Tout le programme de PCSI du thème 1, partie 7

Induction et forces de Laplace

uniforme.

Champ	magnétique
-------	------------

Sources de champ magnétique; cartes de champ magnétique.

Exploiter une représentation graphique d'un champ vectoriel, identifier les zones de champ uniforme, de champ faible et l'emplacement des sources.

Tracer l'allure des cartes de champs magnétiques pour un aimant droit, une spire circulaire et une bobine longue. Décrire un dispositif permettant de réaliser un champ magnétique quasi

Citer des ordres de grandeur de champs magnétiques : au voisinage d'aimants, dans un appareil d'IRM, dans le cas du

champ magnétique terrestre.

Symétries et invariances des distributions de courant. Exploiter les propriétés de symétrie et d'invariance des sources pour prévoir des propriétés du champ créé.

Lien entre le champ magnétique et l'intensité du courant.

Évaluer l'ordre de grandeur d'un champ magnétique à partir d'expressions fournies.

Moment magnétique.	Définir le moment magnétique associé à une boucle de courant plane. Associer à un aimant un moment magnétique par analogie avec une boucle de courant.
	Citer un ordre de grandeur du moment
	magnétique associé à un aimant usuel.
Actions d'un champ magnétique	
Densité linéique de la force de Laplace	Différencier le champ magnétique
dans le cas d'un élément de courant fi-	extérieur subi du champ magnétique
liforme.	propre créé par le courant filiforme.
Résultante et puissance des forces de	Établir et citer l'expression de la
Laplace.	résultante des forces de Laplace dans
	le cas d'une barre conductrice placée
	dans un champ magnétique extérieur
	uniforme et stationnaire.
	Exprimer la puissance des forces de La-
	place.
Couple et puissance des actions	Établir et exploiter l'expression du mo-
mécaniques de Laplace dans le cas	ment du couple subi en fonction du
d'une spire rectangulaire, parcourue	champ magnétique extérieur et du mo-
par un courant, en rotation autour d'un	ment magnétique.
axe de symétrie de la spire passant	Exprimer la puissance des actions
par les deux milieux de côtés opposés	mécaniques de Laplace.
et placée dans un champ magnétique	
extérieur uniforme et stationnaire	
orthogonal à l'axe.	
Action d'un champ magnétique	
extérieur uniforme sur un aimant.	
Positions d'équilibre et stabilité.	

Effet moteur d'un champ magnétique	
tournant.	
Lois de l'induction	
	É
Flux d'un champ magnétique	Évaluer le flux d'un champ magnétique
Flux d'un champ magnétique à travers	uniforme à travers une surface s'ap-
une surface s'appuyant sur un contour	puyant sur un contour fermé orienté
fermé orienté.	plan.
Loi de Faraday	
Courant induit par le déplacement re-	
latif d'une boucle conductrice par rap-	
port à un aimant ou un circuit induc-	
teur. Sens du courant induit.	
Loi de modération de Lenz.	Utiliser la loi de Lenz pour prédire ou
	interpréter les phénomènes physiques
	observés.
Force électromotrice induite, loi de Fa-	Utiliser la loi de Faraday en précisant
raday.	les conventions d'algébrisation.
Circuit fixe dans un champ magnét	ique qui dépend du temps
Auto-induction	Différencier le flux propre des flux
Flux propre et inductance propre.	extérieurs.
	Utiliser la loi de modération de Lenz.
	Évaluer et citer l'ordre de grandeur
	de l'inductance propre d'une bobine de
	grande longueur.
Étude énergétique.	Réaliser un bilan de puissance et
	d'énergie dans un système siège d'un
	phénomène d'auto-induction en s'ap-
	puyant sur un schéma électrique
	équivalent.
	1

