Lycée Jean Bart pc* Mathématiques 2025-2026

DS 6* : samedi 24 janvier

4h sans calculatrice

Le candidat numérotera ses pages, il encadrera ou soulignera les résultats.

N.B. : le candidat attachera la plus grande importance a la clarté, a la précision et a la concision de la rédaction. Si
un candidat est amené & repérer ce qui peut lui sembler étre une erreur d’énoncé, il le signalera sur sa copie et devra
poursuivre sa composition en expliquant les raisons des initiatives qu’il a été amené & prendre.

Correction

On rappel ! le théoréme d’intégration terme & terme (pour la derniére question de I’exercice suivant) :
Soit > f, une série de fonctions définies sur un intervalle I de R, on suppose :

(i) Toutes les fonctions f, sont continues par morceaux et intégrables sur /.
(ii) > fn converge simplement sur I vers S.
(iii) S est continue par morceaux sur I.
(iv) Lasérie Y [, [fn(t)|dt converge.

—+oo
Alors S est intégrable sur I et /S(t) dt = Z / fa(t)dt.
1 i

Exercice 1 (Résolution d’une équation fonctionnelle : CCINP PC 2021 FEzercice 2).
Dans cet exercice, on souhaite déterminer les fonctions f :]0, +oo[— R vérifiant les relations :

dim f(@) =0 etV €0, +ool, S+ 1)+ f(z) = % (P)

Partie I - Existence et unicité de la solution du probléme (P)

Dans cette partie, on démontre que le probléme (P) admet une unique solution et on détermine une expression de
celle-ci sous la forme d’une série de fonctions.

1.1 - Existence de la solution
Pour tout k& € N, on définit la fonction ¢y :]0, +oo[— R par :

Nk
Ve €10, +o0l, sok<x>—(i+1§€)2.

1° Montrer que la série de fonctions Z @) converge simplement sur ]0, +o00|.
k>0

Dans tout les reste de cet exercice, on note ¢ :]0, +oo[— R la somme de la série Z Pk

k>0
2° Montrer que pour tout = €]0, +oo[, on a p(z + 1) + ¢(z) = .
3° En utilisant le théoréme spécial des séries alternées, montrer que :
+00 1
Yz €]0, , VneN, < ——
@ €]0, oo, Vn k_Zn;lw(w)‘ S (x+n+1)2

4° Montrer que la fonction ¢ est une solution de (P).
1.2 - Unicité de la solution

5° Montrer que si f :]0,+00 — R est une solution de (P), alors pour tout n € N, on a :

(=D*

Vo €0, ool f(@) = ()" @ n+ D+ o

k=0

6° En déduire que la fonction ¢ est I'unique solution de (P).

1. non présent dans le sujet
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Correction :
1° Pour = > 0 fixé on a |y (z)| Mo 2, ainsi Y ¢y (2) converge absolument donc converge, ce qui montre bien
—+o0
la convergence simple de " ¢y sur |0, o0l

Alternative : On peut aussi utiliser le TSA directement ici, ce qui fait gagner un peut de temps pour la question

3°.
+oo ( +o00 (71)]671 1 ‘
2° Pour z > 0, on a : p(z + 1) Z ( 1 +k = Z e = —(p(z) — po(x)) = —p(z) + el Ce qui
k=0 k=1
montre bien que p(z + 1) + ¢(x) = %

3° Pour z > 0, la série ) ¢ (x) est une série alternée qui reléve du TSA (elle est bien alternée et (|oi(z)|), =

(7(m _:k)2> tend bien vers 0 en décroissant), ce qui donne non seulement la convergence de la série, mais aussi
k

—+o0
la domination du reste, ie, pour tout n € N et en notant R, (z) = Z (), que [Ry ()] < |ont1(x)| =
k=n-+1
1
(z4+n+1)2"
4° Pour > 0 on a Ry(z) = ¢(z) — ¢o(z), la question précédente donne donc |p(z) — | < iz ainsi ¢ — 9o

admet 0 comme limite en +00, et comme ¢q tend aussi vers 0 en +oco on a donc lim ¢(x) = 0, ce qui montre,
Tr—r—+00

avec la question 2°, que ¢ est une solution de (P).

Alternative : La question précédente permet de montrer la convergence uniforme sur R* de (R,,) vers la fonction
nulle, ainsi ) ¢, converge uniformément sur R% , comme de plus tous les ¢, tendent vers 0 en 400, on peut
appliquer le théoréme de la double limite pour avoir le résultat.

