
# Trous d'Young

### Un exemple de dispositif interférentiel par division du front d'onde

Pour obtenir des interférences, il faut avoir deux sources mutuellement cohérentes. Pour cela nous allons former deux sources secondaires à partir d'une unique source primaire. Dans le dispositif suivant, on fait interférer deux rayons lumineux distincts issus de la source primaire. Ces deux rayons suivent des trajets différents à partir de la source primaire, on divise le front d'onde de la source.

### I Description du dispositif

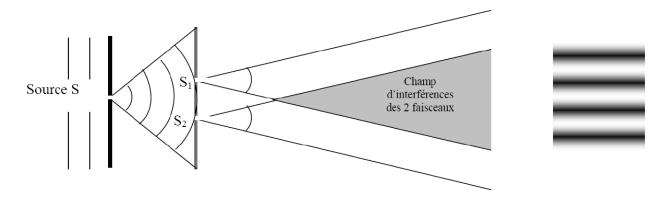
Thomas Young réalisa en 1801 une expérience maintenant célèbre puisqu'elle permit de mettre en évidence le caractère ondulatoire de la lumière. Le dispositif consiste à éclairer à l'aide d'une source ponctuelle monochromatique S, un écran percé de deux trous identiques  $S_1$  et  $S_2$  relativement proches et équidistants de S. Ces deux trous diffractent la lumière et se comportent comme deux sources ponctuelles secondaires vibrant en phase et produisant sur un écran placé à la distance D des franges d'interférences.



S: source primaire, elle éclaire un diaphragme opaque percé de deux trous  $S_1$  et  $S_2$  distants de a. S est une source ponctuelle monochromatique située à une grande distance de O.  $S_1$  et  $S_2$  sont équidistants de S.

On observe la figure d'interférence sur un écran placé à la distance D du diaphragme, avec  $D \gg a$ , on parle d'observation à grande distance.

Les rayons lumineux qui arrivent au point M sont issus de deux rayons distincts qui émergent de la source : c'est un dispositif à division du front d'onde.


Les sources secondaires  $S_1$  et  $S_2$  sont éclairées par la même surface d'onde, elles vont émettre la même séquence de trains d'onde. Les trous (ou fentes) sont de même dimension et éclairées de la même façon par la source S. On a donc deux sources secondaires cohérentes de même éclairement.

# II Champ d'interférence

#### II.1 Champ d'interférence

On appelle **champ d'interférence** la zone de l'espace éclairée par le deux ondes cohérentes = zone où on peut observer les interférences.

Les interférences produites son observables en tout point du champ d'interférences, elle sont dites **non** localisées.



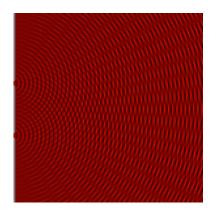
#### II.2 Différence de marche et ordre d'interférence

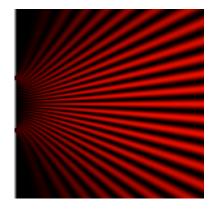
L'intensité lumineuse sur l'écran est fonction du déphasage  $\Delta \varphi_{2/1}(M)$  (différence de retard de phase) entre les deux ondes issues de S:

$$\Delta \varphi_{2/1}(M) = \frac{2\pi}{\lambda_0} \delta(M)$$

avec  $\delta(M) = (SM)_{\text{voie2}} - (SM)_{\text{voie1}}$ , différence de marche.

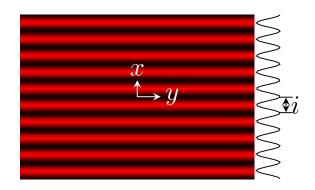
Méthode:


- $\triangle$  En déduire l'expression du déphasage et de l'ordre d'interférence p(M),


Dans un milieu non dispersif d'indice n:

#### II.3 Franges d'interférence

Intensité vibratoire résultante


$$I(M) = 2I_0 \left[ 1 + \cos \left( \frac{2\pi}{\lambda} \frac{nax}{D} \right) \right]$$





À gauche : état ondulatoire à un instant donné. On distingue nettement les zones d'amplitude nulle qui donnent lieu à des franges sombres. À droite : répartition de l'intensité. Les lieux d'égale intensité sont des branches d'hyperbole de foyer  $S_1$  et  $S_2$ .

Comme on le voit sur la figure ci-contre, l'intensité est modulée spatialement suivant x, ce qui fait apparaître des franges rectilignes horizontales. Les franges brillantes sont telles que  $x_p=pi$  avec p l'ordre d'interférence et  $i=\frac{D\lambda_0}{na}$  interfrange.



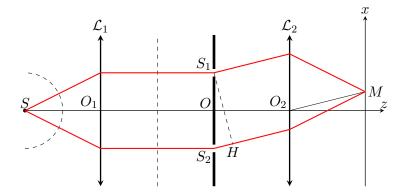
Pour vous amuser avec des simulations vous pouvez utiliser le site d'un collègue : https://phyzik.store/

Autre possibilité: https://phyanim.sciences.univ-nantes.fr/Ondes/lumiere/interference\_lumiere.php

### III Montage de Fraunhofer

#### III.1 Description du montage

<u>Conditions de Fraunhofer</u>: Il s'agit d'une configuration où les trous d'Young sont éclairés avec une source à l'infini et où l'on observe la figure d'interférence à l'infini.


