2. Mécanique

M02 Dynamique en référentiel non galiléen

Cas d'un référentiel en translation par	Déterminer la force d'inertie d'en-
rapport à un référentiel galiléen : force	traînement.
d'inertie d'entrainement.	Appliquer la deuxième loi de Newton,
	le théorème du moment cinétique et le
	théorème de l'énergie cinétique dans un
	référentiel non galiléen.
Cas d'un référentiel en rotation uni-	Exprimer la force d'inertie d'en-
forme autour d'un axe fixe dans un	traînement et la force d'inertie de
référentiel galiléen : force d'inertie	Coriolis.
d'entraînement, force d'inertie de Co-	Associer la force d'inertie d'en-
riolis.	traînement axifuge à l'expression
	familière « force centrifuge ».
	Appliquer la deuxième loi de Newton,
	le théorème du moment cinétique et le
	théorème de l'énergie cinétique dans un
	référentiel non galiléen.
Champ de pesanteur terrestre :	Distinguer le champ de pesanteur et le
définition, évolution qualitative avec	champ gravitationnel.
la latitude, ordres de grandeur.	

1. Optique

Opt1 Modèle scalaire des ondes lumineuses

Modèle de propagation dans l'approximation de l'optique géométrique.	
Vibration lumineuse.	Associer la grandeur scalaire de l'optique à
	une composante d'un champ électrique.
Chemin optique. Déphasage dû à	Exprimer le retard de phase en un point en
la propagation.	fonction de la durée de propagation ou du
	chemin optique.
Surfaces d'ondes. Théorème de	Utiliser l'égalité des chemins optiques sur les
Malus.	rayons d'un point objet à son image.
Onde plane, onde sphérique; ef-	Associer une description de la formation des
fet d'une lentille mince dans l'ap-	images en termes de rayons lumineux et en
proximation de Gauss.	termes de surfaces d'onde.
Modèle d'émission.	
Largeur spectrale. Cohérence tem-	Classer différentes sources lumineuses
porelle.	(lampe spectrale basse pression, laser,
	source de lumière blanche) en fonction
	du temps de cohérence de leurs diverses
	radiations.
	Citer quelques ordres de grandeur des lon-
	gueurs de cohérence temporelle associées à
	différentes sources.
	Relier, en ordre de grandeur, le temps de
	cohérence et la largeur spectrale de la radia-
	tion considérée.

Réception d'une onde lumineuse.	
Récepteurs. Intensité lumineuse.	Comparer le temps de réponse d'un
	récepteur usuel (œil, photodiode, capteur
	CCD) aux temps caractéristiques des vibra-
	tions lumineuses.
	Relier l'intensité lumineuse à la moyenne
	temporelle du carré de la grandeur scalaire
	de l'optique.

Opt2 Superposition d'ondes lumineuses

Superposition de deux ondes	Justifier et utiliser l'additivité des intensités.
quasi-monochromatiques non	
synchrones ou incohérentes entre	
elles.	
Superposition de deux ondes	Établir la formule de Fresnel.
quasi-monochromatiques	Identifier une situation de cohérence entre
cohérentes entre elles : formule de	deux ondes et utiliser la formule de Fresnel.
Fresnel.	