4. Mécanique

MF03 Équations dynamiques locales

Équation de Navier-Stokes dans	Utiliser l'équation de Navier-Stokes dans
un fluide newtonien en écoulement	un fluide newtonien en écoulement incom-
incompressible. Terme convectif.	pressible.
Terme diffusif. Nombre de Reynolds	Évaluer en ordre de grandeur le rapport
dans le cas d'une unique échelle spa-	du terme convectif sur le terme diffusif et
tiale.	le relier au nombre de Reynolds dans le cas
	d'une unique échelle spatiale.
Notion d'écoulement parfait et de	Exploiter l'absence de forces de viscosité et
couche limite.	le caractère isentropique de l'évolution des
	particules de fluide.
	Utiliser la condition aux limites sur la com-
	posante normale du champ des vitesses.
Relation de Bernoulli pour un	Établir et utiliser la relation de Bernoulli
écoulement parfait, stationnaire, in-	pour un écoulement parfait, stationnaire,
compressible et homogène dans le	incompressible et homogène dans le champ
champ de pesanteur uniforme dans	de pesanteur uniforme dans un référentiel
un référentiel galiléen.	galiléen.

MécaF04 Bilans macroscopiques

Bilans de masse.	Établir un bilan de masse en raisonnant sur
	un système ouvert et fixe ou sur un système
	fermé et mobile.
Bilans de quantité de mouvement	Associer un système fermé à un système
ou d'énergie cinétique pour un	ouvert pour faire un bilan.
écoulement stationnaire unidimen-	Utiliser le théorème de la quantité de
sionnel à une entrée et une sortie.	mouvement et le théorème de l'énergie
	cinétique pour réaliser un bilan.
	Exploiter la nullité (admise) de la puis-
	sance des forces intérieures dans un
	écoulement parfait et incompressible.

6. Physique des ondes

Ondel Ondes mécaniques unidimensionnelles dans les solides déformables

Ondes transversales sur une corde	Établir l'équation d'onde décrivant les
vibrante.	ondes transversales sur une corde vibrante
	infiniment souple dans l'approximation des
	petits mouvements transverses.
Domaine d'élasticité d'un solide :	Exploiter le modèle de la chaîne d'atomes
module d'Young, loi de Hooke.	élastiquement liés pour relier le module
	d'Young d'un solide élastique à ses ca-
	ractéristiques microscopiques.
Ondes mécaniques longitudinales	Établir l'équation d'onde décrivant les
dans une tige solide dans l'approxi-	ondes mécaniques longitudinales dans une
mation des milieux continus.	tige solide.
Équation de d'Alembert ; célérité.	Identifier l'équation de d'Alembert.
	Relier qualitativement la célérité d'ondes
	mécaniques, la raideur et l'inertie du milieu
	support.
Ondes progressives, ondes progres-	Différencier une onde stationnaire d'une
sives harmoniques; ondes station-	onde progressive.
naires.	Utiliser qualitativement l'analyse de Fou-
	rier pour décrire une onde non harmonique.
Modes propres d'une corde vi-	Décrire les modes propres d'une corde vi-
brante fixée à ses deux extrémités.	brante fixée à ses deux extrémités.
Résonances d'une corde de Melde.	Interpréter quantitativement les
	résonances observées avec la corde de
	Melde en négligeant l'amortissement.