#### En pratique:

S =source ponctuelle placée au foyer objet d'une lentille mince convergente  $\mathcal{L}_1$ .

E =écran est placé dans le plan focal image d'une lentille mince convergente  $\mathcal{L}_2$ .

#### Schéma:

Le montage des trous d'Young dans le montage de Fraunhofer est représenté ci-dessous. On notera f' la distance focale image des lentilles  $\mathcal{L}_1$  et  $\mathcal{L}_2$ .



#### III.2 Différence de marche

Représentons les rayons passant respectivement par le trou  $S_1$  et par le trou  $S_2$  se coupant en un point M d'abscisse x sur l'écran. Ces deux rayons sont parallèles avant la traversée de la lentille et se propagent selon

$$\overrightarrow{u} = \frac{O_2 \overrightarrow{M}}{\|\overrightarrow{O_2 M}\|} \simeq \overrightarrow{e_z} + \frac{x}{f'} \overrightarrow{e_x}.$$

Notons H le projeté orthogonal de  $S_1$  sur le rayon issu de  $S_2$ . La distance  $S_2H$  est ainsi

$$S_2H = \overrightarrow{u} \cdot \overrightarrow{S_2S_1} = \frac{ax}{f'}$$

Principe de retour inverse de la lumière : la lentille  $\mathcal{L}_2$  transforme une onde sphérique issue de M en une onde plane se propageant dans la direction de  $MO_2$ , c'est-à-dire selon  $-\overrightarrow{u}$ . De ce point de vue, H et  $S_1$  appartiennent au même plan d'onde. Il en résulte que les chemins optiques  $(MS_1)$  et (MH) sont égaux.

On peut ainsi évaluer la différence de chemin optique

$$\delta = [SS_2M] - [SS_1M] = [S_2H] = \frac{nax}{f'}$$

où n désigne l'indice dans lequel plonge le dispositif expérimental.

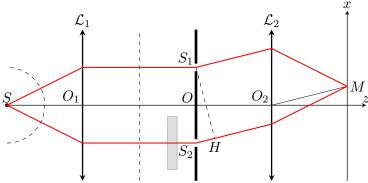
La différence de phase entre les ondes qui interfèrent en M est donc

$$\varphi(M) = \frac{2\pi\delta}{\lambda} = \frac{2\pi nax}{\lambda f'}$$

et l'ordre d'interférences est

$$p(M) = \frac{\delta(M)}{\lambda} = \frac{nax}{\lambda f'}$$

L'intensité en M se déduit de la formule de Fresnel par


$$I(M) = 2I_0 \left( 1 + \cos \varphi \right) = 2I_0 \left( 1 + \cos \frac{2\pi nax}{\lambda f'} \right)$$

Les franges d'interférences sont donc des franges rectilignes x = Cte. L'interfrange  $\Delta x$  est déterminée par

$$\frac{2\pi na\Delta x}{\lambda f'} = 2\pi \text{ soit } \Delta x = \frac{\lambda f'}{na}$$

#### III.3 Interposition d'une lame

On reprend le dispositif précédent, et on intercale sur la voie 2 une lame à faces parallèles d'indice  $n_L$  et d'épaisseur e.



- le chemin optique sur la voie 1 reste inchangé;
- le chemin optique sur la voie 2 est modifié; la géométrie des rayons ne change pas, mais la présence de la lame remplace un chemin optique ne par un chemin optique  $n_Le$ , ce qui provoque une variation de chemin optique  $(n_L n)e$ ;
- la nouvelle différence de marche devient

$$\delta' = \delta + (n_L - n)e = \frac{nax}{f'} + (n_L - n)e = \frac{na(x - x_0)}{f'}$$
$$x_0 = -\frac{(n_L - n)ef'}{na}$$

avec

La nouvelle expression de l'intensité lumineuse devient

$$I(M) = 2I_0 \left( 1 + \cos \frac{2\pi \delta'}{\lambda} \right) = 2I_0 \left( 1 + \cos \frac{2\pi n a(x - x_0)}{\lambda f'} \right)$$

L'introduction de la lame se traduit ainsi par une translation de la figure d'interférences de

$$x_0 = -\frac{(n_L - n)ef'}{na}$$

#### IV Cas d'une source étendue

#### IV.1 Déplacement de la source

• Déplacement perpendiculairement à  $(S_1S_2)$ :

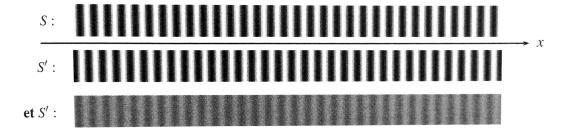
La différence de marche n'est pas modifiée.

Pour obtenir une figure d'interférences plus lumineuse, on utilise une fente source et des fentes d'Young distantes de a.