5° Soit f une solution de (P). Soit n € N et z > 0. Pour tout k € [0,n], la relation de (P) appliquée a
x+kdonne : flzx +k+1)— fz+k) = W, on multiplie ces égalités par (—1)* et on somme pour

n 1\k n n+1 n
obtenir : » (71)2 =3 (“DFfa+k+ 1)+ (D e+ k) =) (D" @+ k) + > (D) fa+ k) =
= @t k) k=0 k=1 k=0
()" f(x+n+1) Z flx+k)+ f(z Z flx+k)=(-1)"f(x+n+1)+ f(z). Ce qui montre
k=1
(= 1)k

bien que f(z) = (—1)""' f(z +n+ 1) +Z (x4 k)2

Alternative : Démonstration par recurrence sur n.

6° On vient de démontrer, pour tout > 0 et n € N que f(x) = (—1D)" ' f(z +n +1) + Zgok(x), il ne reste
k=0

plus qu’a faire tendre n vers +oo, ce qui est possible & droite puisque hIJIrl (=) f(z+n+1) =0 (premier
n—-+oo

résultat de la propriété (P)) et que lirf Z(pk(x) = ¢(z). Ainsi f(x) = p(z), et donc f = ¢, ce qui montre
n—-+0oo

bien que ¢ est I'unique solution de (P).

Partie IT - Etude de la solution du probléme (P)

Dans cette partie, on étudie quelques propriétés de I'unique solution ¢ :]0, +0o[— R du probléme (P).
7. Soit € > 0. Montrer que la série de fonctions Z ¢y, converge uniformément sur [e, +o00].
k>0
8. Montrer que la fonction ¢ est continue sur |0, +oo[. En utilisant le fait que ¢ est une solution du probléme (P),
en déduire un équivalent simple de ¢ au voisinage de 07.
9. Justifier que la fonction ¢ est dérivable sur ]0, 400 et que ’on a :
too k+1
2(=1)
vz €]0, , "(z) = —
v D tool, ¢@) = T
k=0
10. En déduire que la fonction ¢ est décroissante sur |0, 4+o00].
11. En utilisant le résultat de la question précédente et la relation (P), montrer que :
YV €)1, 4+o00[ 1<2()< 1
x (6] — x —_—.
’ » g s (x —1)2

En déduire un équivalent de ¢ en +oco.
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Correction :

7° Pour x > et k € N, on a |pp(2)| = gz < e ainst [lon

normalement (donc uniformément) sur [e, +00[.
Alternative Utiliser 3° pour avoir la convergence uniforme sur R* de (R,,) vers la fonction nulle.

HL‘E.5+°°[ < ﬁ Ainsi la série Y ¢ converge

8° Comme toutes les fonctions ¢y, sont continues sur [, +00| et que la convergence de la série Y ¢ v est uniforme
on a que ¢ est continue sur [g, +00[, ceci étant vrai pour tout € > 0, on a donc ¢ continue sur ]0, +00[.
Comme ¢ vérifie la propriété (P), pour tout > 0 on a : x?¢(x + 1) + 22p(x) = 1, or ili% 22p(z+1) = 0 (par
continuité de ¢ en 1) on a donc lim z%¢(z) = 1, ie p(x) ~ %
x—0 x—0 o
9° Appliquons le théoréme de dérivation C* des séries de fonctions. On a :

(i) Pour tout k € N, ¢y, est de classe C* sur ]0, +oo] et, pour z > 0, ¢} (z) = %
(i) > ¢k converge simplement sur |0, +oo[ vers .
(ili) Soit € > 0, pour k € N et z € [e,400[, on a |} (z)| < ﬁ, ainsi ||g0§€H£i§+°°[ < (8fk)3 et comme
> ﬁ converge on a que y . ¢} converge normalement (donc uniformément) sur [e, +ool.

