que n ≥ 2.
La fonction t 7→ 1

tx = e−x ln(t) est continue (donc intégrable sur tout segment) et est décroissante sur ]1,+∞[

donc pour tout t ∈ [[n, n+1]] on a 1
tx ≤ 1

nx , ainsi
∫ n+1

n

dt

tx
≤ 1

nx
, en procédant de même sur [[n−1, n]] on a pour

tout t ∈ [[n− 1, n]] que 1
nx ≤ 1

tx et donc que
1

nx
≤
∫ n

n−1

dt

tx
. Ce qui montre bien que

∫ n+1

n

dt

tx
≤ 1

nx
≤
∫ n

n−1

dt

tx
.
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6o Pour tout n ≥ 2 et x > 1 :
∫ n+1

n

dt

tx
=
[ 1

(1− x)tx−1

]n+1

n
.

Soit N ≥ 2, en sommant les inégalités de la question précédente (et en utilisant la relation de Chasles) pour n

allant de 2 à N on trouve :
∫ N+1

2

dt

tx
≤

N∑
n=2

1

nx
≤
∫ N

1

dt

tx
.

Or
∫ N+1

2

dt

tx
=
[ 1

(1− x)tx−1

]N+1

2
=

1

(1− x)(N + 1)x−1
− 1

(1− x)2x−1
−→

N→+∞

1

(x− 1)2x−1
, et de même∫ N

1

dt

tx
=
[ 1

(1− x)tx−1

]N
1

=
1

(1− x)(N)x−1
− 1

(1− x)1x−1
−→

N→+∞

1

(x− 1)
.

Ainsi, en faisant tendre N vers +∞ dans l'inégalité et en rajoutant 1 on trouve bien que 1 +
1

(x− 1)2x−1
≤

ζ(x) ≤ 1 +
1

x− 1
.

7o On a lim
x→1+

1 +
1

(x− 1)2x−1
= +∞, ainsi lim

x→1+
ζ(x) = +∞ par comparaison.

8o Les deux expressions qui encadrent ζ(x) dans la question 6o convergent vers 1 quand x tend vers +∞, ainsi,
d'après le théorème des gendarmes, lim

x→+∞
ζ(x) = 1.

9o Allure de la représentation graphique de ζ : Strictement décroissante, avec la droite d'équation x = 1 comme
asymptote verticale en 1 et y = 1 comme asymptote horizontale en +∞.

Exercice 3 Le problème des moments (sans les parties IV et V, Mines psi 2019, maths 2).
Dans tout le problème I désigne un intervalle de R, qui pourra être [0, 1] ou [0,+∞[ ou R. On dira qu'une fonction
f : I → R est une densité (de probabilité) sur I si elle est continue et positive sur I, intégrable sur I et de masse 1
c'est-à-dire : ∫

I

f(x)dx = 1.

Pour n ∈ N, on dira que le moment d'ordre n d'une densité est �ni si :

x 7→ xnf(x) est intégrable sur I,

et on dé�nit alors le moment d'ordre n par le réel :

mn(f) =

∫
I

xnf(x)dx.

Dans tout le problème la densité gaussienne est la densité φ : R → R dé�nie par :

∀x ∈ R, φ(x) =
1√
2π

e−
x2

2 . (1)

I � Quelques exemples

1. On considère g : [0,+∞[→ R dé�nie par : ∀x ∈ [0,+∞[, g(x) = e−x. Montrer que g est une densité sur [0,+∞[,
que tous ses moments sont �nis et calculer mn(g) pour n ∈ N.

2. Montrer que tous les moments de la densité gaussienne φ sont �nis.

3. Que vaut m2p+1(φ) pour p ∈ N ?

4. Calculer m2p(φ) pour p ∈ N.
On exprimera le résultat sous forme compacte avec des factorielles là où c'est possible.

5. Donner un exemple de densité f : R → R dont le moment d'ordre 1 n'est pas �ni.

Dans ce problème, on va s'intéresser à la question suivante : une densité est-elle déterminée par l'ensemble de ses
moments ? Autrement dit, est-il vrai que

si deux densités f et g ont tous leurs moments �nis et
mn(f) = mn(g) pour tout n ∈ N alors f = g sur I ?