Remarque : la figure d'interférence est modulée par la figure de diffraction :



Avec deux fentes d'Young



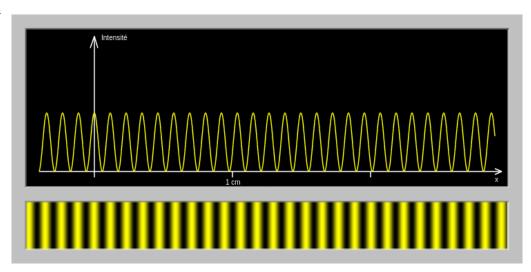

Avec deux trous d'Young

• Déplacement parallèlement à  $(S_1S_2)$  :

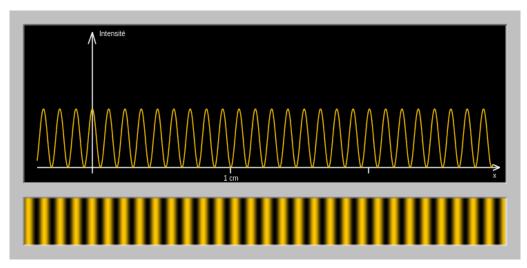
La différence de marche est modifiée. La frange centrale brillante est décalée de  $x_0 = -x_S \frac{D}{D_S}$ .

# IV.2 Superposition de sources décalées dans la direction $(S_1S_2)$

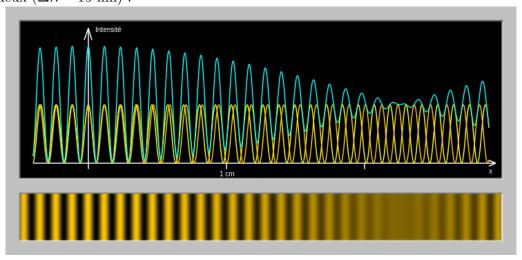



#### IV.3 Source étendue

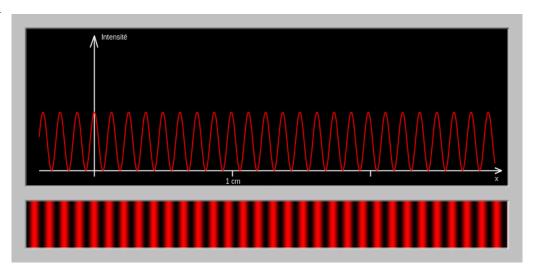
# V Influence de la largeur spectrale


Les différentes longueurs d'onde d'une source non monochromatique sont incohérentes entre elles.

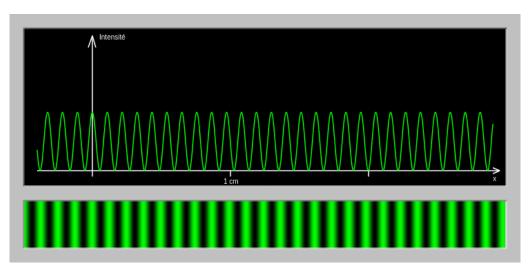
### V.1 Superposition de 2 longueurs d'onde


 $\lambda = 575~\mathrm{nm}$ 

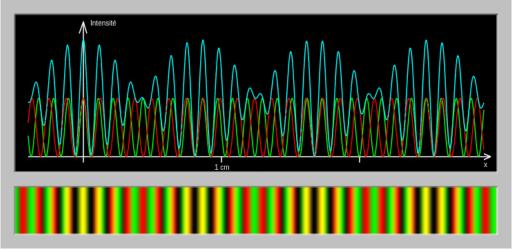



 $\lambda = 590 \text{ nm}$ 



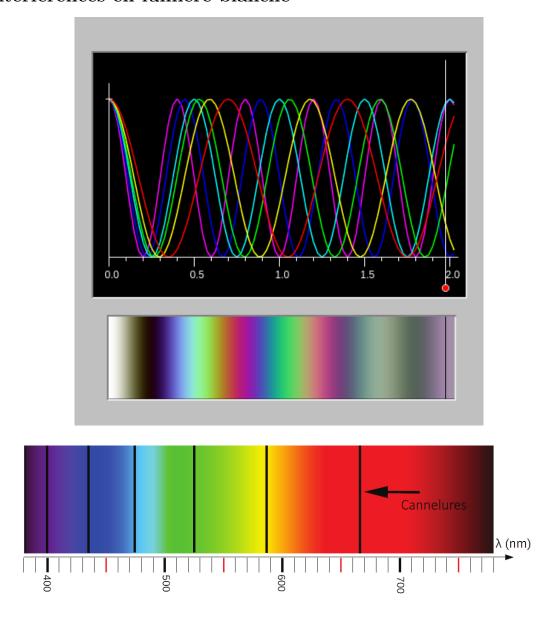

Somme des deux ( $\Delta \lambda = 15 \text{ nm}$ ) :




 $\lambda = 540~\mathrm{nm}$ 



 $\lambda = 620~\mathrm{nm}$ 




Somme des deux:



# V.2 Source de faible largeur spectrale

# VI Interférences en lumière blanche