Ainsi ¢ est de classe C! sur [g, +o00[, ceci étant vérifié pour tout € > 0, ¢ est de classe C! sur , +oc[, de plus,
too too 2(71)k+1

pour z >0, on a : ¢'(z) = ng%(az) = Z -
k=0 k=0 (z+k)

+oo k+1
2(—1
10° Pour = > 0, g ((+)k)3 est une série alternée qui reléve du TSA (son terme général est bien alternée et en
x
k=0
valeur absolue est décroissant et tend vers 0), ainsi sa somme est du signe de son premier terme, ce qui montre

¢'(x) <0 et donc ¢ est décroissante sur |0, +oo].
11° Pour z > 1 on a p(z + 1) < ¢(x) < p(xr — 1) (décroissance) en ajoutant p(x) on a p(z+ 1) + p(z) < 2¢(z) <
¢(z) + ¢(z — 1), comme de plus ¢ vérifie la propriété (P) on a donc =5 < 2p(z) < ﬁ, il ne reste plus qu’a

multiplier par 22 pour obtenir 1 < 222p(x) < ﬁ ~ 1, il ne reste plus qu’a appliquer le théoréme des

T— 400
1
. . 2 o . . ~
gendarmes pour obtenir zBIJIrl 2r () =1, ie : p(x) Motk

Partie III - Expression intégrale de la solution du probléme (P)

Dans cette partie, on déterminer une expression de ¢ sous la forme d’une intégrale. On considére un élément x €]0, +00|.

12° Pour tout k € N, montrer que la fonction t — t***~1In(¢) est intégrable sur ]0, 1] et que I'on a :

1

1
R () dt = ———— .
| n0dt = = e

=L in(t)

13° En déduire que la fonction ¢ — & 7  est intégrable sur J0, 1] et que :

Le=Tln(t)

Correction :

12° Soit k € N. Posons € > 0, la fonction ¢ + t***~1In(¢) est continue sur [e,1], elle est donc intégrable sur
tz+k

cet intervalle, procédons par intégration par parties, pour t € [e,1] posons u(t) = In(t) et v(t) = SEouet
1

v sont de classe C! sur [¢,1] et pour ¢ € [g,1] on a u/(t) = % et v/(t) = t***~1 Ainsi [ ¢*"" 'In(t)dt =
€

t:t—i—k 1 1 tz—l—k 1 Ez—i—k 1 1 ax—Q—k 1 tm+k 1
1 t} — Cd =0 In() — okl = 1 —7[ ] -
[x+kn()a / c+kt PRl x+k/€ prye G ey o ey
grthk 1 gutk -1
— S In(e) - .
x+kn(€) (x+k)2+(a:+k)2§>)(x+k)2

Ce qui montre bien la convergence de l'intégrale sur ]0,1] (et donc l'intégrabilité puisque la fonction est de
signe constant) et la formule.
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oo 1
13° On vient de démontrer, pour tout x > 0, que p(z) = — Z/ (—1)*t=+*=11n(¢)dt. De plus on peut tout de
k=0"0
—+oo

+oo -1
t* 7 In(t
suite remarquer que Z(_l)kterk_l In(t) = t*"'In(t) Z(—t)k = £ In(t) (série géométrique). Appliquons
k=0 k=0 1+1
le théoréme d’intégration terme & terme, pour cela on note, pour k € N et t €]0, 1], fx(t) = (=1)*t* ¢~ 11n(¢).
Ona:

(i) Toutes les fonctions fi sont continues par morceaux et intégrables sur ]0, 1].

(i) Z fr converge simplement vers S : ¢ — tr_;%(t) sur 10, 1[.
k>0
(iii) La fonction S est continue par morceaux sur |0, 1.

(iv) Pour k € N, notons ay = f01 | fx(t)| dt, d’aprés la question précédente ay = ﬁ, ainsi Y aj converge
1 oo .1
Ainsi S est intégrable sur |0, 1] (donc sur ]0, 1] puisque définie en 1) et / S(t)dt = Z/ fr(t)dt.
0 0”0

1 ,2—-1
4 In(t
On a bien montré que : Vo > 0, ¢(z) = —/ £ In®) )dt.

o 1+t

Exercice 2 Fonction zéta (CENTRALE PC 2018, maths 2, partie I).
+oo

On note ¢ la fonction de la variable réelle x définie par : {(z) = Z —. On note D¢ son ensemble de définition.
n
n=1
1° Déterminer D.
2° Montrer que ¢ est continue sur De.
3° Etudier le sens de variations de ¢.

4° Justifier que ¢ admet une limite en +oo.

, _ a1 "dt
5° Soit x € D¢ et soit n € N tel que n > 2. Montrer : — < —< —.
R R

n

6° En déduire, que pour tout x € D¢, 1+

1 1
@onper ==

7° Déterminer la limite de {(x) lorsque x tend vers 1 par valeurs supérieures.
8° Déterminer la limite de {(z) lorsque = tend vers +oo.

