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Dynamique en référentiel
non galiléen

Question de cours

• Donner les expressions de la force d’inertie d’entrainement et de la force d’inertie de Coriolis pour les deux types
de référentiels mobiles.

• Énoncer les théorèmes fondamentaux de dynamique en référentiel non galiléen : théorème de la quantité de mou-
vement, théorème du moment cinétique, théorème de l’énergie/puissance cinétique/mécanique.

• Champ de pesanteur : définition, évolution qualitative avec la latitude, ordres de grandeur.

Applications directes du cours

1 Un pendule simple est constitué par une masse ponctuelle m suspendue à un fil de longueur ℓ ; l’autre extrémité de
ce fil est fixée en un point O au plafond d’un train. Ce train est animé d’un mouvement de translation rectiligne,
parallèle à la direction horizontale (Ox) par rapport au référentiel terrestre galiléen RT , et d’accélération γ⃗ constante
par rapport à RT .

1. Déterminer l’angle α que fait le fil du pendule avec la direction (Oy), verticale descendante, lorsque le pendule
est en équilibre pour un observateur placé dans le train.

2. Cet observateur étudie les oscillations du pendule autour de cette position d’équilibre, dans le plan (xOy). La
position du pendule est repérée par l’angle θ du fil et de (Oy). Calculer le moment cinétique du pendule par
rapport à O ainsi que sa dérivée par rapport au temps dans le référentiel lié au train. En déduire la période
des petites oscillations du pendule autour de sa position d’équilibre.

2 Un point matériel M de masse m évolue sans frottement le long d’un cerceau de centre O et de rayon a. Le cerceau
tourne autour de son diamètre vertical à la vitesse angulaire constant Ω.
a. Quelles sont les actions mécaniques auxquelles est soumis le point M dans le référentiel du cerceau ?
b. Établir l’équation du mouvement de M dans le référentiel du cerceau grâce à la deuxième loi du Newton puis à
l’aide du théorème du moment cinétique.
c. Exprimer l’énergie cinétique de M dans le référentiel du cerceau et donner l’expression de l’énergie potentielle
de pesanteur.
d. Montrer que la force d’inertie d’entrâınement dérive d’une énergie potentiellle. On prendra l’origine des énergies
potentielles en θ = π/2.
e. Quelles sont les positions d’équilibre du point M ? Étudier leur stabilité. Période des petites oscillations.

Exercices

1. Caisse sur plan incliné

Un point matériel M , de masse m, peut glisser sans
frottement sur un support plan incliné d’un angle α par
rapport au plan horizontal. Ce plan est en mouvement
de translation uniformément accéléré, d’accélération a⃗0
horizontale par rapport À un référentiel galiléen. On étudie
le mouvement du point M suivant la ligne de plus grande
pente (OX).
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1. Établir l’expression de l’accélération Ẍ du point M relativement au plan incliné.

2. À la date t=0, le point est abandonné sans vitesse initiale par rapport au plan. À quelle condition sur l’angle α le
point remonte-t-il la pente ?
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2. Mouvement d’un palet sur un plateau oscillant

Un palet de masse m est posé sur un plateau horizontal. On désigne par g l’intensité du champ de pesanteur.

1. Le plateau est animé par rapport au sol d’un mouvement sinusöıdal vertical décrit par l’équation : z(t) = a cos(ωt).
Quelle condition doit satisfaire ω pour que le palet ne quitte pas le plateau ?
A.N. : a = 5 cm et g = 9, 8 m.s−2 ; calculer la fréquence seuil.

2. On envisage maintenant des oscillations de même amplitude mais horizontales de ce même plateau. Le coefficient
de frottement sec entre le palet et le plateau est f = 0,8. Calculer la fréquence seuil de glissement.

3. On envisage une dernière situation : le palet est placé au bord du plateau, à une distance r = 2 cm du centre.
On met le plateau en rotation propre à la vitesse angulaire constante ω. À partir de quelle valeur de ω le palet
décroche-t-il ?

3. Usure des rails

Tous les ans, sur chaque voie ferrée les 2 rails sont échangés par les agents de maintenance des voies TGV afin d’éviter
une usure trop asymétrique.
L’objectif de cet exercice est de comprendre l’origine de ce phénomène. Pour cela, on imagine une rame de TGV circulant
dans la direction nord-sud en un lieu de latitude λ = 60o nord.

1. Évaluer numériquement la force qui est responsable de l’usure asymétrique des rails. De quel côté du rail a lieu
cette usure ?

2. De quel angle faudrait-il incliner le plan des rails sur l’horizon si l’on voulait que la réaction des rails soit rigoureu-
sement perpendiculaire à ce plan ?