On va notamment voir que c'est vrai si I = [0, 1] (partie III), mais faux si I = [0,+∞[ (partie V) ou I = R.
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Correction :

1. La fonction g est continue et positive sur R+, de plus pourM ≥ 0 on a
∫ M

0

g(t)dt =
[
−e−t

]M
0

= 1−e−M −→
M→+∞

1, ainsi g est bien de masse 1, c'est donc une densité de probabilité.
Pour n ∈ N, x 7→ xne−x est continue sur [0,+∞[ et est un petit o de x 7→ 1

x2 quand x → +∞, ainsi g admet
un moment d'ordre n �ni. De plus, les fonctions u : x 7→ xn+1 et v : x 7→ −e−x sont de classe C1 sur [0,+∞[

et uv possède une limite �nie en +∞ (qui est 0), ainsi par IPP on a : mn+1(g) =
[
− xn+1e−x

]+∞

0
+ (n +

1)

∫ +∞

0

xne−xdx = (n+ 1)mn(g). La suite (mn(g)) véri�e donc la même relation de récurrence d'ordre 1 que

(n!) avec la même condition initiale, on en déduit donc, pour tout n ∈ N, que mn(g) = n!.

2. À la lecture du sujet il est admis que φ est une densité (en particulier φ est intégrable et
∫ +∞

−∞
φ(x)dx = 1.

Soit n ∈ N⋆. La fonction x 7→ xnφ(x) est continue sur R, l'intégrale
∫ +∞

−∞
|xnφ(x)|dx n'est donc généralisée

qu'en +∞ et −∞, la fonction x 7→ |x|nφ(x) étant paire, on peut se contenter de l'étude en +∞ puisque∫ +∞

0

|xnφ(x)|dx et
∫ 0

−∞
|xnφ(x)|dx sont de même nature (via le changement de variable t = −x, bijection

strictement décroissante de R+ dans R− et de classe C1). Or x2xnφ(x) −→
x→+∞

0 (par croissance comparée), ie

xnφ(x) = o
x→+∞

(
1
x2

)
, comme

∫ +∞

1

1

x2
dx est une intégrale (de Riemann) convergente, il en va de même pour∫ +∞

1

|xnφ(x)|dx et donc pour
∫ +∞

0

|xnφ(x)|dx.

On a bien montré que x 7→ xnφ(x) était intégrable sur R, ie que tous les moments de φ sont �nis.

3. Pour p ∈ N, x 7→ x2p+1φ(x) est une fonction impaire, donc son intégrale sur tout intervalle centré en 0 est nul,
en particulier m2p+1(φ) = 0.

4. Soit p ∈ N. On a m2p(φ) =

∫ +∞

−∞
x2p 1√

2π
e−x2/2dx =

2√
2π

∫ +∞

0

x2pe−x2/2dx.

Posons u : x 7→ −e−x2/2 et v : x 7→ x2p−1, u et v sont C1 sur R+, de plus (par croissance comparée)
lim

x→+∞
u(x)v(x) = 0. Donc par IPP on a :

m2p(φ) =
2√
2π

([
− x2p−1e−x2/2

]+∞

0
+

∫ +∞

0

(2p− 1)x2p−2e−x2/2dx

)
= (2p− 1)m2p−2(φ).

On a donc, par récurrence directe (on peut aussi montrer la formule �nale par récurrence) : m2p =

(
p∏

k=1

(2k − 1)

)
m0(φ) =

(
p∏

k=1

(2k)(2k − 1)

2k

)
m0(φ) =

p∏
k=1

2k(2k − 1)

p∏
k=1

2k

m0(φ) =
(2p)!