9° Donner l’allure de la courbe représentative de (.

1
1° On sait que la série de Riemann E — converge si et seulement si a > 1, ainsi I'ensemble de définition de la
n
n>1
fonction ¢ est Dy =1, +o0].

2° Soit a €]1,4o00[. On a alors, pour tout entier n > 1 et pour tout réel x > a, que : 0 < n% < n%, on a donc

1
an||£fé’+°°[ < L, comme la série Z — converge, ainsi (par théoréme de comparaison des SATP), la série de
n>1 "
fonctions Z fn converge normalement (donc uniformément) sur [a, +oo[. Comme, de plus, toutes les fonctions
n>1
fn sont continues sur [a, +o00[, la fonction ¢ est alors continue sur lintervalle [a, +ool.
Comme a est quelconque dans ]1,4+o00], on en déduit la continuité de la fonction ¢ sur |1, +ool.

3° Soit x >y > 1,pourn >1,t+— ”% = ¢~ tn(") egt, décroissante donc ,le < n%, en sommant sur n € N* (possible

d’aprés 1°) on trouve ((x) < {(y) et donc ¢ est décroissante sur son ensemble de définition.
4° On a ¢ décroissante et clairment minorée par 0, ainsi ( admet une limite en +oo.
5° Soit x € D¢ et soit n € N tel que n > 2.
La fonction ¢ - & = e~="(") est continue (donc intégrable sur tout segment) et est décroissante sur |1, +oo|

n+1 dt ; .
— < —, en procédant de méme sur [n—1,n] on a pour
/rLZ

v

donc pour tout ¢ € [n,n+1] on a & < =, ainsi /

n

L 1 "odt , _ hde 1 "odt
tout ¢t € [n—1,n] que —z < ;& et donc que — < —. Ce qui montre bien que —<—X —.
n—1 n n—1
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n+1 dt

1 n+1
n tj_[(l—fl)’)ti_l}n ’
Soit N > 2, en sommant les inégalités de la question précédente (et en utilisant la relation de Chasles) pour n

6° PourtouthQetx>1:/

N+1 dt N 1 N dt
allant de 2 & N on trouve:/ —ng g/ =
2 v n=2 n® te
o N+1 dt 1 N+1 1 1 1 .
B I S _ _ S X
T /2 1z {(1 — x)tzfl}g (1 _ x)(N + 1):5—1 (1 _ x)21*1 N—>+>oo (g; — 1)29671, € € meme

Ndt 1 N 1 1 1
/1 v [(1—56)2?9”‘1}1 TN T T Nt (- 1)

1
Ainsi, en faisant tendre N vers +oo dans 'inégalité et en rajoutant 1 on trouve bien que 1 + W <
T —
1

<l4+ ——-.

(@) <14 ——
7° Ona lim 1+ —————— = 400, ainsi lim ((x) = +oo par comparaison.
r—1t (SC — 1)2171 z—1t C( ) P P

8° Les deux expressions qui encadrent ((x) dans la question 6° convergent vers 1 quand = tend vers +oo, ainsi,
d’apreés le théoréme des gendarmes, lir+n C(x) =1.
xr—r+00

9° Allure de la représentation graphique de ¢ : Strictement décroissante, avec la droite d’équation x = 1 comme
asymptote verticale en 1 et y = 1 comme asymptote horizontale en +oc.

Exercice 3 Le probléme des moments (sans les parties IV et V, MINES PS1 2019, maths 2).
Dans tout le probléme I désigne un intervalle de R, qui pourra étre [0, 1] ou [0,4o0c[ ou R. On dira qu’une fonction
f: I — R est une densité (de probabilité) sur I si elle est continue et positive sur I, intégrable sur I et de masse 1

c’est-a-dire :
/f(m)dx =1.
I

Pour n € N, on dira que le moment d’ordre n d’une densité est fini si :
x +— x" f(x) est intégrable sur I,

et on définit alors le moment d’ordre n par le réel :

Dans tout le probléme la densité gaussienne est la densité ¢ : R — R définie par :

Ve eR, pla)= ——e 7. (1)

I — Quelques exemples

1. On considére g : [0, +oco[— R définie par : Vz € [0,+o0], g(z) = e~*. Montrer que g est une densité sur [0, 400/,
que tous ses moments sont finis et calculer m,(g) pour n € N.