Cas de deux bobines en interac-	Déterminer l'inductance mutuelle entre		
tion	deux bobines de même axe de grande		
Inductance mutuelle entre deux bo-	longueur en « influence totale ».		
bines.			
Circuits électriques à une maille couplés	Citer des applications dans le domaine		
par le phénomène de mutuelle induction	de l'industrie ou de la vie courante.		
en régime sinusoïdal forcé.	Établir le système d'équations en		
	régime sinusoïdal forcé en s'appuyant		
	sur des schémas électriques équivalents.		
Transformateur de tension.	Établir la loi des tensions.		
Étude énergétique.	Réaliser un bilan de puissance et		
	d'énergie.		
Circuit mobile dans un champ mag	nétique stationnaire		
Conversion de puissance méca. en	Interpréter qualitativement les		
puissance électrique.	phénomènes observés.		
Rail de Laplace.	Écrire les équations électrique et		
Spire rectangulaire soumise à un champ	mécanique en précisant les conventions		
magnétique extérieur uniforme et en ro-	de signe.		
tation uniforme autour d'un axe fixe or-	Effectuer un bilan énergétique.		
thogonal au champ magnétique.	Citer des applications dans le domaine		
	de l'industrie ou de la vie courante.		
Freinage par induction.	Expliquer l'origine des courants de Fou-		
	cault et en citer des exemples d'utilisa-		
	tion.		
Conversion de puissance élec. en	Analyser le fonctionnement du moteur		
puissance mécanique	à courant continu à entrefer plan en		
Moteur à courant continu à entrefer	s'appuyant sur la configuration des rails		
plan.	de Laplace.		
	Citer des exemples d'utilisation du mo-		
	teur à courant continu.		

5. Électromagnétisme

EM1 Sources de champ électromagnétique

Description	microscopique	et mésos	copique	des source	$\mathbf{e}\mathbf{s}$
-------------	---------------	----------	---------	------------	------------------------

Densité volumique de charges. Charge traversant un élément de surface fixe et vecteur densité de courant. Intensité du courant. Exprimer la densité volumique de charge ρ et le vecteur densité de courant \overrightarrow{j} en fonction de la vitesse moyenne des porteurs de charge, de leur charge et de leur densité volumique.

Relier l'intensité du courant et le flux du vecteur densité de courant \overrightarrow{j} .

Conservation de la charge

Équation locale de conservation de la charge.

Établir l'équation traduisant la conservation de la charge dans le seul cas d'un problème unidimensionnel en géométrie cartésienne.

Citer et utiliser une généralisation (admise) en géométrie quelconque utilisant l'opérateur divergence, son expression étant fournie.

Exploiter le caractère conservatif du vecteur densité de courant \overrightarrow{j} en régime stationnaire; relier cette propriétéé à la loi usuelles des noeuds de l'électrocinétique.

Conduction électrique dans un conducteur ohmique			
Loi d'Ohm locale. Conductivité	Établir l'expression de la conductivité		
électrique.	électrique à l'aide d'un modèle microsco-		
	pique, l'action de l'agitation thermique et		
	des défauts du réseau étant décrite par une		
	force de frottement fluide linéaire.		
	Discuter de l'influence de la fréquence sur la		
	conductivité électrique.		
	Établir l'expression de la résistance d'une		
	portion de conducteur filiforme.		
Effet Hall.	Interpréter qualitativement l'effet Hall dans		
	une géométrie parallélépipédique.		

Densité volumique de charge : $\rho(M,t) = \frac{\delta q_M}{\mathrm{d} \tau_M}$

Vecteur densité de courant électrique : $\overrightarrow{j_{elec}} = q \, n_P \, \overrightarrow{v_{moy}} = \rho_{cond} \, \overrightarrow{v_{moy}}$

Intensité du courant électrique à travers $\mathcal{S}: I_{\mathcal{S}}(t) = \iint_{M \in \mathcal{S}} \overrightarrow{j_{elec}}(M, t) \cdot \overrightarrow{\mathrm{d}S}_{M}$

Équation locale de conservation de la charge :

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\overrightarrow{j_{elec}}) = 0$$

Modèle de Drude : force de frottement type visqueux $\overrightarrow{f} = -\frac{m}{\tau} \overrightarrow{v}$, interprétation de τ , ordre de grandeur.

Introduction d'une conductivité électrique $\gamma = \frac{n_p q^2 \tau}{m_p}$

Loi d'Ohm locale, résistance d'un conducteur ohmique filiforme.

Aspect énergétique, densité volumique de puissance $p_V(M,t) = \overrightarrow{j_{elec}} \cdot \overrightarrow{E}$.

Description qualitative de l'effet Hall. Régime stationnaire dans une configuration

parallèlépipédique, tension de Hall :

$$U_H = \frac{1}{n_p e} \frac{1}{h} IB.$$

Outils mathématiques

Divergence	Citer et utiliser le théorème d'Ostrogradski.				
	Exprimer	la	divergence	en	coordonnées
	cartésienne	es.			