2pp!
(puisque m0(φ) = 1).

5. Soit f : x 7→ 1/π
x2+1 , la fonction f est continue et positive sur R, de plus elle est intégrable (généralisée qu'en

±∞, mais y est convergente par équivalence avec une intégrale de Riemann). De plus
∫ +∞

−∞

1/π

x2 + 1
dx =

1

π

[
arctan(x)

]+∞

−∞
= 1. C'est donc une densité de probabilité.

Cependant xf(x) ∼
x→+∞

1
πx , donc par règle des équivalent (et par divergence de cette intégrale de Riemann) :∫ +∞

1

|xf(x)|dx diverge. Ainsi f n'admet pas de moment �ni d'ordre 1.

II � Théorème de Stone-Weierstrass

On rappelle que
(
n
k

)
désigne le coe�cient binomial � k parmi n �.

6. Justi�er que, pour tout x ∈ [0, 1] et tout n ∈ N,

n∑
k=0

(
n

k

)
xk(1− x)n−k = 1.
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7. Montrer que, pour tout x ∈ [0, 1] et tout n ∈ N,
n∑

k=0

k

(
n

k

)
xk(1− x)n−k = nx.

8. Montrer que, pour tout x ∈ [0, 1] et tout n ∈ N,
n∑

k=0

k2
(
n

k

)
xk(1− x)n−k = nx+ n(n− 1)x2.

9. En déduire que, pour tout x ∈ [0, 1] et tout n ∈ N :

n∑
k=0

(k − nx)2
(
n

k

)
xk(1− x)n−k ⩽ Cn,

pour une constante C > 0 à préciser.

On se donne maintenant f : [0, 1] → R continue et ε > 0. On admet l'existence de α > 0 tel que, pour tout
(x, y) ∈ [0, 1]2,

|x− y| < α =⇒ |f(x)− f(y)| < ε. (2)

Pour n ∈ N, on dé�nit la fonction polynomiale :

∀x ∈ R, Bn(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
.

Pour x ∈ [0, 1] on partitionne les entiers k naturels entre 0 et n en :

X =

{
k ∈ {0, 1, . . . , n} :

∣∣∣∣x− k

n

∣∣∣∣ < α

}
et Y =

{
k ∈ {0, 1, . . . , n} :

∣∣∣∣x− k

n

∣∣∣∣ ⩾ α

}
.

10. Montrer que, pour tout x ∈ [0, 1] et tout n ∈ N,

|Bn(x)− f(x)| ⩽ ε+ 2∥f∥∞
∑
k∈Y

(
n

k

)
xk(1− x)n−k,

où on rappelle que ∥f∥∞ = sup
0⩽x⩽1

|f(x)|.

11. En utilisant la dé�nition de l'ensemble Y et les questions précédentes, conclure qu'il existe n su�samment grand
tel que :

∥Bn − f∥∞ ⩽ 2ε.

On a donc démontré le théorème de Stone-Weierstrass : toute fonction continue sur [0, 1] est limite uniforme d'une
suite de fonctions polynomiales.

Correction :

6. D'après la formule du binôme de Newton :
n∑

k=0

(
n

k

)
xk(1− x)n−k = (x+ (1− x))

n
= 1n = 1.

7. La formule est véri�ée pour n = 0, supposons n ≥ 1. Pour k ∈ [[1, n − 1]] on a k
(
n
k

)
= k n!

k!(n−k)! =

n (n−1)!
(k−1)!((n−1)−(n−k))! = n

(
n−1
k−1

)
.

Ainsi
n∑

k=0

k

(
n

k

)
xk(1−x)n−k = 0+

n−1∑
k=1

n

(
n− 1

k − 1

)
xk(1−x)n−k+nxn = n

n−2∑
k=0

(
n− 1

k

)
xk+1(1−x)n−k−1+nxn =

nx

n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−k = nx.