2. Montrer que tous les moments de la densité gaussienne ¢ sont finis.
3. Que vaut mapy1(p) pour p e N?

4. Calculer mg,(p) pour p € N.
On exprimera le résultat sous forme compacte avec des factorielles la o c’est possible.

5. Donner un exemple de densité f : R — R dont le moment d’ordre 1 n’est pas fini.

Dans ce probléme, on va s’intéresser & la question suivante : une densité est-elle déterminée par ’ensemble de ses
moments ? Autrement dit, est-il vrai que

si deux densités f et g ont tous leurs moments finis et
my(f) = my,(g) pour tout n € N alors f =g sur I?

On va notamment voir que c’est vrai si I = [0,1] (partie IIT), mais faux si I = [0, 4o0[ (partie V) ou I = R.
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Correction :

1. Lafonction g est continue et positive sur R, de plus pour M > 0on a g(t)dt = [—e_t} =1l-e M—+>
0 — 400

1, ainsi g est bien de masse 1, c’est donc une densité de probabilité.
Pour n € N, z — z™e™7 est continue sur [0, +00o[ et est un petit o de x — ;—2 quand x — 400, ainsi g admet
un moment d’ordre n fini. De plus, les fonctions u : z +— 2" et v : x — —e~* sont de classe C! sur [0, +-o0[

—+o0

et uv posséde une limite finie en +o0o (qui est 0), ainsi par IPP on a : m,41(g) = [— sc"“e_“} + (n+
0

+oo
1) 2"e""dx = (n+ 1)m,(g). La suite (m,(g)) vérifie donc la méme relation de récurrence d’ordre 1 que
0
(n!) avec la méme condition initiale, on en déduit donc, pour tout n € N, que m,,(g) = n!.
+oo
2. A la lecture du sujet il est admis que ¢ est une densité (en particulier ¢ est intégrable et / p(z)dz = 1.

— 00

—+oo
Soit n € N*. La fonction x — z™p(x) est continue sur R, l'intégrale / |z"p(x)|dz n’est donc généralisée
—0o0

qu’en +o0o et —oo, la fonction x — |x|"p(x) étant paire, on peut se contenter de 1’étude en +oo puisque

+oo 0
/ |z p(x)|dx et / |x"@(x)|dz sont de méme nature (via le changement de variable ¢ = —z, bijection
0 —o0

strictement décroissante de R, dans R_ et de classe C1). Or 2%z"p(x) " 0 (par croissance comparée), ie
T—+00

+oo
z"p(z) = oo (x%), comme / ?dx est une intégrale (de Riemann) convergente, il en va de méme pour
1

+o0 t+oo
/ |x"@(x)|dz et donc pour / |2 p(x)|dx.
1 0

On a bien montré que = — z"p(z) était intégrable sur R, ie que tous les moments de ¢ sont finis.

3. Pour p € N, x — 2?PT1p(x) est une fonction impaire, donc son intégrale sur tout intervalle centré en 0 est nul,
en particulier mg,11(p) = 0.
Feo 9y 1 2/9 2 Foo 9 29
4, Soit p € N. On am = P ——e " /4dx = —/ x*Pe™" /4dz.
y 2 () Vam Var s

— 00
Posons u : ¢ — —e /2 et v : x — 2?1 u et v sont C' sur Ry, de plus (par croissance comparée)
lim w(z)v(xz) = 0. Donc par IPP on a :

Tr——+00

2 1 a2 +00 Foo o g2
map() = = ([ =22 [T - e e ) = (2 - Dyl

On a donc, par récurrence directe (on peut aussi montrer la formule finale par récurrence) : mg, =

P P (2k)(2k — 1) ,};[1 2k(2k —1)
[Tk 1)) mote) = ([ B0 gy = b2t
H 2k
k=1

k=1 k=1
5. Soit f :z +— /7 la fonction f est continue et positive sur R, de plus elle est intégrable (généralisée qu’en

mo(p) = (22;2!! (puisque mo(p) = 1).

x2+17
. A L . too 1w
+00, mais y est convergente par équivalence avec une intégrale de Riemann). De plus Z 1da7 =
e T
1 oo . N h
— [arctan(x)] = 1. C’est donc une densité de probabilité.
T —

Cependant xf(z) ~ L

¥ donc par régle des équivalent (et par divergence de cette intégrale de Riemann) :
—+00

+oo
/ |z f(z)|dx diverge. Ainsi f n’admet pas de moment fini d’ordre 1.
1

IT — Théoréme de Stone-Weierstrass

On rappelle que (2) désigne le coefficient binomial « k& parmi n ».