4. Bille sur véhicule en translation

On pose un objet ponctuel M , sans vitesse initiale, sur un support circulaire lié à un véhicule en translation avec une
accélération γ⃗0 = γ0u⃗x. Le mobile est repéré initialement par l’angle θ0. On se place dans le champ de pesanteur uniforme,
on suppose le référentiel terrestre galiléen, et qu’il y a absence de frottements.

1. Montrer qu’il existe un angle θ0 = θE où M est en équilibre relatif.

2. Retrouver la valeur de θE par un raisonnement énergétique.

3. Discuter de la stabilité de la position d’équilibre.

5. Ressort tournant

Un anneau glisse sans frottement sur un axe ∆ tournant autour de l’axe Oz à la vitesse angulaire ω0e⃗z. Il est relié au
point O par un ressort de constante de raideur k et de longueur à vide ℓ0.
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1. Quelles sont les forces exercées sur la masse m ?

2. Discuter du mouvement de l’anneau dans le référentiel tournant en fonction du signe de
k

m
− ω2

0 .

3. Existe-t-il une position d’équilibre stable ?

6. Déviation vers l’est

On abandonne sans vitesse initiale un point matériel à l’altitude h dans le référentiel terrestre, à la verticale du point A
de latitude λ à la surface de la Terre.

1. En négligeant l’influence de la force de Coriolis sur le mouvement, établir les expressions de x(t), y(t) et z(t) ainsi
que le temps de chute. Faire l’application numérique pour h = 150 m et g = 9, 81 ms−2.

2. Vérifier le caractère correctif du terme de Coriolis. Exprimer de façon générale la force de Coriolis, et identifier le
terme correctif principal donné par cette force.

3. Écrire, au premier ordre de correction, les équations du mouvement avec la force de Coriolis. Vérifier la ≪ déviation
vers l’Est ≫annoncée, et faire l’application numérique à la latitude de 50o.

7. Pendule de Foucault

On s’intéresse au mouvement d’un pendule simple constitué d’une masse m = 30 kg suspendue à l’extrémité d’un fil de
masse négligeable et de longueur ℓ = 67 m. L’autre extrémité du fil est accrochée à un point A fixe par rapport au sol,
situé à une hauteur égale à ℓ. À l’instant initial, on écarte le pendule de sa position d’équilibre d’un angle α = 5o dans
le plan méridien et on l’abandonne sans vitesse initiale. En un point P de latitude λ, on utilise la base de projection
cartésienne Pxyz en prenant Pz selon la direction verticale du lieu et Px dirigé vers l’est.

1. On suppose dans un premier temps que le référentiel terrestre est galiléen.

(a) Montrer que le mouvement s’effectue dans un plan que l’on précisera.

(b) Établir l’équation horaire du mouvement par exemple en donnant l’expression de l’angle θ entre le filin et la
verticale.

(c) Calculer les amplitudes maximales des positions, des vitesses et des accélérations dans les deux directions où
s’effectuent le mouvement.

2. On tient compte désormais de la rotation de la Terre sur elle même.

(a) Déterminer la valeur de la vitesse angulaire Ω associée.

(b) En déduire que le fait de tenir compte de la rotation de la Terre est une correction par rapport au mouvement
précédent.

(c) Expliquer qualitativement pourquoi on peut considérer que le mouvement de ce pendule ne détecte pas la
rotation de la Terre à l’équateur.

3. On cherche à écrire les équations du mouvement

(a) Expliciter dans la base de projection proposée les équations du mouvement.

(b) En faisant des approximations à justifier à l’aide des questions précédentes, montrer que les équations du
mouvement précédent peuvent s’écrire sous la forme :

ẍ− 2Ωẏ sinλ+ ω2
0x = 0

ÿ + 2Ωẋ sinλ+ ω2
0y = 0

T = mg
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(c) On résout ce système en utilisant la notation complexe : on pose Z = x+iy. En déduire l’équation différentielle
vérifiée par Z.

(d) La résoudre pour obtenir les équations horaires x(t) et y(t).

(e) Interpréter physiquement la solution.

4. Cette expérience fut réalisée sous la coupole du Panthéon en 1852 par Léon Foucault (1819-1868) qui mesura une
période de 31h 46 minutes.

(a) Déterminer la durée d’un tour complet du plan d’oscillations à la latitude 48o51′ (latitude de Paris). Que
penser des résultats obtenus par Foucault ?

(b) Comparer les périodes à l’équateur, au pôles et à la latitude de 45o.

(c) Ce résultat dépend-il de l’hémisphère dans lequel est réalisé l’expérience ?

Résolution de problème

1. Pendule dans camion

Un pendule de longueur ℓ et masse m est attaché au plafond d’un camion. Ce dermier démarre avec une accélération
constante −→a jusqu’à la vitesse v0 puis roule à vitesse constante.

À l’aide du grahique ci-dessous, déterminer ∥−→a ∥, la vitesse v0 du camion et la longuer ℓ du fil.
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