Alternative : Pour tout (x, y) ∈ R2, (x + y)n =

n∑
k=0

(
n

k

)
xkyk, on dérive cette égalité de polynômes en x par

rapport à x et on obtient : n(x + y)n−1 =

n∑
k=0

k

(
n

k

)
xk−1yk, on multiplie par x des deux cotés puis on prend

en y = 1− x on obtient : nx(x+ 1− x)n−1 =

n∑
k=0

k

(
n

k

)
xk(1− x)k, ie le résultat escompté.
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8. La formule est véri�ée pour n = 0 et n = 1, supposons n ≥ 2.
On pourrait procéder comme la question précédente, mais on va plutôt utiliser la méthode alternative. Pour

tout (x, y) ∈ R2, on a : nx(x+ y)n−1 =

n∑
k=0

k

(
n

k

)
xkyk, on dérive par rapport à x on a : n(x+ y)n−1 + n(n−

1)x(x+ y)n−2 =

n∑
k=0

k2
(
n

k

)
xk−1yk. Il ne reste plus qu'à multiplier par x puis à prendre y = 1−x pour obtenir

nx(x+1−x)n−1+n(n−1)x2(x+1−x)n−2 =

n∑
k=0

k2
(
n

k

)
xk(1−x)k, ie nx+n(n−1)x2 =

n∑
k=0

k2
(
n

k

)
xk(1−x)k.

9. Pour x ∈ [0, 1] et n ∈ N on a (d'après les trois questions précédentes) :
n∑

k=0

(k − nx)2
(
n

k

)
xk(1 − x)n−k =

n∑
k=0

k2
(
n

k

)
xk(1−x)n−k−2nx

n∑
k=0

k

(
n

k

)
xk(1−x)n−k+n2x2

n∑
k=0

(
n

k

)
xk(1−x)n−k = nx+n(n−1)x2−2n2x2+

n2x2 = nx(1− x) ≤ n (puisque x ∈ [0, 1]), ainsi C = 1 convient (on peut même prendre C = 1
4 , maximum de

la fonction x 7→ x(1− x) sur [0, 1] atteint en 1
2 ).

10. Remarque : la propriété :∀ε > 0, ∃α > 0 / ∀(x, y) ∈ I2, |(|x− y) < α ⇒ |f(x)− f(y)| < ε s'appelle l'uniforme
continuité de f sur I. Le résultat admis est le théorème de Heine (une fonction continue sur un segment y est
uniformément continue).
Pour x ∈ [0, 1] et n ∈ N, on remarque tout d'abord qu'en multipliant le résultat de la question 6. par f(x)

que :
n∑

k=0

(
n

k

)
xk(1 − x)n−kf (x) = f(x). On introduit α donné par (2). On a alors : |Bn(x)− f(x)| =∣∣∣∣∣

n∑
k=0

(
n

k

)
xk(1− x)n−k

(
f

(
k

n

)
− f(x)

)∣∣∣∣∣. On coupe la somme sur k en deux suivant que k soit dans

X ou dans Y et on utilise l'inégalité triangulaire, on obtient ainsi : |Bn(x)− f(x)| =
∑
k∈X

(
n

k

)
xk(1 −

x)n−k

∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣ + ∑
k∈Y

(
n

k

)
xk(1 − x)n−k

∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣. Or pour k ∈ X on a (par la propriété (2)) :∣∣f ( kn)− f(x)
∣∣, et dans tous les cas (en particulier pour k ∈ Y ) :

∣∣f ( kn)− f(x)
∣∣ ≤ ∣∣f ( kn)∣∣ + |f(x)| ≤ 2∥f∥∞.