6. Justifier que, pour tout x € [0, 1] et tout n € N,

zn: (Z)xm —ao b=,

LJB Maths - DS6e-cor 6 / 9



Lycée Jean Bart pc* Mathématiques 2025-2026

7. Montrer que, pour tout x € [0,1] et tout n € N,
Z k (Z) 2F(1— )" % = na.

k=0

8. Montrer que, pour tout z € [0,1] et tout n € N,
z n
Z k? (k)xk(l —z)"F =na 4+ n(n - 1)2°
k=0

9. En déduire que, pour tout = € [0,1] et tout n € N :

NE

(= nap? () a1 =0y ~+ < cm,

~
Il

0

pour une constante C' > 0 & préciser.

On se donne maintenant f : [0,1] — R continue et ¢ > 0. On admet l’existence de o > 0 tel que, pour tout
(z,y) € [0,1],
lv —yl <a=|f(z) - f(y)| <e (2)

Pour n € N, on définit la fonction polynomiale :

Vz€R, Bn(z)= é (Z) 2F(1 = z)nh g (i) .

Pour z € [0, 1] on partitionne les entiers k naturels entre 0 et n en :

X:{kE{O,l,...,n}:

x—fb‘<a} etY:{ke{O,l,...,n}:

10. Montrer que, pour tout z € [0, 1] et tout n € N,

Bua) = ) <207 3 () )oha - o,

key

ou on rappelle que || f|lcoc = sup |f(z)|.

o<1
11. En utilisant la définition de ’ensemble Y et les questions précédentes, conclure qu’il existe n suffisamment grand
tel que :
1Bn = flloo < 2.

On a donc démontré le théoréme de Stone-Weierstrass : toute fonction continue sur [0, 1] est limite uniforme d’une
suite de fonctions polynomiales.

Correction :

6. D’apreés la formule du binome de Newton : Z (Z) fl-z)" =@+ (1-2)"=1"=1.
k=0
7. La formule est vérifiee pour n = 0, supposons n > 1. Pour k& € [1,n — 1] on a k(g) = kﬁlk), =

n—1)! _ n—1
n(kfl)!((ngl)f(nfk))! =n(; ;).

n n—1 n—2
n n—1 n—1
Ainsi k 2F1—z)"F =0+ n( )zk 1—2)" Fpnz” =n ( )zkH 1—z)" Flgpna” =
> (})e0-2) Son( )0 > (")

n—1
-1
nx; <n i )xk(l —z)" 1R =,

Alternative : Pour tout (z,y) € R?, (z +y)" = Z (

n
)xkyk, on dérive cette égalité de polynémes en x par

k—1, k

k
n
n
rapport & x et on obtient : n(z + y)"_1 = Z k( y", on multiplie par x des deux cotés puis on prend

k=0

0
)z
en y = 1 — 2 on obtient : nx(zx +1—z)" ! = Zk(z
k=0

)xk(l — x)*, ie le résultat escompteé.
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8. La formule est vérifiée pour n = 0 et n = 1, supposons n > 2.
On pourrait procéder comme la question précédente mais on va plutdt utiliser la méthode alternative. Pour

tout (x,y) € R?, on a : na(x +y)" Z k( ) , on dérive par rapport & x on a : n(x +y)" "' +n(n —

n
Da(z+y)" 2 = Z k2 <k> 2%~ 1y¥ 11 ne reste plus qu’a multiplier par z puis & prendre y = 1 —x pour obtenir
k=0

ne(z+1—z)" t4n(n—1)2%(x+1—x) Zk2< > —z)F, ie nz4n(n—1)z ZkQ(k) ¥ (1—x)".

n

9. Pour z € [0,1] et n € N on a (d’aprés les trois questions précédentes) : Z(k — nx)? <Z> zh(1 — )"k =

k=0
Zk2(z>mk(1—x)"k—an;kC;)xk(l Fin x2z ( ) —2)" % = nz4n(n—1)z? —2n%2% +
n?z? = nz(1 — ) < n (puisque z € [0,1]), ainsi C' = 1 conv1ent (on peut méme prendre C = 1, maximum de

la fonction = — (1 — z) sur [0,1] atteint en 1).

