2. Mécanique

M01 Changements de référentiels

Référentiel en translation rectiligne	Relier la transformation de Galilée et
uniforme par rapport à un autre :	la formule de composition des vitesses
transformation de Galilée, composition	à la relation de Chasles et au caractère
des vitesses.	supposé absolu du temps.
Composition des vitesses et des	Exprimer la vitesse d'entraînement et
accélérations dans le cas d'un	l'accélération d'entraı̂nement.
référentiel en translation par rap-	
port à un autre : point coïncident,	
vitesse d'entraînement, accélération	
d'entraînement.	
Composition des vitesses et des	Exprimer la vitesse d'entraînement et
accélérations dans le cas d'un	l'accélération d'entraînement.
référentiel en rotation uniforme	Citer et utiliser l'expression de
autour d'un axe fixe : point coïncident,	l'accélération de Coriolis.
vitesse d'entraînement, accélération	
d'entraînement, accélération de Corio-	
lis.	

- Référentiel, solide indéformable, horloge, temps absolu;
- \mathcal{R}_a référentiel "absolu" muni du repère cartésien $(O, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$ et \mathcal{R}_r référentiel "relatif" muni du repère cartésien $(O', \overrightarrow{u_x}', \overrightarrow{u_y}', \overrightarrow{u_z}')$, relation de Chasles:

$$\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M}$$

• Cas de la translation :

$$\overrightarrow{v}(M/\mathcal{R}_a) = \overrightarrow{v}(M/\mathcal{R}_r) + \overrightarrow{v}(O'/\mathcal{R}_a)$$

$$\overrightarrow{a}(M/\mathcal{R}_a) = \overrightarrow{a}(M/\mathcal{R}_r) + \overrightarrow{a}(O'/\mathcal{R}_a)$$

avec $\overrightarrow{v}(O'/\mathcal{R}_a) = \overrightarrow{v}(P/\mathcal{R}_a) = \overrightarrow{v}_{\text{ent}}$, $\overrightarrow{v}_{\text{ent}}$ est la vitesse d'entraı̂nement et P est le point coincident.

Et $\overrightarrow{a}(O'/\mathcal{R}_a) = \overrightarrow{a}(P/\mathcal{R}_a) = \overrightarrow{a}_{\text{ent}}$, $\overrightarrow{a}_{\text{ent}}$ est l'accélération d'entraînement.

• Cas de la rotation uniforme autour d'un axe fixe $\Delta = (O, \overrightarrow{u_z})$:

$$\overrightarrow{v}(M/\mathcal{R}_a) = \overrightarrow{v}(M/\mathcal{R}_r) + \overrightarrow{v}_{\text{ent}}$$

$$\overrightarrow{a}(M/\mathcal{R}_a) = \overrightarrow{a}(M/\mathcal{R}_r) + \overrightarrow{a}_{\text{ent}} + \overrightarrow{a}_{\text{Cor}}$$

avec $\overrightarrow{v}_{\mathrm{ent}} = \overrightarrow{\Omega} \wedge \overrightarrow{OM} = \overrightarrow{v}(P/\mathcal{R}_a)$, vitesse d'entraı̂nement; $\overrightarrow{a}_{\mathrm{ent}} = \overrightarrow{a}(P/\mathcal{R}_a) = -\Omega^2 \overrightarrow{HM}$ accélération d'entraı̂nement; $\overrightarrow{a}_{\mathrm{Cor}} = 2\overrightarrow{\Omega} \wedge \overrightarrow{v}(M/\mathcal{R}_r)$ accélération de Coriolis.

M02 Dynamique en référentiel non galiléen

Cas d'un référentiel en translation par	Déterminer la force d'inertie d'en-
rapport à un référentiel galiléen : force	traînement.
d'inertie d'entrainement.	Appliquer la deuxième loi de Newton,
	le théorème du moment cinétique et le
	théorème de l'énergie cinétique dans un
	référentiel non galiléen.
Cas d'un référentiel en rotation uni-	Exprimer la force d'inertie d'en-
forme autour d'un axe fixe dans un	traînement et la force d'inertie de
référentiel galiléen : force d'inertie	Coriolis.
d'entraînement, force d'inertie de Co-	Associer la force d'inertie d'en-
riolis.	traînement axifuge à l'expression
	familière « force centrifuge ».
	Appliquer la deuxième loi de Newton,
	le théorème du moment cinétique et le
	théorème de l'énergie cinétique dans un
	référentiel non galiléen.
Champ de pesanteur terrestre :	Distinguer le champ de pesanteur et le
définition, évolution qualitative avec	champ gravitationnel.
la latitude, ordres de grandeur.	