On a donc : |Bn(x)− f(x)| = ε
∑
k∈X

(
n

k

)
xk(1 − x)n−k + 2∥f∥∞

∑
k∈Y

(
n

k

)
xk(1 − x)n−k. Or (somme de termes

positifs) :
∑
k∈X

(
n

k

)
xk(1 − x)n−k ≤

n∑
k=0

(
n

k

)
xk(1 − x)n−k = 1. On a bien montré que : |Bn(x) − f(x)| ≤

ε+ 2∥f∥∞
∑
k∈Y

(
n

k

)
xk(1− x)n−k

11. Pour k ∈ Y ,
∣∣x− k

n

∣∣ ≥ α, ie
∣∣nx−k

n

∣∣ ≥ α, ie (k−nx)2

≤
1

α2n2 , ainsi :
∑
k∈Y

(
n

k

)
xk(1 − x)n−k =

∑
k∈Y

(k − nx)2

(k − nx)2

(
n

k

)
xk(1−x)n−k ≤ 1

α2n2

∑
k∈Y

(k−nx)2
(
n

k

)
xk(1−x)n−k ≤ 1

α2n2

n∑
k=0

(k−nx)2
(
n

k

)
xk(1−x)n−k ≤

1

α2n2
Cn (où on a utilisé la question 9. et qu'on avait une somme de termes positifs).

Avec la question précédente on a : |Bn(x)− f(x)| ≤ ε+
2C

α2n
∥f∥∞. Comme lim

n→+∞

2C

α2n
∥f∥∞ = 0, il existe un

rang N tel que pour tout n ≥ N : 2C
α2n∥f∥∞ ≤ ε, on remarque que ce rang N ne dépend pas de x. Ainsi pour

tout n ≥ N , on a pour tout x ∈ [0, 1], que |Bn(x)− f(x)| ≤ 2ε et donc ∥Bn − f∥∞ ≤ 2ε.

III � Le problème des moments sur [0, 1]

On considère ici deux densités f et g sur I = [0, 1] et on suppose donc que, pour tout n ∈ N,

mn(f) = mn(g).

12. Montrer que, pour toute fonction polynomiale P , on a :∫ 1

0

(f(x)− g(x))P (x)dx = 0.
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On sait par la partie II qu'il existe une suite de fonctions polynomiales (Pn)n∈N qui converge uniformément vers f − g
sur [0, 1].

13. Montrer que :

lim
n→+∞

∫ 1

0

(f(x)− g(x))Pn(x)dx =

∫ 1

0

(f(x)− g(x))2dx.

14. Montrer alors que f = g sur [0, 1].

Correction :

12. Notons P =

n∑
k=0

akX
k. Par hypothèse on a pour tout k ∈ N : mk(f)−mk(g) = 0. On a (permutation somme

�nie et intégrale propre) :
∫ 1

0

(f(x)−g(x))P (x)dx =

n∑
k=0

ak

∫ 1

0

(f(x)−g(x))xkdx =

n∑
k=0

ak(mk(f)−mk(g)) = 0.

13. pour n ∈ N :

∣∣∣∣∫ 1

0

(f(x)− g(x))Pn(x)dx−
∫ 1

0

(f(x)− g(x))2dx

∣∣∣∣ = ∣∣∣∣∫ 1

0

(f(x)− g(x))(Pn(x)− (f(x)− g(x)))dx

∣∣∣∣ ≤
∥Pn − f − g∥∞

∫ 1

0

f(x) − g(x)dx. Comme par hypothèse (Pn) converge uniformément vers f − g sur [0, 1],

on a lim
n→+∞

∥Pn − f − g∥∞
∫ 1

0

f(x) − g(x)dx = 0, donc par encadrement : lim
n→+∞

∫ 1

0

(f(x) − g(x))Pn(x)dx =∫ 1

0

(f(x)− g(x))2dx.

14. Comme, pour tout n ∈ N, Pn est un polynôme, les deux questions précédentes donnent :
∫ 1

0
(f(x)−g(x))2dx = 0,

comme (f − g)2 est une fonction positive et continue sur [0, 1] on a (f − g)2 = 0 sur [0, 1] et donc f = g sur
[0, 1].
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