10. Remarque : la propriété Ve > 0, Ja > 0/V(z,y) € I, |(|z — y) < a = |f(z) — f(y)| < € s’appelle 'uniforme
continuité de f sur I. Le résultat admis est le théoréme de Heine (une fonction continue sur un segment y est
uniformément continue).

Pour x € [0,1] et n € N, on remarque tout d’abord qu’en multipliant le résultat de la question 6. par f(x)

que : i: (Z)a:k(l —2)" *f(x) = f(z). On introduit o donné par (2). On a alors : |B,(z) — f(z)| =
k=0

- k
Z (Z)xk(l—x)"k (f (n) —f(x))‘ On coupe la somme sur k& en deux suivant que k soit dans
k=0

X ou dans Y et on utilise I'inégalité triangulaire, on obtient ainsi : |B,(z) — f(z)| = Z (Z) 2d(1 -

()= |+ X (3)era- ot (5) - @) =

key
|f (£) = f(z)|, et dans tois les cas (en particulier pour k € Y) : [ f (£) — f(2)| < |f ()] + [f(2)] <2 fls-

x)n—k

Or pour k € X on a (par la propriété (2)) :

On a donc : |By,(x) x)| =¢ Z ( > (1—2)" 42/ flloo Z (Z)xk(l —2)" %, Or (somme de termes
kex key
positifs) : Z <Z)xk( —z)" k< Z( ) (1 —2)" " = 1. On a bien montré que : |B,(z) — f(z)| <
keX
n _
e+ 2| fllso Z <k>x (1—2)"*
key
11. Pour £k € Y, ’x— %{ > a, ie |%_k| > a, ie Moﬂl’nz’ ainsi : Z (Z)xk(l — )"t =
B key
(k —nx)? (n —k
ka 2 (1—z)" _anQZk na)? a(1—z)"~ —a2n2zk n) sF(1—z)"F <
kei/ keYy
55 ——Cn (ou on a utilisé la question 9. et qu’on avait une somme de termes positifs).
a’n

2C
Avec la question précédente on a : |B,(x) — f(z)] < e+ ——||f|lc- Comme lim ——|[f[[oc =0, il existe un
asn n—-+0o0 °N

rang N tel que pour tout n > N : O?TC;H]”HOO < g, on remarque que ce rang N ne dépend pas de z. Ainsi pour
tout n > N, on a pour tout = € [0, 1], que |B,(z) — f(z)| < 2¢ et donc ||B,, — fle < 2¢.

IIT — Le probléme des moments sur [0, 1]

On considére ici deux densités f et g sur I = [0, 1] et on suppose donc que, pour tout n € N,

ma(f) = mn(g).

12. Montrer que, pour toute fonction polynomiale P, on a :

/0 (f(x) — g(x))P(x)dz = 0.
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On sait par la partie IT qu’il existe une suite de fonctions polynomiales (P, ),en qui converge uniformément vers f — g
sur [0, 1].

13. Montrer que :
1

lim [ (f(z) - g(x)) Py (z)dz = /O (f(z) = g(x))*da.

n——+oo 0

14. Montrer alors que f = g sur [0, 1].

Correction :

n
12. Notons P = Z apX". Par hypothése on a pour tout k € N : my(f) — mx(g) = 0. On a (permutation somme
k=0

1 n 1 n
finie et intégrale propre) : [ (f(z)—g(x))P(z)dx = Z ar | (f(z)—g(z))akder = Z ar(mg(f)—mr(g)) = 0.
0 k=0 7O k=0

13. pourneN:\ / ((z) - g(2)) Pa(x)dz — / (f(2) - gla))de / () - g(@))(Pale) — (f(z) — g(z)))dz| <

1
1P, — f — g||oo/ f(z) — g(x)dx. Comme par hypothése (P,) converge uniformément vers f — g sur [0, 1],
0

1 1
on a lirf P, — f — gHoo/ f(z) — g(xz)dz = 0, donc par encadrement : lim (f(x) — g(x))Pp(z)dx =
n—-+0o0o 0

. n—+oo Jq
/0 (f(2) — g(x))*da.

14. Comme, pour tout n € N, P, est un polynéme, les deux questions précédentes donnent, : fol(f(x)fg(x))de =0,
comme (f — g)? est une fonction positive et continue sur [0,1] on a (f — g)? = 0 sur [0,1] et donc f = g sur
[0,1].
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